PT - JOURNAL ARTICLE AU - Warioba, Chisondi S. AU - Liu, Mira AU - Penano, Sagada AU - Foxley, Sean AU - Christoforidis, Gregory A. AU - Carroll, Timothy J. TI - Efficacy Assessment of Cerebral Perfusion Augmentation Through Functional Connectivity in an Acute Canine Stroke Model AID - 10.3174/ajnr.A8320 DP - 2024 Apr 29 TA - American Journal of Neuroradiology PG - ajnr.A8320 4099 - http://www.ajnr.org/content/early/2024/04/29/ajnr.A8320.short 4100 - http://www.ajnr.org/content/early/2024/04/29/ajnr.A8320.full AB - BACKGROUND AND PURPOSE: Ischemic stroke disrupts functional connectivity within the brain's resting-state networks (RSNs), impacting recovery. This study evaluates the effects of NEH (Norepinephrine and Hydralazine), a cerebral perfusion augmentation therapy, on RSN integrity in a hyper-acute canine stroke model.MATERIALS AND METHODS: Fifteen adult purpose-bred mongrel canines, divided into treatment and control (natural history) groups, underwent endovascular induction of acute middle cerebral artery occlusion (MCAO). Post-occlusion, the treatment group received intra-arterial Norepinephrine (0.1-1.52 μg/kg/min, adjusted for 25-45 mmHg above baseline mean arterial pressure) and Hydralazine (20mg). Resting-state fMRI data were acquired with a 3.0 T scanner using a BOLD-sensitive EPI sequence (TR/TE=1400 ms/20ms, 2.5 mm slices, 300 temporal positions). Preprocessing included motion correction, spatial smoothing (2.5 mm FWHM), and high-pass filtering (0.01 Hz cutoff). Functional connectivity within RSNs were analyzed through group-level independent component analysis (ICA) and weighted whole-brain ROI-to-ROI connectome, pre-and post-MCAO.RESULTS: NEH therapy significantly maintained connectivity post-MCAO in the Higher-order Visual and Parietal RSNs, as evidenced by thresholded statistical mapping (TFCE p-corr > 0.95). However, this preservation was network-dependent, with no significant changes in the Primary Visual and Sensorimotor networks.CONCLUSIONS: NEH demonstrates potential as a proof-of-concept therapy for maintaining RSN functional connectivity following ischemic stroke, emphasizing the therapeutic promise of perfusion augmentation. These insights reinforce the role of functional connectivity as a measurable endpoint for stroke intervention efficacy, suggesting clinical translatability for patients with insufficient collateral circulation.ABBREVIATIONS: NEH= Norepinephrine and Hydralazine; RSN= Resting-State Network; ICA = Independent Component Analysis; rsfMRI = resting-state Functional Magnetic Resonance Imaging; MCAO = Middle Cerebral Artery Occlusion; TFCE = Threshold-Free Cluster Enhancement