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Supplement 1. The demonstrations of multi-model MRI preprocessing 

and features 

Preprocessing of multi-modal MRI 

For volumetric analysis of the structural MRI (sMRI), voxel-based morphometry was 

performed using the computational anatomy toolbox (CAT12). The images underwent 

denoising, bias cleaning, affine registration, segmentation, spatial normalization, 

volume modulation, and smoothing by full width at half maximum (FWHM) = 4 mm 

Gaussian kernel. Supplementary Figure 1 shows the segmented images of gray matter, 

white matter, and cerebrospinal fluid (CSF) of the same subject for the illustration of 

the spatial ranges of voxel-based morphometry (VBM). 

For surface analysis of the sMRI, surface-based morphometry (SBM) was performed 

using CAT12 (1). Four surface metrics were extracted by a surface atlas (2): 1. The 

cortical thickness; 2. The gyrification index (GI) based on absolute mean cortical 

curvature; 3. The fractal dimension value (FD) based on the cortical complexity; 4. The 

sulcus depth (SD) based on the Euclidean distance between the central surface and its 

convex hull. All result metrics were resampled and smoothed by FWHM = 15 mm 

Gaussian kernel. 

Rs-fMRI images were processed by Data Processing Assistant for Resting-State fMRI 

(DPARSF) v5.2 (3), which included steps of removing the first 10 time points, slice 

timing, realignment, affine registration, nuisance covariates regression, head motion 

correction, and spatial normalization. Fractional amplitude of low-frequency 

fluctuations (fALFF) (4), degree centrality (DC) and regional homogeneity (ReHo) (5) 

were calculated, voxel z-scored across each image, smoothed by FWHM = 4 mm 

Gaussian kernel. 

Cerebral blood flow (CBF) was calculated from pseudocontinuous ASL perfusion 

images and proton-density–weighted (PD) images by locally created Matlab scripts, 

using the CBF quantification pipeline (6) and regression-based partial volume 

correction (7). PD and ASL images were coregistered with the corresponding T1-sMRI. 

CBF was calculated and corrected for the partial volume effect using the tissue 



segmentation from T1-sMRI. We normalized the whole-brain CBF in voxels using the 

mean value of CBF in the whole-brain cerebrospinal fluid (CSF) regions to control for 

the potential individual and scanner variability. 

Demonstrations of the MRI features 

Among all the features used for prediction, the cortical thickness (CT), gyrification 

index (GI), fractal dimension (FD), and sulcus depth (SD) used for surface analysis, 

along with the fractional amplitude of low-frequency fluctuations (fALFF), regional 

homogeneity (ReHo), and degree centrality (DC), are common but indirect MRI 

measurements that need further clarification. We provided detailed demonstrations of 

these features: 

1. Cortical thickness (CT): This measure refers to the thickness of the cortex in the 

brain. 

2. Gyrification index (GI): A measure of the amount of folding on the surface of the 

brain (8). It is calculated as the ratio of the cortex within the sulcal folds against the 

outer visible cortex. A higher GI signifies more extensive brain folding. 

3. Fractal dimension (FD): This measure quantifies how completely a fractal appears 

to fill space (9). In the context of the brain, it's a measure of the complexity of the 

cortical surface. The higher the FD, the more complex the cortex is. 

4. Sulcus depth (SD): Sulcus are the grooves on the brain's surface. The depth of these 

sulci can be an important measure of brain morphology. Deeper sulci may suggest 

a larger surface area of the cortex hidden within these grooves. 

5. Fractional amplitude of low-frequency fluctuations (fALFF): fALFF quantifies the 

relative contribution of low-frequency oscillations (typically in the range of 0.01–

0.08 Hz) to the total power in the entire detectable frequency range of the blood 

oxygenation level dependent (BOLD) signal (4). Larger fALFF refers to greater 

spontaneous brain activity. 

6. Regional homogeneity (ReHo): ReHo measures the similarity or synchronization of 

the time series of neighboring voxels (5). A higher ReHo value indicates greater 

local synchronization, suggesting that those brain regions are more functionally 

homogeneous or are working more closely together.  

7. Degree centrality (DC): In graph theory, DC is the number of direct connections (or 



edges) a node (or a brain region) has. In neuroscience, a higher DC for a brain region 

suggests that it's highly connected with other regions, implying that it may play a 

crucial role in brain communication and coordination. 

 

Supplement 2. Details of prediction and statistical analysis 

implementation 

Here we provided the implementation and choices of the prediction and statistical 

analysis for better reproducibility of results. 

Choice of prediction inputs 

For prediction inputs, we used 11 features from various MRI modalities, complemented 

with six sea-level demographic and physiological features: age, sex, body mass index, 

mean arterial pressure, heart rate, and saturation of pulse oxygen. Because we used both 

Anatomical Automatic Labeling (AAL) (10) and surface-specific Desikan-Killiany 

atlas (2), the total number of input features is 7×166+4×68+6=1440. However, to avoid 

overfitting and screen the valid predictors, we used each feature in the regions of 

interest (ROIs) as input separately for each prediction, such as 68 values of cortical 

thickness with six sea-level demographic and physiological features. 

Least absolute shrinkage and selection operator (LASSO) logistic regression 

In a general logistic model, where 𝑦  is the label to predict, 𝑋  is the potential 

predictors, and 𝛽 is the coefficients estimated by the least square method: 

𝑦 = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑋𝛽) 

Least absolute shrinkage and selection operator (LASSO) (11), also called L1-

regulation, uses a penalty of 𝛽 to select the most valid predictors while making the 

linear model convergent by: 

min
𝛽∈ℝ𝑝

{
1

𝑁
‖𝑦 − 𝑋𝛽‖2}  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝛽‖1 < 𝐶 

As a result, sparse coefficients were estimated, leaving only valid predictors as non-

zero. We then considered these predictors, with non-zero coefficients in the LASSO 

cross-validation, as valid predictors for acute mountain sickness (AMS). In this study, 

we implemented LASSO by the logistic regression with L1-regulation in scikit-learn 



toolbox and selected optimal 𝐶-value by cross-validation, which was addressed in the 

method part of manuscript. 

 

Supplement 3. Detailsof acute mountain sickness diagnosis and study 

design 

We listed the detailed acute mountain sickness (AMS) diagnosis list in Supplementary 

Table 1. For diagnosing AMS, we used the newest version of scoring system defined 

by Lake Louise Consensus Committee (12), in the standard form of self-report 

questionnaires. Participants with high-altitude headache (HAH) score ≥ 1 and Lake 

Louis Score (LLS) ≥ 3 were diagnosed as AMS on a daily basis. Participants that were 

at least once diagnosed among five days at high altitude were grouped as AMS. 

Participants that were never diagnosed as AMS were grouped as non-AMS. 

Because all participants in this study were sea-level residents, our research does not 

encompass chronic mountain sickness, which is typically associated with natives or 

long-time residents of high-altitude area (13). 

In this study, we believe that the potential confounding effect of flight travel on AMS 

is negligible due to: 1) Direct, short flights from Beijing to Lhasa (3-4 hours) cross only 

two time zones. Previous research (14) indicates jet lag is rare for such short flights. 2) 

Flights were scheduled during daytime, lessening the effect of sleep disruption, which 

was a key factor in jet lag. 3) Previous research (15) suggests that the effects of high-

altitude exposure during flight do not significantly influence the diagnostic criteria for 

AMS. These factors contribute to the study's robustness and accurate on the AMS 

diagnosis regardless of potential flight effect. 

In Lhasa, participants were allowed to freely sightsee only within the city area and were 

not allowed for any intensive physical activities including long-distance walking. They 

were also prohibited from consuming any food or beverages containing alcohol or 

caffeine. They ate and drank according to their personal needs, without any regulation 

to increase or restrict the quantity. 

 

Supplement 4. Detailed prediction performance of all kinds of inputs 



We listed the predicting performance of all kinds of features as inputs in Supplementary 

Table 2. Additionally, in Supplementary Figure 2, we have illustrated all the ROC 

curves for the predictions listed in Supplementary Table 2. For each ROC curve, we 

have marked the optimal cut point determined by Youden's index, along with their 

coordinates (1-specificity, sensitivity). The table includes single types of features such 

as gray matter volume (GMV) or cortical thickness (CT), as well as combined features 

like all the fMRI metrics or all the MRI metrics. The results showed that only fractional 

amplitude of low-frequency fluctuations (fALFF) and degree centrality (DC) had 

significant predictive power when used as single input features. However, when these 

features were combined, they did not show any significant predictive power. 

 

Supplement 5. Verifying valid predictors by cross-validation and 

varying LASSO parameters 

These predictors selected by LASSO models remained robust during the 45 iterations 

of leave-one-out cross-validation, as shown in the heatmap of coefficients in 

Supplementary Figure 3. The major predictors consistently had non-zero coefficients, 

even in different training/testing sets of cross-validation. 

To ensure that the selected important features with significant coefficients in L1-

regulated logistic regression were not specialized to the sparsity strength of coefficient, 

we listed the coefficient range with C-value varying from 0.2 to 1 (step = 0.01) for all 

input features, in the valid prediction of DC and fALFF inputs (Supplementary Figure 

4). As a result, the coefficients of the important features in Table 3 of the main 

manuscript showed consistency across different sparsity strengths.  

 

Supplement 6. Correlation analysis between multi-modal MRI at high 

altitude 

By using the multi-modal MRI scanned at 22 hours at high altitude, we further 

identified the influence of fMRI predictors (fALFF and DC) by performing Partial 

Pearson’s correlation between fMRI predictors and other modalities of brain MRI (the 

whole brain gray matter volume, white matter volume, cerebrospinal fluid volume, and 

cerebral blood flow). The complete results are shown in Supplementary Table 3. 



Notably, the correlation between cerebrospinal fluid volume (CSFV) and fALFF in the 

somatomotor network (SMN) was significantly different from zero, as determined by 

the t-test. 

 

Supplement 7. VBM analysis of CSF changes 

Regarding the localized differences in CSF changes between sea level and high-altitude, 

we performed paired t-tests among 45 participants on the VBM images of CSF, the 

results is shown in Supplementary Figure 5 below. We found that CSF were 

significantly increased in both intraventricular and cisternal spaces, under a strict 

threshold of family-wise error (FWE) corrected P < 0.05. The main regions of CSF 

increase include the lateral, third, fourth ventricles, and the interhemispheric cistern. As 

a result, in brief, we found no significant localized difference in CSF volume change 

but observed a widespread range of CSF changes in a strict P-value threshold. 

 

Supplement 8. Longitudinal analysis of oxygen saturation 

We provide a detailed analysis of the oxygenation status recorded at various time points 

during our study (see supplementary Figure 6). The time points for these measurements 

were strategically chosen to encompass the period before exposure to high altitude, as 

well as several critical periods following exposure: 9 hours, 22 hours, 46 hours, 70 

hours, and 94 hours post-exposure. These time frames were selected to capture the acute 

physiological responses as well as any delayed effects that might occur due to high 

altitude exposure. 
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Supplementary Table 1. Detailed AMS diagnosis list. Positive diagnoses were bold. 
Participant 

No. 

HAH 

D1 

LLS 

D1 

HAH 

D2 

LLS 

D2 

HAH 

D3 

LLS 

D3 

HAH 

D4 

LLS 

D4 

HAH 

D5 

LLS 

D5 

AMS or 

not 

1 1 4 0 0 0 0 0 0 0 0 1 

2 1 4 1 4 2 5 1 4 1 4 1 

3 1 5 2 8 2 8 1 5 0 2 1 

4 1 10 1 5 0 2 0 3 1 4 1 

5 0 3 1 4 1 5 0 2 0 3 1 

6 1 1 0 0 1 1 1 4 1 1 1 

7 1 1 0 1 0 1 0 2 0 0 0 

8 1 2 0 1 0 1 0 1 0 2 0 

9 1 4 1 3 0 0 2 4 0 0 1 

10 1 8 1 4 1 5 1 3 2 3 1 

11 1 4 1 7 1 4 1 4 1 4 1 

12 1 3 1 4 1 3 1 3 0 2 1 

13 1 4 0 2 2 5 1 3 0 2 1 

14 1 2 1 2 0 0 0 0 0 0 0 

15 0 4 1 4 1 4 0 3 0 3 1 

16 2 6 2 6 1 4 1 4 1 2 1 

17 1 4 0 2 1 2 0 0 0 0 1 

18 0 1 0 2 0 1 0 1 0 0 0 

19 1 5 0 3 1 4 0 2 1 4 1 

20 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 0 

22 0 3 0 0 1 4 0 0 1 3 1 

23 1 4 1 4 1 4 1 4 0 3 1 

24 1 2 1 2 1 2 0 2 0 0 0 

25 1 11 0 2 1 4 0 0 0 0 1 

26 1 4 1 4 1 4 1 4 0 0 1 

27 1 8 1 8 0 2 0 0 0 0 1 

28 1 3 1 2 0 1 0 0 1 2 1 

29 1 3 1 7 0 2 0 0 0 1 1 

30 0 3 0 3 1 6 0 5 1 5 1 

31 1 3 0 1 0 1 0 0 0 0 1 

32 1 4 1 4 1 3 1 3 0 1 1 

33 1 4 2 7 1 2 0 0 0 1 1 

34 1 3 1 3 0 0 0 0 0 0 1 

35 1 1 1 2 3 8 0 0 0 0 1 

36 2 7 2 8 2 7 1 6 1 6 1 

37 1 5 2 7 0 2 0 2 0 4 1 

38 2 9 2 9 2 11 1 7 2 9 1 

39 1 3 1 3 0 1 0 1 0 0 1 

40 1 3 0 1 0 0 0 0 0 0 1 

41 1 4 0 1 1 3 0 1 0 1 1 

42 3 12 2 10 3 10 1 3 0 1 1 

43 2 6 2 4 1 3 0 2 0 2 1 

44 0 2 0 2 0 0 0 0 0 0 0 

45 0 1 0 1 0 1 0 1 0 0 0 

Abbreviations: D = day No.; HAH = high-altitude headache; LLS = Lake Louis Score



Supplementary Table 2. Predicting performance by the area under curve (AUC) of receiver operation curve (ROC) for different input types. Significant inputs 

are bold. 

 

Modalities Features AUC 
Std of 

AUC 
Lower 95% CI Upper 95% CI P-value Sensitivity Specificity 

Youden 

Index 

T1-sMRI 

(volume) 

Gray matter volume (GMV) 36.7% 9.0% 19.1% 54.4% 0.2224 30.6% 77.8% 0.084 

White matter volume (WMV) 60.5% 10.2% 40.5% 80.5% 0.3347 77.8% 55.6% 0.334 

Cerebrospinal fluid volume (CSFV) 47.5% 12.4% 23.3% 71.8% 0.8204 58.3% 55.6% 0.139 

3 features combined 37.0% 8.7% 19.9% 54.1% 0.2334 19.4% 88.9% 0.083 

T1-sMRI 

(surface) 

Cortical thickness (CT) 29.0% 12.2% 5.2% 52.8% 0.0537 72.2% 33.3% 0.055 

Gyrification index (GI) 71.3% 10.3% 51.1% 91.5% 0.0502 66.7% 88.9% 0.556 

Fractal dimension (FD) 19.4% 7.6% 4.6% 34.3% 0.0050 100.0% 0.0% 0.000 

Sulcus depth (SD) 43.8% 12.6% 19.1% 68.6% 0.5704 86.1% 33.3% 0.194 

4 features combined 55.3% 11.2% 33.4% 77.1% 0.6295 52.8% 66.7% 0.195 

Rs-fMRI 

Fractional amplitude of low-frequency fluctuations 

(fALFF) 
78.1% 8.0% 62.4% 93.8% 0.0098 80.5% 77.8% 

0.583 

Regional homogeneity (ReHo) 60.5% 9.5% 41.8% 79.2% 0.3347 58.3% 77.8% 0.361 

Degree centrality (DC) 86.4% 5.4% 75.9% 96.9% 0.0008 77.8% 100.0% 0.778 

3 features combined 54.0% 10.5% 33.4% 74.6% 0.7122 58.3% 77.8% 0.361 

Arterial spin 

labeling (ASL) 
Cerebral blood flow (CBF) 54.9% 10.1% 35.1% 74.8% 0.6498 47.2% 77.8% 0.250 

ALL MRI 

images 
11 features combined 47.8% 10.8% 26.7% 68.9% 0.8426 50.0% 66.7% 0.167 



Supplementary Table 3. Partial Pearson’s correlation analyses between fMRI predictors and 

brain features from other MRI modalities. Correlations were shown in the format of rho (P-

value). Note that all features were measure at 22 hours at high altitude, and Δ refers to changes 

between high altitude and sea level. 

 ΔGMV ΔWMV ΔCSFV ΔCBF 

fALFF in SMN -0.1522 (0.3422) 0.0489 (0.7614) 0.3277 (0.0365) 0.1184 (0.4611) 

DC in SMN -0.0948 (0.5554) -0.0526 (0.7438) 0.0500 (0.7564) 0.0061 (0.9698) 

Abbreviations: ΔGMV = change in gray matter volume; ΔWMV = change in white matter 

volume; ΔCSFV = change in cerebrospinal fluid volume; ΔCBF = change in cerebral blood 

flow; fALFF in SMN = fractional amplitude of low frequency fluctuations in somatomotor 

network; DC in SMN = degree centrality in somatomotor network. 

  



 

Supplementary Figure 1. Voxel-based morphometry (VBM) analysis showing 

segmented images of gray matter, white matter, and cerebrospinal fluid (CSF) of the 

same subject for the illustration of the spatial ranges of VBM.  

  



 

 

 

Supplementary Figure 2. Receiver operator characteristic (ROC) curve analysis of 

MRI features' predictive performance, marking cut points where Youden’s index is 

optimized to define sensitivity and specificity. The prediction performance using 

different features of multi-modal MRI as inputs, measured by the area under curve 

(AUC) of the ROC curves. Fractional amplitude of low-frequency fluctuations (fALFF) 

and degree centrality (DC) from fMRI were detected as valid predictors, yielding 

significant AUC values. **: P < 0.01; ***: P < 0.001. 

Abbreviations: CBF = cerebral blood flow, CSFV = cerebrospinal fluid volume, CT = 

cortical thickness, DC = degree centrality, FD = fractal dimension, fALFF = fractional 

amplitude of low-frequency fluctuations, GI = gyrification index, GMV = gray matter 

volume, ReHo = regional homogeneity, SD = sulcus depth, surf = surface analysis, 

VBM = voxel-based morphometry, WMV = white matter volume 



 

Supplementary Figure 3. Heatmaps displaying the standardized coefficients from the 

LASSO-LR during 45 iterations of leave-one-out cross-validation. Coefficients 

represent the significance of the predictors, which are consistent across iterations. The 

top panel reflects the input features of fractional amplitude of low-frequency 

fluctuations (fALFF), while the bottom panel shows the input features of degree 

centrality (DC).  

  



Supplementary Figure 4. Coefficient ranges with standard deviations for prediction 

models using the inputs of fractional amplitude of low-frequency fluctuations (fALFF) 

and degree centrality (DC). Valid predictors listed in Table 3 are marked in red. These 

ranges encompass all models using the least absolute shrinkage and selection operator 

(LASSO) across different cross-validation sets and various hyperparameter choices of 

C-value. 

  



 

Supplementary Figure 5. Significant changes of cerebrospinal fluid (CSF) after high-

altitude exposure, measured by paired T-tests on 45 participants, using threshold of 

family-wise error (FWE) corrected P < 0.05. 

  



 

Supplementary Figure 6. Measurement of blood oxygen saturation (SpO2) in 45 

participants before and after high altitude exposure. Changes at different time points 

were assessed using paired T-tests (*: P < 0.05, **: P < 0.01, ****: P < 0.0001, ns = 

not significant). Error bar refers to standard error of the mean (SEM). 


