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ABSTRACT 
BACKGROUND AND PURPOSE: Ultra-high-resolution (UHR) photon-counting-detector (PCD) CT improves image resolution but 
increases noise, necessitating use of smoother reconstruction kernels that reduce resolution below the system’s 0.110 mm maximum 
spatial resolution. To address this, a denoising convolutional neural network (CNN) was developed to reduce noise in images 
reconstructed with the available sharpest reconstruction kernel while preserving resolution for enhanced temporal bone 
visualization. 

MATERIALS AND METHODS: With IRB approval, CNN was trained on 6 clinical temporal bone patient cases (1,885 images) and tested 
on 20 independent cases using a dual-source PCD-CT (NAEOTOM Alpha, Siemens). Images were reconstructed using iterative 
reconstruction at strength 3 (QIR3) with both clinical routine (Hr84) and the sharpest available head kernel (Hr96). The CNN was 
applied to images reconstructed with Hr96 and QIR1. Three image series (Hr84-QIR3, Hr96-QIR3, and Hr96-CNN) for each case were 
randomized for review by two neuroradiologists, assessing overall quality and delineation of the modiolus, stapes footplate, and 
incudomallear joint. 

RESULTS: CNN reduced noise by 80% compared to Hr96-QIR3 and 50% relative to Hr84-QIR3, while maintaining high resolution. When 
compared to the conventional method at the same kernel (Hr96-QIR3), Hr96-CNN significantly decreased image noise (from 204.63 
HU to 47.35 HU) and improved SSIM (from 0.72 to 0.99). Hr96-CNN images ranked higher than Hr84-QIR3 and Hr96-QIR3 in overall 
quality (p<0.001). Readers preferred Hr96-CNN for all three structures. 

CONCLUSIONS: The proposed CNN significantly reduced image noise in UHR PCD-CT, enabling the use of sharpest kernel. This 
combination greatly enhanced diagnostic image quality and anatomical visualization. 

ABBREVIATIONS: PCD = Photon-counting-detector; UHR = Ultra-high-resolution; IR = Iterative reconstruction; CNN = Convolutional 
neural network; SSIM: Structural similarity index. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: Ultra-high-resolution (UHR) photon-counting detector (PCD) CT can enhance image resolution and improve 
visualization of temporal bone structures. However, the system's maximum spatial resolution has not been fully explored in previous 
studies due to the associated increase in noise. 

KEY FINDINGS: A dedicated convolutional neural network enhanced high-resolution temporal bone imaging using the sharpest kernel 
in Photon-Counting-Detector CT, outperforming conventional methods, and significantly improving diagnostic quality and 
visualization of critical anatomical structures. 

KNOWLEDGE ADVANCEMENT: The resulting high-resolution images feature acceptable noise levels that not only improve anatomical 
delineation but also more precisely define the interfaces between metal prostheses and surrounding structures, enhancing temporal 
bone visualization. 

 

INTRODUCTION 

Temporal bone structures, including the facial nerve and labyrinth, are submillimeter in scale and require high-spatial-resolution imaging.1-

4 Recently, photon counting detector (PCD) CT systems have demonstrated the ability to provide ultra-high-resolution (UHR) images, 
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with in-plane resolutions reaching down to 0.125 mm.5-9 However, using this level of spatial resolution is challenging clinically because 
images at the highest resolution exhibit excessive noise as demonstrated in Fig 1. Therefore, it is crucial to maintain acceptable noise levels 
while preserving detailed structures, particularly in high-resolution imaging at clinical dose levels.  

 

 

 

FIG 1. Image resolution vs. noise in PCD-CT: As image resolution increases, image noise also increases, which can limit the utility 
of high-resolution settings in PCD-CT. 
 

In practice, PCD-CT temporal bone exams typically use smoother kernels (e.g., Hr84) instead of the sharpest available kernel (e.g., 
Hr96) to keep the noise at acceptable levels. The choice of kernel determines the final image resolution, with higher numbers indicating 
greater spatial resolution.10,11 For instance, the Hr84 kernel results in an in-plane resolution of 0.154 mm, which is inferior to the system's 
maximum resolution (0.110 mm).12 Noise reduction is an important topic in CT imaging and various methods have been investigated, such 
as traditional iterative reconstruction (IR)13 and deep learning-based methods.14,15 As highlighted by C. Niu et al.16, deep learning 
approaches, which train a neural network to remove noise from a noisy image, demonstrate superior denoising performance compared to 
IR methods. However, these approaches often require extensive collections of spatially aligned low- and routine-dose patient images, 
which are challenging to obtain. 

In this study, we developed a dedicated denoising convolutional neural network (CNN) to significantly reduce image noise in UHR 
PCD-CT, enabling the use of the sharpest kernel with acceptable noise levels for enhanced temporal bone visualization. Our approach 
utilizes a training dataset from the scanner, comprising both thin-slice and thick-slice IR images. All images are obtained from the routine 
clinical scan, without the need of images at different dose levels. This strategy not only ensures high-quality training data but also simplifies 
the replication of our methods by other researchers and facilitates adaptation to various clinical applications. 

MATERIALS AND METHODS 
Data Collection 

This retrospective study was approved by our institutional review board and was Health Insurance Portability and Accountability Act 
compliant, with informed consent waived. The methodology proposed in the CLAIM checklist (supplementary material) was followed. 
Data from six adult clinical temporal bone PCD-CT scans were utilized for CNN training and validation, while 20 independent patient 
cases were used for testing. All exams were conducted in UHR mode (120 × 0.2 mm collimation, 120 kV) on a dual-source Photon 
Counting Detector CT (NAEOTOM Alpha, Siemens Healthineers, Forchheim, Germany), 1 second rotation time, 0.5 helical pitch, and 
automatic exposure control with 220 CARE keV IQ level, resulting in a volume CT dose index (CTDIvol) of 34 mGy for standard size 
patients. The training and validation dataset included 1,885 CT images, reconstructed using both thin-slice (0.2 mm slice thickness with 
0.1 mm increment) and thick-slice (0.4 mm slice thickness with 0.2 mm increment) settings. Iterative reconstruction was applied at strength 
1 (QIR1) for thin slices and strength 3 (QIR3) for both thin and thick slices. All images utilized the sharpest available kernel (Hr96) and 
were processed with a 1024 × 1024 matrix size within an 80 mm clinical standard field of view. The trained CNN was then applied to test 
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cases, using images reconstructed at 0.2 mm thickness with the Hr96 kernel and QIR1. For reference, images reconstructed with the clinical 
routine kernel (Hr84) at a 0.2 mm slice thickness and QIR3 were also collected. 

 
The Dedicated Denoising CNN Training Workflow 

Figure 2 outlines our denoising CNN training workflow which begins by creating 'Noise_thin' images. These are generated by subtracting 
thin-slice iterative reconstructions with strengths 1 (QIR1_thin) and 3 (QIR3_thin), both set at a 0.2 mm slice thickness and increment, at 
the same anatomical location (higher strength settings perform more aggressive denoising). To prevent overfitting and introduce variability, 
we applied spatial decoupling techniques to “Noise_thin” images through random translations (ranging from 1 to 16 pixels) and inversions 
(using multipliers of +1 or -1) to create a set of randomized noise images. 

Additionally, a set of thicker slice images (0.4 mm thickness, 0.2 mm increment), referred to as 'QIR3_thick,' was reconstructed as a 
low-noise reference. CNN inputs were formed by combining noise-only and reference patches (QIR3_thick + α * Noise_thin) from 7 
adjacent slices, with α empirically set at 2.0 to balance noise reduction and detail preservation.15 The central slice patch of QIR3_thick 
was the training target. As demonstrated in a previous study17, training the CNN with thick reference images results in significantly 
improved noise reduction compared to using single-slice reference images. Moreover, the CNN's performance remains consistent when 
applied to single-slice images, even though it was trained on thick images. This is because the network focuses on learning noise patterns 
rather than the underlying tissue structures. Finally, the trained CNN’s denoising efficacy was then tested on thin QIR1 images. 

 
 

 

 

FIG 2. The overall workflow of the proposed deep CNN denoising method. All training data originated from patient image series 
reconstructed using two iterative reconstruction strengths, QIR1 and QIR3, with thin-slice (0.2 mm) and thick-slice (0.4 mm) 
thicknesses, respectively. A multiple-slice input strategy was implemented to enhance the CNN's performance. 

 

Network Architecture and Training Details 

We utilized a simplified U-Net architecture18 with nine modules for our study. Each module sequentially performs convolution, batch 
normalization, and exponential linear unit activation operations. The architecture includes max pooling layers, convolution transpose 
operators, and concatenation to maintain input-output similarity. The mean-squared-error loss function was optimized during training. Our 
final training set comprised 18,864 patches of 128 × 128 pixels from the training data and 2,096 from validation data, at a 9:1 ratio.  
Training began with an initial learning rate of 0.001, progressively reduced to 0.00001, using the Adam optimizer19 to minimize mean-
squared-error loss function. We set the training for 100 epochs to ensure model convergence. 

 
Phantom Experiments to Evaluate Noise and Spatial Resolution 

A 20-cm-diameter American College of Radiology (ACR) CT accreditation phantom (Gammex) was scanned to evaluate the noise power 
spectrum (NPS) and the contrast-dependent modulation transfer function (MTFc). All acquisitions and reconstructions were performed 
according to the clinical protocol settings used in this study. MTFc and NPS were calculated using data from Hr84-QIR3, Hr96-QIR3, and 
Hr96-CNN, utilizing the online platform (https://www.ctpro.net) to illustrate the noise and resolution changes across different methods. In 
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this study, NPS was computed by placing ten square regions of interest (ROIs) in the uniform section (module 3) of the ACR phantom. 
MTFc was calculated using bone cylindrical inserts (25 mm diameter, 4 cm depth) in module 1 of the phantom, based on 40 consecutive 
axial slices, to assess in-plane spatial resolution under high-contrast conditions. A circular ROI was placed around the insert, and a circular-
edge technique was employed to measure the edge spread function (ESF) by plotting each pixel’s HU value as a function of the distance 
from the center of the insert. The line spread function (LSF) was then derived from the ESF. After zero-padding, a fast Fourier transform 
(FFT) was applied to the LSF to compute the in-plane MTFc. 

 
Objective Image Quality Assessment 

For image quality evaluation, noise was measured in axial images as the standard deviation (SD) of CT numbers in a circular ROI drawn 
in a uniform soft-tissue area for each dataset. The size and location of ROIs were matched among 3 image sets (Hr84-QIR3, Hr96-QIR3, 
and Hr96-CNN).  
 
Reader Evaluation 

Two fellowship-trained neuroradiologists (>10 years experience each) assessed the overall image quality and delineation of three key 
anatomical structures— modiolus, stapes footplate, and incudomallear joint—for each of the 20 test cases. They assessed three image 
series per case (Hr84-QIR3, Hr96-QIR3, and Hr96-CNN), which were displayed side-by-side in a randomized and blinded manner. Images 
were ranked on a scale from 1 to 3, with 1 as the most preferred and 3 as the least preferred. Equal ranking was permitted. 
 
Statistical Analyses 
Statistical analyses were conducted using Python's statistical package scikit-posthocs. Pairwise comparisons were performed with 
Conover's post hoc test, applying a Bonferroni correction, to evaluate differences between two variables: the average rankings from two 
readers on overall image quality and diagnostic confidence for discerning three anatomical structures across Hr84-QIR3, Hr96-QIR3, and 
Hr96-CNN. A p-value < 0.05 was considered statistically significant. 
 
Denoising Performance Comparison 

The Residual Encoder-Decoder Convolutional Neural Network (RED-CNN) and U-Net are two of the most widely used models for CT 
image denoising20. Using our proposed dataset preparation workflow, we conducted a comparative analysis of the denoising performance 
between RED-CNN and the U-Net model we developed. Hr96-QIR1 was used as the input reference, while Hr96-QIR3 served as the 
conventional denoised reconstruction. We compared the difference images generated by subtracting the reference noisy input image from 
the conventional method, RED-CNN, and U-Net denoised images. Image quality was objectively assessed using the Structural Similarity 
Index (SSIM) and image noise measurements for each image set. This analysis was repeated at the patient level, with the mean and SD of 
these metrics reported. 

RESULTS 
NPS and MTFc performance on ACR phantom 

Figure 3 illustrates the noise textures, NPS, and MTFc for the bone insert from axial slices of the ACR phantom across three configurations: 
Hr84-QIR3, Hr96-QIR3, and Hr96-CNN. The noise levels in Hr84-QIR3 (σ = 90 HU) and Hr96-QIR3 (σ = 264 HU) are higher than those 
in Hr96-CNN (σ = 36 HU), with the noise in these images exhibiting higher spatial frequency components. This is consistent with the NPS 
measurements shown in the middle panel of Figure 3. The NPS peak for Hr96 decreases from 30.4 cm−1 to 4.4 cm−1 after applying CNN 
denoising, whereas the NPS peak for Hr84-QIR3 is at 15.6 cm−1. The MTFc results for the bone insert are displayed in the bottom panel 
of Figure 3. The spatial frequencies at 10% indicate that both Hr96-QIR3 and Hr96-CNN, utilizing the sharp kernel, offer better MTFc 
performance than the clinical routine Hr84-QIR3. The CNN denoising method preserved resolution in the Hr96 sharp kernel, with the 10% 
MTFc at 36.8 cm−1 and 38.4 cm−1 for the CNN and QIR3, respectively 
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FIG 3. Noise textures, NPS, and MTFc for the bone insert from axial slices of the ACR phantom for Hr84-QIR3, Hr96-QIR3, and Hr96-
CNN, displayed under a fixed window and level. 

 

 

 
Example Images 

Figure 4 displays representative images of modiolus, stapes footplate, and incudomallear joint using Hr84-QIR3, Hr96-QIR3, and Hr96-
CNN and highlights the enhanced capability of CNN denoising at the highest resolution (Hr96) to clearly delineate each evaluated structure 
with acceptable noise levels. The CNN effectively reduced image noise—by approximately 80% compared to the highest resolution 
commercial images (Hr96-QIR3), and by 50% relative to clinical routine images (Hr84-QIR3)—while demonstrating ultra-high resolution 
(as assessed visually). Compared to the routine images (Hr84-QIR3), CNN denoised high-resolution images (Hr96-CNN) show 
substantially improved spatial resolution and better delineation of key anatomic structures. 
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FIG 4. Representative images of the modiolus, stapes footplate, and incudomallear joint using three different reconstructions: 
Hr84-QIR3, Hr96-QIR3, and Hr96-CNN (W/L:4000/1000 HU). Enhanced visualization with improved resolution and reduced noise is 
demonstrated, with significant details indicated by yellow arrows. Image noise was quantified by measuring the standard deviation 
of CT numbers within a circular ROI placed in a uniform soft-tissue area, with values recorded in the lower left corner of each 
image. 

 
Reader Evaluation 

Figure 5 shows the results of the reader study. For overall image quality, Hr96-CNN images were ranked significantly higher than both 
Hr84-QIR3 (p<0.001) and Hr96-QIR3 (p<0.001). Both readers preferred CNN denoising images for visualization of all three anatomical 
structures: the modiolus (Hr96-CNN/Hr84-QIR3/HR96-QIR3: 1/1.8/2.8, p<0.001), the stapes footplates (Hr96-CNN/Hr84-QIR3/HR96-
QIR3: 1/1.94/2.88, p<0.001), and the incudomallear joint (Hr96-CNN/Hr84-QIR3/HR96-QIR3: 1/1.64/2.53, p<0.001). It is noted that in 
both evaluations, equal ranking was allowed. 
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FIG 5. Rankings from 2 readers regarding overall image quality and delineation of 3 key anatomic structures. For all 3 structures 
and overall image quality, CNN-Hr96 images rank highest. Dull purple indicates the first rank; Med gray, the second rank; Gold, 
the third rank. 

 

Denoising Performance Comparison 

Figure 6 presents an example slice from one subject in the test dataset, processed using the conventional Hr96-QIR3, RED-CNN, and the 
proposed U-Net, along with their corresponding difference images when compared to the reference input. Both the conventional and CNN-
based denoising methods successfully reduce noise relative to the reference. Specifically, noise levels were reduced from 572 HU to 235 
HU, 53 HU, and 43 HU using Hr96-QIR3, RED-CNN, and the proposed U-Net, respectively. As demonstrated in the difference images, 
the CNN-based denoising methods primarily remove noise, whereas the conventional method (Hr96-QIR3) also removes subtle structures, 
as indicated by the yellow arrow. This observation is further supported by the SSIM values of 0.7045, 0.9865, and 0.9883 for Hr96-QIR3, 
RED-CNN, and U-Net, respectively. Moreover, the comparison between RED-CNN and U-Net indicates that the proposed data preparation 
workflow performs effectively across different network architectures, achieving satisfactory denoising performance while preserving fine 
structural details. At the patient-level comparison, shown in Table 1, the proposed U-Net notably improves image quality. Compared to 
the conventional method (Hr96-QIR3), the U-Net significantly reduces image noise (from 204.63 HU to 47.35 HU) and enhances the 
SSIM (from 0.72 to 0.99). 

 

FIG 6. Example slice from the test dataset processed with Hr96-QIR3, RED-CNN, and the proposed U-Net, alongside their 
corresponding difference images compared to the reference input. The CNN-based methods (RED-CNN and U-Net) primarily reduce 
noise, while the conventional Hr96-QIR3 also removes subtle anatomical structures (highlighted by the yellow arrow). The display 
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window is (W/L:4000/1000 HU) for patient images, and (3000/1000 HU) for difference images. 

 

Table 1: Quantitative comparison (mean ± standard deviation) at patient level across the conventional method (Hr96-QIR3), RED-
CNN and U-Net. 

Quality metrics Hr96-QIR1 Hr96-QIR3 RED-CNN U-Net (Proposed) 

Image Noise 500.15 ± 52.38 204.63 ± 21.70 52.82 ± 1.17 47.35 ± 2.62 
SSIM 1.00 ± 0.00 0.72 ± 0.05 0.98 ± 0.02 0.99 ± 0.01 
 

 

DISCUSSION 

In this work, the proposed CNN significantly reduced image noise in UHR PCD-CT, allowing the use of the sharpest kernel with acceptable 
noise levels, unlocking the full potential of the UHR PCD-CT system. This combination of CNN denoising and UHR PCD-CT substantially 
enhanced diagnostic image quality and improved visualization of critical anatomical structures. 

Previous research21,22 demonstrated that spatial resolution of PCD-CT was not fully utilized in routine practice. Graafen et al.10 
investigated the impact of kernel sharpness on image quality and concluded that soft reconstruction kernels yield the best overall quality 
for the evaluation of hepatocellular carcinoma in PCD-CT. The primary reason is the extensive noise associated with sharper kernels, 
which can compromise diagnostic clarity. Although some studies have employed noise reduction techniques, including deep learning 
methods, to denoise UHR PCD-CT images, these efforts have not maximized the use of the sharpest available kernels. Our approach 
utilizing CNN denoising allows for the use of the sharpest kernel in UHR PCD-CT, maintaining acceptable noise levels and broadening 
its clinical applicability. The proposed method is fully based on images from patients’ routine clinical exams, without the need for 
additional low-dose images or any proprietary information. This flexibility allows the method to be adapted to any scanner. Furthermore, 
noise-only images in the workflow were generated from the same kernel reconstructions at different strengths, making it a kernel-based 
approach that can be applied to both smooth and sharp kernels for various imaging tasks, such as coronary and abdominal imaging. 
Additionally, the weight factor in the workflow allows for control over the level of noise reduction, accommodating the reader's preference 
for noise acceptability.  

This proof-of-concept study has several limitations. Firstly, the sample size of twenty testing patient cases was relatively small. Future 
research will expand the sample size for more robust statistical analysis and validation of findings. Secondly, the study focused solely on 
demonstrating image quality improvement without targeting specific diagnostic tasks. This represents the initial step in demonstrating the 
feasibility and potential of the algorithm. Future studies on diagnostic performance and clinical significance are warranted, including 
assessing how denoising affects the visibility of pathologies. Furthermore, the proposed CNN denoising offers significant potential for 
radiation dose reduction while maintaining clinically acceptable image quality. As spatial resolution, image noise, and radiation dose are 
interrelated to each other, the CNN denoising can be used to either improve spatial resolution, reduce image noise, or reduce radiation 
dose, or a combination. 

 

CONCLUSIONS 

In summary, we developed and evaluated a dedicated deep learning-based denoising method for UHR PCD-CT. This method utilizes a 
training dataset sourced from commercially available images, requiring no additional data preparation. The application of this algorithm 
in temporal bone imaging shows high-resolution and low-noise images with improved anatomical delineation. This advancement 
significantly enhances temporal bone visualization by fully utilizing the spatial resolution capabilities of PCD-CT. 
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CLAIM:  Checklist for Artificial Intelligence in Medical Imaging 
 

Section / Topic 
No
. 

Item  

TITLE / 
ABSTRACT 

   

 1 Identification as a study of AI methodology, specifying the 
category of technology used (e.g., deep learning) 

 

 2 Structured summary of study design, methods, results, and 
conclusions  

 

INTRODUCTION    

 3 Scientific and clinical background, including the intended use 
and clinical role of the AI approach 

 

 4 Study objectives and hypotheses  

METHODS    

Study Design 5 Prospective or retrospective study  

 6 Study goal, such as model creation, exploratory study, 
feasibility study, non-inferiority trial 

 

Data 7 Data sources  
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 8 Eligibility criteria: how, where, and when potentially eligible 
participants or studies were identified (e.g.,  symptoms, 
results from previous tests, inclusion in registry, patient-care 
setting, location, dates) 

 

 9 Data pre-processing steps   

 10 Selection of data subsets, if applicable  

 11 Definitions of data elements, with references to Common Data 
Elements 

 

 12 De-identification methods  

 13 How missing data were handled N/A 

Ground Truth 14 Definition of ground truth reference standard, in sufficient 
detail to allow replication 

N/A 

 15 Rationale for choosing the reference standard (if alternatives 
exist) 

 

 16 Source of ground-truth annotations; qualifications and 
preparation of annotators 

N/A 

 17 Annotation tools N/A 

 18 Measurement of inter- and intrarater variability; methods to 
mitigate variability and/or resolve discrepancies 

 

Data Partitions 19 Intended sample size and how it was determined  

 20 How data were assigned to partitions; specify proportions  

 21 Level at which partitions are disjoint (e.g., image, study, 
patient, institution) 

 

Model 22 Detailed description of model, including inputs, outputs, all 
intermediate layers and connections 

 

 23 Software libraries, frameworks, and packages  

 24 Initialization of model parameters (e.g., randomization, 
transfer learning) 

 

Training 25 Details of training approach, including data augmentation, 
hyperparameters, number of models trained 

 

 26 Method of selecting the final model  

 27 Ensembling techniques, if applicable N/A 

Evaluation 28 Metrics of model performance  

 29 Statistical measures of significance and uncertainty (e.g., 
confidence intervals) 

 

 30 Robustness or sensitivity analysis N/A 

 31 Methods for explainability or interpretability (e.g., saliency 
maps), and how they were validated 

N/A 

 32 Validation or testing on external data N/A 

RESULTS    

Data 33 Flow of participants or cases, using a diagram to indicate 
inclusion and exclusion 

 

 34 Demographic and clinical characteristics of cases in each N/A 
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partition 

Model 
performance 

35 Performance metrics for optimal model(s) on all data partitions  

 36 Estimates of diagnostic accuracy and their precision (such as 
95% confidence intervals) 

N/A 

 37 Failure analysis of incorrectly classified cases N/A 

DISCUSSION    

 38 Study limitations, including potential bias, statistical 
uncertainty, and generalizability 

 

 39 Implications for practice, including the intended use and/or 
clinical role  

 

OTHER 
INFORMATION 

   

 40 Registration number and name of registry N/A 

 41 Where the full study protocol can be accessed  

 42 Sources of funding and other support; role of funders  

 

Mongan J, Moy L, Kahn CE Jr.  Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a guide for authors and reviewers.  Radiol 
Artif Intell 2020; 2(2):e200029. https://doi.org/10.1148/ryai.2020200029 

 


