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 ABSTRACT 
BACKGROUND AND PURPOSE: Normalized relative cerebral blood volume (nrCBV) and percentage of signal recovery (PSR) computed 
from dynamic susceptibility contrast (DSC) perfusion imaging are useful biomarkers for differential diagnosis and treatment response 
assessment in brain tumors. However, their measurements are dependent on DSC acquisition factors, and CBV-optimized protocols 
technically differ from PSR-optimized protocols. This study aimed to generate “synthetic” DSC data with adjustable synthetic 
acquisition parameters using dual-echo gradient-echo (GE) DSC datasets extracted from dynamic spin-and-gradient-echo echoplanar 
imaging (dynamic SAGE-EPI). Synthetic DSC was aimed at: 1) simultaneously create nrCBV and PSR maps using optimal sequence 
parameters, 2) compare DSC datasets with heterogeneous external cohorts, and 3) assess the impact of acquisition factors on DSC 
metrics. 

MATERIALS AND METHODS: Thirty-eight patients with contrast-enhancing brain tumors were prospectively imaged with dynamic 
SAGE-EPI during a non-preloaded single-dose contrast injection and included in this cross-sectional study. Multiple synthetic DSC 
curves with desired pulse sequence parameters were generated using the Bloch equations applied to the dual-echo GE data extracted 
from dynamic SAGE-EPI datasets, with or without optional preload simulation. 

RESULTS: Dynamic SAGE-EPI allowed for simultaneous generation of CBV-optimized and PSR-optimized DSC datasets with a single 
contrast injection, while PSR computation from guideline-compliant CBV-optimized protocols resulted in rank variations within the 
cohort (Spearman’s ρ=0.83-0.89, i.e. 31%-21% rank variation). Treatment-naïve glioblastoma exhibited lower parameter-matched 
PSR compared to the external cohorts of treatment-naïve primary CNS lymphomas (PCNSL) (p<0.0001), supporting a role of synthetic 
DSC for multicenter comparisons. Acquisition factors highly impacted PSR, and nrCBV without leakage correction also showed 
parameter-dependence, although less pronounced. However, this dependence was remarkably mitigated by post-hoc leakage 
correction. 

CONCLUSIONS: Dynamic SAGE-EPI allows for simultaneous generation of CBV-optimized and PSR-optimized DSC data with one 
acquisition and a single contrast injection, facilitating the use of a single perfusion protocol for all DSC applications. This approach 
may also be useful for comparisons of perfusion metrics across heterogeneous multicenter datasets, as it facilitates post-hoc 
harmonization. 

 ABBREVIATIONS: DSC = dynamic susceptibility contrast; FA = flip angle; GBCA = gadolinium-based contrast agent; GBM = 
glioblastoma; GE = gradient echo; IDH = isocitrate dehydrogenase; IDHm = IDH-mutant; IDHwt = IDH-wild-type; 1p19qcod = 1p19q 
codeleted;  1p19qint = 1p19q intact; MRI = magnetic resonance imaging; PCNSL = primary CNS lymphoma; PSR = percentage of signal 
recovery; Rec = recurrent; SAGE-EPI = spin-and-gradient-echo echoplanar imaging; CBV = cerebral blood volume; nrCBV = normalized 
relative CBV; ROI = region of interest; TE = echo time; TN = treatment-naïve; TR = repetition time. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: Dynamic susceptibility contrast (DSC) perfusion MRI is routinely used to evaluate the normalized relative 
cerebral blood volume (nrCBV) and percentage of signal recovery (PSR) in brain tumors. nrCBV and PSR useful biomarkers for 
differential diagnosis and treatment response assessment in brain tumors. However, CBV-optimized DSC acquisition protocols have 
different acquisition parameters compared to PSR-optimized protocols, which makes it impractical to obtain simultaneous nrCBV and 
PSR measurements within the same MRI session. Additionally, heterogeneity in acquisition parameters across institutions is known to 
pose limitations in the universalizability of the quantification and interpretation of these DSC metrics. 

KEY FINDINGS: Dual-echo DSC extracted from dynamic SAGE-EPI allows to generate synthetic DSC data with adjustable synthetic 
acquisition parameters (i.e., flip angle, echo time, repetition time, and preload simulation). Synthetic DSC experiments confirmed 
that nrCBV and PSR measurements are dependent on acquisition parameters. Comparisons with external cohorts showed that 
parameter-matched synthetic PSR in glioblastoma is significantly different from external cohorts of PCNSL. 

KNOWLEDGE ADVANCEMENT: Synthetic DSC can simultaneously generate CBV-optimized and PSR-optimized DSC data with one 
acquisition and a single contrast injection, facilitating accurate nrCBV and PSR measurements within the same MRI session. Synthetic 
DSC has also the potential to achieve post-hoc harmonization of DSC parameters to improve the comparisons across heterogeneous 
multicenter datasets. 

 

INTRODUCTION 

Dynamic susceptibility contrast (DSC) perfusion MRI of the brain 1 provides non-invasive information about vascularity, including 
measures of regional cerebral blood volume (CBV), which has been shown to correlate with vascular density in brain tissue 1–3. In addition, 
from DSC time-intensity curves it is possible to compute the percentage of signal recovery (PSR), whose contrast appears to arise from 
the complex interplay of multiple tissue factors, including cellular architecture, vascular permeability, and vascular architecture 4–8. CBV 
9–12 and PSR 6,13 can inform the clinical management of brain tumors. Both have been shown to predict the molecular profile of gliomas, 
differentiate progressive disease from pseudoprogression during active treatment monitoring, 14–19, and aid in differentiating between 
several tumor types including glioma, primary CNS lymphoma (PCNSL), and metastasis 2,8,20–26. Although CBV is more widely employed 
and is overall considered a more robust metric for most of these applications, PSR may be superior to CBV when distinguishing PCNSL 
from other tumor types 20,21. 

Although both CBV and PSR provide potentially important information about tumor biology, obtaining optimal CBV and PSR 
measurements with a single-echo DSC acquisition is not possible, since CBV-optimized protocols 27,28 differ significantly from PSR-
optimized protocols 21,22. Indeed, DSC time-intensity curves are influenced by acquisition factors that impact the degree of relative T2*- 
and T1-weighting, including pulse sequence parameters (flip angle [FA], echo time [TE], and repetition time [TR]) and preload 
administration (P+ or P–). CBV-optimized protocols adopt various strategies to reduce the relative T1-weighting (e.g., low FA or P+) and 
increase CBV accuracy 27,29. Conversely, PSR-optimized protocols maintain T1-weighting (i.e., high FA and P–) 21,22 so that DSC signal 
reflects the overall balance between T1 and T2* post-bolus effects that depend on tissue factors 4,5,7. Therefore, either repeat single-echo 
DSC acquisitions are needed if both PSR-optimized and CBV-optimized protocols are desired, which doubles the scan time and the 
gadolinium-based contrast agent (GBCA) dose, or either CBV or PSR must be prioritized with a single acquisition. 

Additionally, such dependency of DSC time-intensity curves upon acquisition factors causes a remarkable challenge in the standardization 
of CBV and PSR for clinical applications. Indeed, the heterogeneity in acquisition protocols across institutions has limited the availability 
of reliable thresholds for universal interpretation of DSC metrics. Of note, data quantifying the impact of acquisition parameters on DSC 
metrics in-vivo are scarce, and limited to the comparisons between P– and P+ protocols 30–32, as repeat DSC experiments are influenced 
by GBCA injections acting as preloads. 

In this study, we propose to use the dual-echo gradient-echo (GE) datasets extracted from dynamic spin-and-gradient-echo echoplanar 
imaging (SAGE-EPI) to obtain “synthetic” DSC time-intensity curves with adjustable acquisition parameters (i.e., FA, TE, TR, and preload 
simulation), to overcome the limitations linked to parameter dependency in traditional single-echo DSC sequences. First, we anticipate 
that dual-echo GE will permit simultaneous acquisition of CBV-optimized and PSR-optimized synthetic DSC datasets, eliminating the 
need for double GBCA injection and repeated acquisitions, and we will evaluate the differences between these protocols. Second, we 
hypothesize that synthetic DSC datasets could represent a strategy for improving the generalizability of DSC by bypassing acquisition 
parameter heterogeneity across institutions. To test this, we will compare PSR values from synthetic DSC in our treatment-naïve 
glioblastoma cohort to external cohorts of PCNSL, after parameter-matching. Third, we propose that synthetic DSC can provide a 
framework to test the impact of acquisition factors (FA, TE, TR, P+/P–) on CBV and PSR in-vivo, which can be used to inform future 
recommendations on single-echo DSC protocols. 
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MATERIALS AND METHODS 
 
Patient Selection 

Patients with brain tumors were imaged prospectively as part of two research studies approved by the institutional review board 
(IRB#14-001261 and #21-000514) for which they provided written informed consent. Patients on study IRB #14-001261 were imaged 
between April 2015 and October 2020, and patients on study #21-000514 from October 2021 to June 2022. For the present study, we 
screened all the consecutive patients to select the ones with the following inclusion criteria: availability of dynamic SAGE-EPI datasets, 
contrast-enhancing tumor, histopathological diagnosis of adult-type glioma (either recurrent or treatment-naïve). The presence of excessive 
susceptibility artifacts affecting the tumor region in dynamic SAGE-EPI was an exclusion criterion. A STROBE checklist was followed 
to design the study and report the results (see Suppl. Material). 
 
Magnetic Resonance Imaging 

Magnetic resonance imaging was performed on a 3T Siemens Prisma (Siemens Healthineers) in compliance with the current 
standardized brain tumor imaging protocol (BTIP) 28,33. Perfusion imaging was performed with a custom dynamic SAGE-EPI sequence 
(patent US 11,378,638 B2) 3,7,34,35 with injection of one bolus of Gadavist® (Gadobutrol, Bayer) (~0.1ml/kg) at a rate of ~4 ml/s, as per 
guidelines 36. Dynamic SAGE-EPI included two gradient echoes (TE1=14ms, TE2=34.1ms), an asymmetric spin echo (TE3=58.0ms) and 
a spin echo (TE4=92.4ms) using the following acquisition parameters: TR=2.0s, matrix size=240x218mm, GRAPPA=3, voxel size 
1.875x1.875x5mm, 19 axial slices, 90 timepoints. 

 
Image Analysis 

The two gradient echoes (Echo1 and Echo2) were motion-corrected with FSL mcflirt (University of Oxford, 
https://fsl.fmrib.ox.ac.uk/fsl/), and the Bloch equations were used to compute the transverse relaxation rate over time, R2*(t) [s-1] 7,37 (Fig.1, 
Suppl.Eq.1). The T1-weighted signal contribution of the gradient echoes (T1w(t)) was obtained by extrapolating the signal at TE=0ms, as 
previously described 7,37, and used to calculate the longitudinal relaxation rate over time R1(t) [s-1] by assuming a fixed T1 (T10) [s] for the 
tissue (Fig.1, Suppl.Eq.2; refer to Suppl.Fig.1 for analyses reporting on the robustness of the methodology with respect to T10 
assumptions). When desired, R1(t) and R2*(t) were adjusted to simulate a full-dose preload administration (P+) (Fig.1, Suppl.Eq.3), by 
assuming that a second bolus administration would cause the same change in relaxation rates ΔR1(t) and ΔR2*(t).  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIG 1. Image processing pipeline to obtain voxel-wise synthetic DSC datasets from dynamic SAGE-EPI. Echo1 (GE, TE=14ms) 
and echo2 (GE, TE=34.1ms) were used to compute R1(t) and R2*(t). If desired, R1(t) and R2*(t) were adjusted to simulate a preload 
administration. The desired T1w(t) component of the synthetic DSC was calculated from R1(t) by inputting the desired FA and TR 
in the Bloch equations. Similarly, the desired T2*w(t) component of the synthetic DSC was calculated from R2*(t) by inputting the 
desired TE in the Bloch equations. Finally, the synthetic DSC time-intensity curve is obtained by combining the desired T1w(t) and 
T2*w(t). The final plot shows how different parameter combinations generate synthetic DSC time-intensity curves with different 
relative T1- and T2*-weighting. 
 

R1(t) and R2*(t) were then used in the Bloch equations to respectively compute the desired T1-weighted component (T1wdesired(t)) and 
T2*-weighted component (T2*wdesired(t)) of the synthetic DSC with desired FA, TE, and TR (Fig.1, Suppl.Eq.4-5). Finally, the “synthetic” 
DSC time-intensity curve (Sdesired(t)) was obtained by multiplying T1wdesired(t) and T2*wdesired(t) (Fig.1, Suppl.Eq.6). 

For inter-protocol comparisons, synthetic DSC datasets were generated with: one guideline-compliant CBV-optimized protocol with 
simulated preload (FA 60°, TE 30ms, TR 1.5s, P+) 27, one guideline-compliant CBV-optimized protocol without simulated preload (FA 
30°, TE 30ms, TR 1.5s, P–) 27, and one PSR-optimized protocol (FA 90°, TE 30ms, TR 1.5s, P–) 21. For comparisons with external cohorts 
acquired at 3T, synthetic DSC datasets were generated with acquisition parameters matching the ones reported in Cindil et al. 21 (FA 90°, 
TE 30ms, TR 1.5s, P–, acquisition time 1min 23s) and Wang et al. 22 (FA 90°, TE 30ms, TR 1.6s, both P– and P+, acquisition time 1min 
36s). Note that we truncated our synthetic DSC time-intensity curves (3min) to match the external cohorts (1min 23s and 1min 36s), 
because the signal recovery depends on the acquisition time. Finally, to explore the impact of acquisition protocols on DSC metrics, we 
recursively generated synthetic DSC datasets while changing one parameter at the time. 
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Sdesired(t) was used to compute ΔR2,*single_echo(t) [s-1] as in classic single-echo DSC studies, and rCBV maps were computed by 
integrating the positive values of ΔR2,*single_echo(t) (Suppl.Eq.7, Suppl.Fig.2A-B) 37. This step was repeated without model-based leakage 
correction, with bidirectional leakage correction 38, and with Boxerman-Schmainda-Weisskoff (BSW) leakage correction 39. Finally, 
nrCBV maps were generated with normalization to the contralateral white matter (Suppl.Eq.7) 12. PSR maps were generated from Sdesired(t) 
without leakage correction, as previously described (Suppl.Eq.8, Suppl.Fig.2C) 7,20. 

 A neuroradiologist with 8 years of experience in neuroimaging (F.S.) used digital subtraction maps of pre- and post-contrast T1-
weighted images to segment the contrast-enhancing component of the lesion 7,40. Segmentations were registered to the perfusion space 
using FSL flirt. 
 
Statistical Analyses 

For comparisons across protocols, Spearman’s correlation coefficient (ρ) 41 and two-way mixed single score intraclass correlation 
coefficient (ICC3) 42 of median tumor PSR and nrCBV were obtained, and interpreted as in dedicated statistical articles 41,42. ρ tests whether 
the ranks of the tumor values are maintained across protocols, which influences the diagnostic performance of DSC metrics. The percent 
variation in ranks introduced by protocol variations was calculated as (1–ρ2) ×100% (Suppl.Eq.9). ICC3 tests the agreement of different 
protocols on the exact value of a certain DSC metric 42. The comparisons with external cohorts focused on PSR only, because the technical 
variability of PSR is entirely due to acquisition factors, without confounding aspects such as the leakage correction fit and the contralateral 
white matter signal. The PSR mean and standard deviation of our treatment-naïve glioblastoma subgroup was calculated and compared to 
the mean and standard deviation of external cohorts with two-sample t-tests. Neither non-parametric tests nor ROC curve computation 
were feasible, because the individual tumor-specific values of PSR of the external cohorts were not available.  
 

RESULTS 
 

Thirty-eight patients met the inclusion and exclusion criteria for the study (see the flow-chart in Suppl.Fig.3), with tumors of various 
grades and molecular status, either treatment-naïve or recurrent (Table 1). All recurrent lesions showed histopathologically-defined 
recurrent tumor (i.e., actively proliferating tumor cells, with or without evidence of treatment effects) in surgical specimens obtained in 
the weeks following the MRI acquisition. Of note, some analyses from this cohort were previously reported in an article with a substantially 
different aim and design 7. 

Table 1: Demographic, clinical, and pathological features of the study cohort. 
 

Characteristics of the study cohort (n=38) 
Age (years, mean ± SD) 54.4 ± 14.0 
Sex category (F)  
   F 11 (28.9%) 
   M 27 (71.1%) 
Main location  
   Frontal 11 (28.9%) 
   Parietal 8 (21.1%) 
   Temporal 9 (23.7%) 
   WM/deep GM 4 (10.5%) 
   Multiple lobes 6 (15.8%) 
Treatment status  
   Treatment-naïve 14 (36.8%) 
   Recurrent 24 (63.2%) 
Grade  
   2 4 (10.5%) 
   3 4 (10.5%) 
   4 30 (78.9%) 
Molecular status  
   IDHm 1p19qint 10 (26.3%) 
   IDHm 1p19qcod 3 (7.9%) 
   IDHwt 25 (65.8%) 

 
 
Plots of time-intensity curves from synthetic DSC with varying parameters were generated and a visual assessment revealed that the 

curve shapes changed consistently with previous findings (i.e., showing reduced relative T1-weighting with lower FA, longer TE, longer 
TR, and with preload simulation P+) (Fig.2).  
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FIG 2. Examples of synthetic DSC time-intensity curves obtained with varying acquisition parameters in one representative 
tumor. As expected, lower FA (A), longer TE (B), longer TR (C), and the presence of preload simulation P+ (D) determined a 
reduced relative T1-weighting and an increased relative T2*-weighting in the time-intensity curve. This was observed in all tumors. 
Note that, while the median tumor signal was plotted for the visualization of this representative case, the synthetic DSC pipeline 
was performed voxel-wise for all the analyses. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

FIG 3. Clinical application of synthetic DSC to simultaneously generate CBV-optimized and PSR-optimized DSC datasets. 
 

 
Comparison between CBV-optimized and PSR-optimized protocols 

Synthetic DSC permits generation of CBV-optimized and PSR-optimized DSC datasets from single acquisitions, which can be used in 
the clinical setting to simultaneously obtain nrCBV and PSR maps from synthetic optimal protocols (Fig.3). Conversely, obtaining PSR 
from CBV-optimized protocols can lead to inaccurate results. Median tumor PSR values computed with CBV-optimized protocols (FA 
30° P– and FA 60 P+) had poor agreement (ICC3=0.20 and ICC3=0.34, respectively) with those computed with the PSR-optimized 
protocol (FA 90° P–), and showed 31% variation in ranks (ρ=0.83) for FA 30° P– and 21% variation in ranks (ρ=0.89) for FA 60° P+ 
(Fig.4A). Representative cases (tumors corresponding to the 20th, 40th, 60th, and 80th PSR percentile of our cohort) show how PSR maps 
from CBV-optimized protocols can yield different ranks compared to PSR-optimized ones (Fig.4E–H). Notably, the agreement of PSR 
values between the two CBV-optimized protocols was only “good” (ICC3=0.79), and also introduced rank variations (21%, ρ=0.89, 
Fig.4B). 

Results suggested that nrCBV may be less influenced than PSR by acquisition factors, especially after bidirectional leakage correction 
38, with excellent agreement between PSR-optimized and CBV-optimized protocols (ICC3=0.96 and ICC3=0.97, respectively, Fig.4C), 
and with nearly perfect agreement between the two CBV-optimized protocols (ICC3=0.99, Fig.4D). BSW leakage correction 39 yielded 
almost similar results (Suppl.Fig.4A-B). nrCBV without leakage correction had only a “good” agreement between PSR-optimized and 
CBV-optimized protocols (ICC3=0.89 and ICC=0.91, respectively, Suppl.Fig.4C) and an excellent agreement between the two CBV-
optimized protocols (ICC3=0.97, Suppl.Fig.4D). 
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FIG 4. Comparisons of DSC metrics obtained with CBV- and PSR-optimized synthetic DSC protocols. PSR values (A, B) were 
strongly influenced by the acquisition factors, which impacted not only on the PSR value (reflected in the ICC3 test), but also on 
the ranks (reflected in the ρ value). nrCBV values with bidirectional leakage correction (C, D) were less influenced by the 
acquisition factors both in terms of agreement and rank consistency. Of note, the two CBV-optimized protocols yielded nrCBV 
values with nearly perfect agreement (D). Panels E-H show representative PSR maps cases of lesions corresponding to the 20th, 
40th, 60th, and 80th PSR percentile of our cohort, along with the median PSR tumor value. CBV-optimized protocols not only yield 
different PSR values, but also sometimes result in different ranks of the lesion within the cohort. For instance, the median values 
of case #2 and #3 swapped ranks when moving from PSR-optimized to CBV-optimized protocols. 
 
 
Comparison with external cohorts 

Results demonstrate the ability for synthetic DSC to generate datasets with consistent acquisition parameters to external cohorts, which 
may be useful for putting contemporary studies into historic context. For example, synthetic parameter-matched PSR values from our 
cohort of treatment-naïve IDHwt glioblastomas were lower than the cohort of treatment-naïve PCNSL (104.5±26.5% vs 164.1±37.0% 
p<0.0001, Fig.5A) reported by Cindil et al. 21, and not statistically different from their reported glioblastoma cohort (104.5±26.5% vs 
95.3±20.1% p=0.26, Fig.5A). As for Wang et al. 22, synthetic parameter-matched PSR (P–) from our glioblastoma cohort yielded 
significantly lower PSR values compared to their PCNSL cohort acquired without preload (108.3±26.8% vs 163.0±90.0% p<0.0001, 
Fig.5B). After preload adjustment (P+), our cohort showed PSR values overlapping with their PCNSL cohort acquired with preload 
(89.4±12.3% vs 70.0±71.0% p=0.03, Fig.5C). While there remained a statistically significant difference between tumor groups, the overlap 
would arguably result in poor diagnostic performance. Suppl.Tab.1 reports clinical characteristics of the external cohorts, as well as details 
regarding imaging acquisition and analysis. 
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FIG 5. Clinical application of synthetic DSC to compare cohorts with different acquisition parameters. Median tumor PSR from 
our treatment-naïve glioblastoma cohort were lower than the PCNSL cohort reported by Cindil et al. 21, and not different from 
their glioblastoma cohort (A). Similarly, without preload (P–), median tumor PSR from our treatment-naïve glioblastoma cohort 
were lower than the PCNSL cohort reported by Wang et al. 22. With preload, median tumor PSR from our treatment-naïve 
glioblastoma cohort overlapped with the other PCNSL cohort reported by Wang et al. 22. GBM = glioblastoma, PCNSL = primary CNS 
lymphoma, TN = treatment-naïve. 

 
Impact of acquisition factors on DSC metrics 

When varying acquisition parameters to assess of the impact of acquisition factors on DSC metrics in-vivo, results showed that median 
tumor PSR values progressively decreased when lowering FA, increasing TE, increasing TR, and when adding a simulated preload (P+) 
(Fig.6A-B). Altering acquisition factors not only caused a remarkable change in PSR values but also affect their ranks within the cohort, 
suggesting measures of PSR and interpretation are highly dependent on the acquisition parameters. Similarly, median nrCBV values 
without leakage correction tended to increase when lowering FA, increasing TE, increasing TR, and when adding a simulated preload (P+) 
(Fig.6C-D), which also effected the rank order among patients. Unlike PSR, however, nrCBV changes appear less predictable in terms of 
extent and directionality due to the interplay of the signal in the white matter, which is used for normalization. Bidirectional leakage 
correction remarkably mitigated the impact of acquisition factors on nrCBV estimates (Fig.6E-F). For reference, the BSW leakage 
correction showed comparable results (Suppl.Fig.5). 

 

DISCUSSION 
 

The current study proposes a novel methodology that generates multiple synthetic DSC datasets with adjustable pulse sequence 
parameters and optional preload simulation from a single dynamic SAGE-EPI sequence with a single bolus of contrast agent. Building on 
previous work showing how to disentangle T1 and T2* contributions to DSC from in-vivo dual-echo data 7,37,43, this is the first study 
proposing the usage of these disentangled signals to compute a new combined signal with adjustable acquisition parameters.  

First, the current study demonstrates the ability for dynamic dual-echo GE DSC extracted from dynamic SAGE-EPI to synthesize 
CBV-optimized and PSR-optimized DSC datasets in a single experiment. While PSR can technically be computed from CBV-optimized 
acquisitions, its usefulness may be limited by the weak relative T1-weighting of CBV-optimized acquisitions. Consistent with this 
hypothesis, data from the current study showed that PSR measurements from CBV-optimized protocols have poor agreement with 
measurements obtained with the recommended PSR-optimized protocols including consistency of ranks across protocols, suggesting this 
may negatively impact not only accuracy but also diagnostic performance. Importantly, even PSR measurements computed with two 
different guideline-compliant CBV-optimized protocols only had “good” agreement (not excellent nor perfect), thus limiting the 
universalizability of diagnostic cutoffs given this dependence on acquisition parameters. Our results are consistent with previous studies 
suggesting that PSR should be computed from PSR-optimized protocols, since the diagnostic utility of PSR from PSR-optimized 
acquisitions is well documented. For instance, AUC ranged 0.88-0.98 across studies 8,21,22 for the differentiation of PCNSL from 
glioblastoma, when using a PSR-optimized protocol (high FA, P–). Conversely, in other cohorts, PSR differences between PCNSL and 
glioblastoma were reportedly either attenuated (AUC=0.82) or nullified (AUC=0.53) when using CBV-optimized and/or preloaded 
protocols. Of note, only one study reported a very high diagnostic performance of PSR in distinguishing PCNSL using a preloaded protocol 
26. Overall, simultaneous PSR- and CBV-optimized synthetic protocols using dynamic dual-echo GE saves scan time and eliminates the 
need for double GBCA dose compared to duplicate experiments. Moreover, analyzing dynamic dual-echo GE is the only feasible 
methodology to obtain DCE in addition to PSR-optimized DSC and CBV-optimized DSC 7. Indeed, single-echo acquisition schemes would 
not be suited to obtain all three, since both DCE and PSR-optimized DSC should be non-preloaded. 

In addition to generating CBV- and PSR-optimized measurements, the current study demonstrates a framework for comparing 
prospectively acquired DSC data with external or historic data that was acquired under varying acquisition parameters. For example, 
comparison of parameter-matched PSR values in the current study cohort of treatment-naïve glioblastoma with PSR values from external 
cohorts were able to replicate similar PSR differences reported in the original articles. In clinical trials, inter-institution heterogeneity and 
lack of standardization is one of main factors why DSC is excluded from the evaluation of treatment response in clinical trials, as per 
RANO criteria 44, although this technique has been used to monitor treated glioblastomas for decades 1,27,45,46. Thus, synthetic DSC using 
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dynamic dual-echo GE or SAGE-EPI can potentially allow real-time comparisons to external and historic cohorts through synthesis of 
specific acquisition parameters, and more generally, allows for better uniformity and standardization in multicenter studies. Of note, 
dynamic dual-echo GE and the historic cohorts must be acquired at the same field strength for this application. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG 6. Research application of synthetic DSC to assess the impact of acquisition parameters on quantitative DSC metrics. 
Median tumor PSR and nrCBV were obtained from each subject, while systematically varying pulse sequence parameters and 
preload adjustment. Acquisition parameters were varied one at the time, and the “default” parameters were as follows: FA 60° 
TE 30ms TR 1.5s P—. PSR was highly sensitive to acquisition factors, as shown in both dot plots (A, including linear scaling in black 
and log-transformed scaling in grey) and representative voxelwise maps (B). Varying parameters not only influenced PSR values, 
but also the relative ranks of the subjects within the cohort. Dot plots (C) and voxelwise maps (D) of uncorrected nrCBV 
demonstrate nrCBV variations with acquisition factors, which are remarkably mitigated by model-based bidirectional leakage 
correction (E, F). 

 
Furthermore, synthetic DSC may represent a tool for investigating optimal DSC parameters for single-echo protocols aimed at specific 

clinical applications. Future studies may systematically permutate synthetic acquisition parameters to find the optimal combination that 
can maximize PSR differences between PCNSL and glioblastoma, or maximize CBV differences between progression and 
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pseudoprogression, or maximize the correlations between DSC metrics and histopathological findings such as vessel density. Other studies 
have proposed to investigate optimal DSC parameters by using digital reference objects (DROs) obtained from simulated in-silico analyses 
and validated with in-vivo datasets 47–49. Compared to the DRO approach, the synthetic DSC approach would have the advantage of being 
both agnostic to any biophysical assumptions needed to model the simulated tissue structures, and not being restricted to the disease 
category represented in the DRO training cohort (i.e., glioblastoma). On the other hand, it would have the disadvantage of not providing 
ground truth model-derived tissue characteristics (e.g., vessel density, cell density) to test the accuracy of perfusion metrics.  

 
Limitations 

Some potential limitations should be addressed. First, we did not prospectively obtain a pre-contrast T1 map, so an estimated value of 
T10 was chosen. However, simulated data suggested the absolute error derived from the assumed T10 estimation was minimal. Future 
studies should perform pre-contrast T1 mapping to improve accuracy. Secondly, the proposed preload adjustment assumes that a second 
bolus of GBCA causes the same change in longitudinal and transverse relaxation rates as the first bolus. This assumption is overall 
justifiable for the longitudinal relaxation rate under the Tofts generalized kinetic model 50, if an equal-dose bolus is injected close to the 
time of dynamic equilibrium. As for the transverse relaxation rate, this assumption is to be considered a simplification and it probably 
introduces some degree of inaccuracy that is not easily quantifiable, because the T2* effects are highly dependent on the tissue geometry 
4,7,50,51. Future studies may employ two consecutive DSC acquisitions (a non-preloaded dual-echo as first, and a preloaded one as second) 
to quantify the potential inaccuracy of our proposed synthetic preload. Additionally, the current study had no available prospective dynamic 
SAGE-EPI datasets from patients with PCNSL, which would allow direct testing of the diagnostic performance of synthetic DSC using 
various parameters. Finally, the estimates of PSR are highly dependent on the duration of the “tail” of the post-injection DSC curve. When 
comparing to external cohorts, this issue was mitigated by truncating the duration of the time-intensity curves to match the acquisition 
time of the external cohort. Future studies should model the post-bolus signal and directly define PSR based on this model to lessen the 
dependency on the duration of data acquired after contrast injection. Finally, the long TR of our sequence may result in a reduced signal-
to-noise ratio of the acquired T1-weighted component in presence or high GBCA concentrations. Future studies may implement 
simultaneous multi-slice to shorten the TR and address this limitation. 
 

CONCLUSIONS 
 

The dual-echo GE datasets extracted from dynamic SAGE-EPI allow for direct synthesis of multiple DSC datasets with adjustable 
acquisition parameters and preload simulations. This method allows for simultaneous generation of CBV-optimized and PSR-optimized 
measurements with a single injection and acquisition, facilitating the use of a single perfusion protocol for all DSC parameters. 
Additionally, synthetic DSC from dynamic SAGE-EPI allows for real-time comparison to historic and external datasets acquired with 
variable acquisition schemes, increasing the rigor of prospective DSC studies in brain tumors. 
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SUPPLEMENTAL FILES – “Synthetic” DSC perfusion MRI with adjustable acquisition parameters in brain tumors using 
dynamic spin-and-gradient-echo echoplanar imaging  

 

Equation for R2*(t) computed from the acquired two echoes:  (Suppl.Eq.1) 

 

R!∗ (𝑡) =
1

TE! − TE#
	+ln .

S$%#(𝑡)
S$%!(𝑡)

01 

 
where: 

- R2*(t) [s-1] is the transverse relaxation rate over time from the acquired dual-echo sequence (echo1 and echo2), which bears no 
T1-weighting; 

- STE1(t) and STE2(t) are the signals of echo1 and echo2 over time;  
- TE1 and TE2 are the TEs of echo1 and echo2 (respectively) in seconds as acquired in the dual-echo sequence (in our case, 

0.014 s and 0.0341 s, respectively). 
 

Equation for R1(t) computed from the acquired two echoes:   (Suppl.Eq.2) 

 

R#(𝑡) =
−1

TR&'()*+,-
ln 2

1 − A
1 − cos	(∝&'()*+,-) ∗ A

9 

 

with:  

A =
1 − 𝐸#.

1 − cos	(∝&'()*+,-) ∗ 𝐸#.
∗
T#w&'()*+,-(𝑡)
T#w&'()*+,-(0)

 

 

with: 

E#. = e
/$0!"#$%&'(

$)*  

 

with: 

T#w&'()*+,-(𝑡) = S$%#(𝑡) ∗ .
S$%#(𝑡)
S$%!(𝑡)

0
$%#

($%!/$%#)
 

 

where: 
- R1(t) [s-1] is the longitudinal relaxation over time; 
- T10 is the fixed estimated pre-bolus quantitative T1 for the tissue at 3T – we picked 5.0 s account for voxels containing fluid, 

even though contrast-enhancing tumor tissue reportedly has a shorter reported T10 ~2.5s 1. This was necessary because in DSC 
T10 and TRacquired have the same order of magnitude, and a short T10 can result in the argument of the natural logarithm being 
<0, which prevents the computation of R1(t). This is the reason why we were able to test shorter T10 when analyzing median 
tumor signals (Suppl.Fig.1), but not when generating voxel-wise whole brain datasets; 

- TRacquired [s] is the acquired TR of the dynamic SAGE-EPI, in our case 2.0 s; 
- T1wacquired(t) is the purely T1-weighted contribution to the signals of E1 and E2 of dynamic SAGE-EPI, obtained by 

extrapolating the estimated signal at TE=0 s; 
- T1wacquired(0) is the prebolus T1w contribution, computed by averaging the initial 10 timepoints of T1wacquired(t); 
- αacquired is the acquired flip angle (in our case, 90°); 
- STE1(t) and STE2(t) are the signals of E1 and E2 (respectively) over time;  
- TE1 and TE2 are the TEs of E1 and E2 (respectively) in seconds (in our case, 0.014 s and 0.0341 s, respectively).  
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Suppl.Fig.1. Impact of the assumed tissue T10 on synthetic DSC. Differences in assumed T10 values cause pronounced differences 
in the estimated R1(t) and ΔR1(t) curves, as seen in a representative case (A–B). However, when using the estimated R1(t) curve to 
synthesize the T1w component of the desired signal, marked difference are appreciable only in the T1wdesired (t) curve expressed 
in absolute values, but not in the normalized T1wdesired(t) (C–D). As a consequence, in the desired synthetic DSC signal, too, the 
differences are appreciable only in the Sdesired(t) curve expressed in absolute values, but not in the normalized Sdesired(t) (E–F). Of 
note, a longer assumed T10 results in lower absolute values of T1wdesired(t) and Sdesired(t) throughout the curves, but in higher 
normalized values in the normalized curves. The fact that the normalized Sdesired(t) curve only minimally changes depending on T10 
implies that the resulting rCBV and PSR calculations are robust with respect to the assumed T10 value, since both rCBV and PSR 
measurements depend on the shape of the normalized curve rather than on its absolute values. Indeed, analyses on median tumor 
synthetic DSC signal, performed on the whole cohort, showed that PSR values only slightly increase with a longer fixed T10. Fitting 
a linear regression to each tumor (A, showing only the median observation of the cohort for each T10), we obtained a distribution 
of slopes (m) with median 2.54 and interquartile range 3.10 (B). This means that a median of 2.54 %PSR overestimation should be 
expected for each second of increased T10 compared to the theoretical ground truth T10. 

 

Equation to adjust R2*(t) and R1(t) to simulate preload administration (Suppl.Eq.3) 

 

R#,&45,+_7+,89&-(𝑡) = 	R#(𝑡) + [R#(final)	−	R#(0)]	 

 

R!,&45,+_7+,89&-∗ (𝑡) = 	R!∗ (𝑡) 	+ [R!∗ (final)−	R!∗ (0)]   

 

where: 
- R1(t) [s-1] and R2*(t) [s-1] are the previously computed longitudinal and transverse relaxation rate over time, respectively; 
- R1(0) [s-1] and R2*(0) [s-1] are the prebolus R1 and R2*, computed by averaging the initial 10 timepoints of R1(t) and R2*(t) – in 

case of R1(0), the value will be approximately the same as 1/T10 (i.e., R10), where T10 is the fixed tissue T1 from the literature; 
- R1(final) [s-1] and R2*(final) [s-1] are the postbolus R1 and R2*, computed by averaging the final 10 timepoints of R1(t) and 

R2*(t); 
- [R1(final) - R1(0)] [s-1] and [R2*(final) – R2*(0)] [s-1] therefore represent the difference between a baseline relaxation rates 

without and with preload simulation; 
- R1,after_preload(t) [s-1] and R2,*after_preload(t) [s-1] are the adjusted R1(t) and R2*(t) to simulate a preliminary preload administration. 

If the simulation of preload administration is desired, the “after preload” adjusted values should be used in the subsequent 
equations. 

 

Equation for simulated T2*w(t) contribution with desired pulse sequence parameters:  (Suppl.Eq.4) 

 

T!∗w-,:*+,-(𝑡) = e/0+∗(;)∗$%('-%&'( 

 

where: 
- R2*(t) [s-1] is the previously computed transverse relaxation rate over time; 
- TEdesired [s] is the desired arbitrary TE (e.g., 0.030 s). 
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Equation for simulated T1w(t) contribution with desired pulse sequence parameters:  (Suppl.Eq.5) 

 

T#w-,:*+,-(𝑡) = sin(∝-,:*+,-) ∗ 	
1 − e/$0('-%&'(∗0)(;)

1 − cos(∝-,:*+,-) ∗ e/$0('-%&'(∗0)(;)
 

 

where: 
- αdesired is the desired arbitrary FA (for instance, 60° or 30°); 
- TRdesired [s] is the desired arbitrary TR (for instance, 1.5 or 1.0 s); 
- R1(t) [s-1] is the previously computed longitudinal relaxation rate over time; 

 

Equation for the synthetic time-intensity curve Sdesired(t)with desired pulse sequence parameters:  (Suppl.Eq.6) 

 

S-,:*+,-(𝑡) = 𝜇. ∗ T!∗w-,:*+,-(𝑡) ∗ T#w-,:*+,-(𝑡) 

 

where: 
- T2*wdesired(t) is the previously computed T2*-weighted contribution of the signal with the desired arbitrary pulse sequence 

parameters; 
- T1wdesired(t) is the previously computed T1-weighted contribution of the signal with the desired arbitrary pulse sequence 

parameters; 
- μ0 is a constant representing bulk magnetization and coil coupling and impedance, μ0 can be set to 1 for simplicity, because the 

purpose of this equation in the present study is to compute the percentage of signal recovery (PSR) and relative cerebral blood 
volume (rCBV), and μ0 cancels out during such computation (see below).  

 

 

Equation for rCBV computation      (Suppl.Eq.7) 

 

rCBV =	I∆R!,:*<=8,_,'>9∗ (𝑡)	dt 

 
when  ∆R!,:*<=8,_,'>9∗ (𝑡) 	≥ 0    as in Stokes et al. 2 
 
where: 
 
∆t = TR&'()*+,- 
 
and: 
 

∆R!,:*<=8,_,'>9∗ (𝑡) = −
ln .S-,:*+,-(𝑡)S-,:*+,-(0)

0

TE-,:*+,-
	

	
 
where: 

- Sdesired(0) is the pre-bolus signal with the desired pulse sequence parameters, computed by averaging the initial 10 timepoints 
of Sdesired(t). 

 
Note that ΔR2,*single_echo(t) can undergo model-based leakage correction prior to integration. 
 
See Suppl.Fig.2A-B for a graphic representation of the integration without and with leakage correction. 
 
Finally, rCBV was normalized to the contralateral white matter to obtain nrCBV. 
 
 

Equation for PSR computation      (Suppl.Eq.8) 
 

PSR%	 =
S-,:*+,-(final) −	S-,:*+,-(min)
S-,:*+,-(0) −	S-,:*+,-(min)

∗ 100%		

 
as in Lee et al. 3 
 
where: 
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- Sdesired(final) is the post-bolus signal with the desired pulse sequence parameters, computed by averaging the final 10 
timepoints of Sdesired(t); 

- Sdesired(min) is the minimum signal observed in Sdesired(t); 
- Sdesired(0) is the pre-bolus signal with the desired pulse sequence parameters, computed by averaging the initial 10 timepoints 

of Sdesired(t). 
 

See Suppl.Fig.2C for a graphic representation of Sdesired(final), Sdesired(min), Sdesired(0): 

 

 

 

 

 

 

 

 

 

Suppl.Fig.2. Graphic representation of rCBV (A, B) and PSR (C). 

 

Equation to compute the % variation in ranks across protocols (Suppl.Eq.9) 
 

variation	in	ranks	(%) = (1 − ρ!) ∗ 100%  

 

where: 

 
- ρ is the Spearman’s correlation coefficient between a certain DSC metric (i.e., PSR or nrCBV) calculated with a certain 

synthetic protocol (e.g., a CBV-optimized protocol: FA 30°, TE 30ms, TR 1.5s, P–) and the same DSC metric calculated with 
another synthetic protocol (e.g., PSR-optimized protocol FA 90°, TE 30ms, TR 1.5s, P–).  

- the variation in ranks (%) reflects the change in the observed order statistics due to the protocol change. Indeed, the 
Spearman’s ρ calculated between DSC metrics corresponds to the Pearson’s correlation coefficient (r) calculated between the 
ranks of such DSC metrics. The coefficient of determination (R2= r * r, ranging 0 to 1) can be interpreted as the fraction of the 
variability in the dataset that is explained by the linear regression model. Therefore, 1–R2 represents the residual variability in 
the dataset that is not explained by the model. Since the only source of variability in our analysis is the change in the protocol, 
1–ρ2 can be interpreted as the variation in ranks ascribable to protocol changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppl.Fig.3. Flowchart of patients included and excluded from the study. 
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Suppl.Fig.4. nrCBV values with BSW leakage correction (A, B) showed comparable results to bidirectional leakage correction in 
terms of ranks consistency (ρ) and value agreement (ICC). Uncorrected nrCBV (C, D) had worse value agreement (ICC) between 
protocols compared to its leakage-corrected counterparts, especially when comparing PSR-optimized and CBV-optimized 
protocols. 

  

Suppl.Tab.1. Clinical and imaging characteristics of the external cohorts. 

External Cohorts 

 GBM cohort  
from Cindil et al. 4 

PCNSL cohort from 
Cindil et al. 4 

PCNSL cohort from 
Wang et. al 5 

(non-preloaded) 

PCNSL cohort from 
Wang et. al 5 
(preloaded) 

Sample size 60 15 50 77 

Age 50±16 years 61±15 years 59±12 years 

Diagnosis Histopathological Histopathological Histopathological Histopathological 

Treatment status Treatment-naïve Treatment-naïve Treatment-naïve Treatment-naïve 

Tumor component 
analyzed 

Contrast-enhancing 
component 

Contrast-enhancing 
component 

Contrast-enhancing 
component 

Contrast-enhancing 
component 

PSR values 95.3±20.1% 164.1±37.0% 163.0±90.0% 70.0±71.0% 

PSR extraction 
method 

Multiple 2D ROIs Multiple 2D ROIs 3D segmentation 3D segmentation 

DSC parameters FA 90° TE 30  

TR 1.5 P— 

FA 90° TE 30  

TR 1.5 P— 

FA 90° TE 30  

TR 1.6 P— 

FA 90° TE 30  

TR 1.6 P+ 

DSC duration 1min 23s 1min 23s 1min 36s 1min 36s 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppl.Fig.5. The impact of acquisition factors on nrCBV values with BSW leakage correction was overall similar to nrCBV with 
bidirectional leakage correction. 
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STROBE Statement—checklist of items that should be included in reports of observational studies 
 Item 

No 
Recommendation 

 
Checkmark 

Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the 
title or the abstract 

✓ 

(b) Provide in the abstract an informative and balanced summary of 
what was done and what was found 

✓ 

Introduction  
Background/rationale 2 Explain the scientific background and rationale for the 

investigation being reported 
✓ 

Objectives 3 State specific objectives, including any prespecified hypotheses ✓ 

Methods  
Study design 4 Present key elements of study design early in the paper ✓ 
Setting 5 Describe the setting, locations, and relevant dates, including 

periods of recruitment, exposure, follow-up, and data collection 
✓ 

Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and 
methods of selection of participants. Describe methods of follow-
up 
Case-control study—Give the eligibility criteria, and the sources 
and methods of case ascertainment and control selection. Give the 
rationale for the choice of cases and controls 
Cross-sectional study—Give the eligibility criteria, and the sources 
and methods of selection of participants 

 
n/a 
 
 
n/a 
 
 

✓ 
(b) Cohort study—For matched studies, give matching criteria and 
number of exposed and unexposed 
Case-control study—For matched studies, give matching criteria 
and the number of controls per case 

 

Variables 7 Clearly define all outcomes, exposures, predictors, potential 
confounders, and effect modifiers. Give diagnostic criteria, if 
applicable 

✓ 

Data sources/ 
measurement 

8*  For each variable of interest, give sources of data and details of 
methods of assessment (measurement). Describe comparability of 
assessment methods if there is more than one group 

✓ 

Bias 9 Describe any efforts to address potential sources of bias ✓ 
Study size 10 Explain how the study size was arrived at ✓ 
Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If 

applicable, describe which groupings were chosen and why 
✓ 

Statistical methods 12 (a) Describe all statistical methods, including those used to control 
for confounding 

✓ 

(b) Describe any methods used to examine subgroups and 
interactions 

n/a 

(c) Explain how missing data were addressed n/a 
(d) Cohort study—If applicable, explain how loss to follow-up was 
addressed 
Case-control study—If applicable, explain how matching of cases 
and controls was addressed 
Cross-sectional study—If applicable, describe analytical methods 
taking account of sampling strategy 

 
n/a 
 
n/a 
n/a 

(e) Describe any sensitivity analyses n/a 
Continued on next page  
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Results Checkmark 
Participants 13* (a) Report numbers of individuals at each stage of study—eg numbers 

potentially eligible, examined for eligibility, confirmed eligible, 
included in the study, completing follow-up, and analysed 

✓ 

(b) Give reasons for non-participation at each stage ✓ 
(c) Consider use of a flow diagram ✓ 

Descriptive data 14* (a) Give characteristics of study participants (eg demographic, 
clinical, social) and information on exposures and potential 
confounders 

✓ 

(b) Indicate number of participants with missing data for each variable 
of interest 

n/a 

(c) Cohort study—Summarise follow-up time (eg, average and total 
amount) 

n/a 

Outcome data 15* Cohort study—Report numbers of outcome events or summary 
measures over time 

n/a 

Case-control study—Report numbers in each exposure category, or 
summary measures of exposure 

n/a 

Cross-sectional study—Report numbers of outcome events or 
summary measures 

✓ 

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted 
estimates and their precision (eg, 95% confidence interval). Make 
clear which confounders were adjusted for and why they were 
included 

✓ 

(b) Report category boundaries when continuous variables were 
categorized 

✓ 

(c) If relevant, consider translating estimates of relative risk into 
absolute risk for a meaningful time period 

n/a 

Other analyses 17 Report other analyses done—eg analyses of subgroups and 
interactions, and sensitivity analyses 

✓ 

Discussion  
Key results 18 Summarise key results with reference to study objectives ✓ 
Limitations 19 Discuss limitations of the study, taking into account sources of 

potential bias or imprecision. Discuss both direction and magnitude of 
any potential bias 

✓ 

Interpretation 20 Give a cautious overall interpretation of results considering 
objectives, limitations, multiplicity of analyses, results from similar 
studies, and other relevant evidence 

✓ 

Generalisability 21 Discuss the generalisability (external validity) of the study results ✓ 

Other information  
Funding 22 Give the source of funding and the role of the funders for the present 

study and, if applicable, for the original study on which the present 
article is based 

✓ 
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