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ORIGINAL RESEARCH
ADULT BRAIN

Cluster Analysis of DSC MRI, Dynamic Contrast-Enhanced
MRI, and DWI Parameters Associated with Prognosis in

Patients with Glioblastoma after Removal of the Contrast-
Enhancing Component: A Preliminary Study

H. Chung, H. Seo, S.H. Choi, C.-K. Park, T.M. Kim, S.-H. Park, J.K. Won, J.H. Lee, S.-T. Lee, J.Y. Lee,
I. Hwang, K.M. Kang, and T.J. Yun

ABSTRACT

BACKGROUND AND PURPOSE: No report has been published on the use of DSC MR imaging, DCE MR imaging, and DWI parame-
ters in combination to create a prognostic prediction model in glioblastoma patients. The aim of this study was to develop a
machine learning–based model to find preoperative multiparametric MR imaging parameters associated with prognosis in patients
with glioblastoma. Normalized CBV, volume transfer constant, and ADC of the nonenhancing T2 high-signal-intensity lesions were
evaluated using K-means clustering.

MATERIALS AND METHODS: A total of 142 patients with glioblastoma who underwent preoperative MR imaging and total resection were
included in this retrospective study. From the normalized CBV, volume transfer constant, and ADC maps, the parametric data were sorted
using the K-means clustering method. Patients were divided into training and test sets (ratio, 1:1), and the optimal number of clusters was
determined using receiver operating characteristic analysis. Kaplan-Meier survival analysis and log-rank tests were performed to identify
potential parametric predictors. A multivariate Cox proportional hazard model was conducted to adjust for clinical predictors.

RESULTS: The nonenhancing T2 high-signal-intensity lesions were divided into 6 clusters. The cluster (class 4) with the relatively low nor-
malized CBV and volume transfer constant value and the lowest ADC values was most associated with predicting glioblastoma prognosis.
The optimal cutoff of the class 4 volume fraction of nonenhancing T2 high-signal-intensity lesions predicting 1-year progression-free sur-
vival was 9.70%, below which the cutoff was associated with longer progression-free survival. Two Kaplan-Meier curves based on the cutoff
value showed a statistically significant difference (P ¼ .037). When we adjusted for all clinical predictors, the cluster with the relatively low
normalized CBV and volume transfer constant values and the lowest ADC value was an independent prognostic marker (hazard ratio, 3.04;
P ¼ .048). The multivariate Cox proportional hazard model showed a concordance index of 0.699 for progression-free survival.

CONCLUSIONS: Our model showed that nonenhancing T2 high-signal-intensity lesions with the relatively low normalized CBV, low
volume transfer constant values, and the lowest ADC values could serve as useful prognostic imaging markers for predicting sur-
vival outcomes in patients with glioblastoma.

ABBREVIATIONS: CE ¼ contrast-enhancing; CEL ¼ contrast-enhancing lesion; DCE ¼ dynamic contrast-enhanced; GBM ¼ glioblastoma; GTR ¼ gross total
resection; Ktrans ¼ volume transfer constant; MGMT ¼ O6-methylguanine-DNA methyltransferase; ML ¼ machine learning; nCBV ¼ normalized CBV;
NE-T2HSIL ¼ nonenhancing T2 high-signal-intensity lesion; PFS ¼ progression-free survival

G lioblastoma (GBM) is the most common and most aggres-
sive malignant tumor of the CNS.1-3 Because the gross total

resection (GTR) of the contrast-enhancing lesion (CEL)

component of GBM is associated with longer survival,4 the cur-
rent standard treatment of GBM consists of a maximally safe
GTR of the CEL, followed by adjuvant concurrent chemoradiation
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therapy.5 However, GBM frequently recurs as tumor cells infiltrate
beyond the CEL components, leading to a dismal prognosis with
an average overall survival rate of approximately 16months.6

Tumor cells that infiltrate past the CEL margin are visualized as
hyperintense lesions on T2WI and are known as nonenhancing T2
high-signal-intensity lesions (NE-T2HSILs).7 It is known that the
preoperative T2-hyperintensity lesions that surround the CEL
components of GBM are mainly composed of NE-T2HSILs and
vasogenic edema.7 The importance of the residual NE-T2HSIL has
recently been recognized, and studies have found that NE-T2HSIL
affects the prognosis of patients with GBM.7-9 The preoperative
prognosis of GBM in terms of the NE-T2HSIL, therefore, enables
more aggressive management of the tumor if necessary, which
could lead to survival benefits.7

Advanced MR imaging detects various aspects of tumor
pathophysiology and enables noninvasive visualization of the
tumor. Because the survival and proliferation of tumor cells are
highly related to angiogenesis and an increase in vascular perme-
ability,10 perfusion and diffusion imaging is expected to provide
additional useful information about the NE-T2HSILs of GBM.
Dynamic contrast-enhanced (DCE) MR imaging is a standard
technique used to assess the integrity of the BBB on the basis of
T1 enhancement. An important perfusion-related parameter
measured in DCE MR imaging studies is the volume transfer
constant (Ktrans). Ktrans is defined as the rate at which the contrast
agent leaks into the extravascular extracellular space per volume
of tissue.11 DSC MR imaging, another perfusion-weighted MR
imaging technique, measures capillary perfusion on the basis of
the susceptibility effect in T2*-weighted images. Normalized
CBV (nCBV), the most common perfusion parameter used in
DSC MR imaging studies, reflects the presence of blood vessels in
each individual voxel.12 Last, DWI evaluates the random motion
of water molecules. Quantitative analysis of the DWI enables the
calculation of the ADC, which is known to have an inverse corre-
lation with tissue cellularity.13

Extracting and combining MR imaging features from mul-
tiple modalities is labor-intensive, and achieving satisfactory
diagnostic accuracy remains a major challenge. With recent
developments in artificial intelligence, machine learning (ML)
techniques have been steadily applied in glioma imaging stud-
ies and are revealing ways to solve these problems. ML techni-
ques can efficiently process complex imaging data, identify
meaningful disease patterns, and thus help radiologists make
precise predictions about the progression of the disease.14

Therefore, the application of ML techniques in imaging analy-
sis will enable the effective integration of complementary
imaging information obtained from using multiple MR imag-
ing modalities.

Although previous studies have been conducted to combine
several MR imaging modalities for the improvement of the prog-
nosis of GBM, no report has been published on the use of DSC
MR imaging, DCE MR imaging, and DWI parameters in combi-
nation to create a prognostic model.15,16 Our study specifically
focused on the NE-T2HSILs of GBM because of their importance
as a site of recurrence and their relationship to prognosis, espe-
cially in patients with GBM who underwent GTR of the contrast-
enhancing (CE) components. Our aim was, therefore, to find

nCBV, Ktrans, and ADC parameters associated with prognosis in
NE-T2HSIL on T2-FLAIR after GTR of the contrast-enhancing
components in patients with GBM using ML-based cluster
analysis.

MATERIALS AND METHODS
Patients
This retrospective study was approved by the institutional review
board of the Seoul National University Hospital (IRB No. 1811–
164–992), and the requirement for informed consent was waived.
In this study, a total of 273 patients who were diagnosed with
GBM from April 2010 to December 2019 were initially reviewed.
Among the 273 patients, patients were selected according to the
selection criteria outlined below.

The inclusion criteria were as follows: 1) patients older than
18 years of age, 2) diagnosed with GBM according to the 2016
World Health Organization Classification of Tumors of the
Central Nervous System,3 3) who had preoperative conventional
MR imaging including 3D CE-T1WI and T2-weighted FLAIR
imaging, 4) who had preoperative advanced MR imaging, includ-
ing DCE MR imaging, DSC MR imaging, and DWI, and 5) who
underwent standard treatment, which includes GTR followed by
concurrent chemoradiation therapy with 6 cycles of adjuvant
temozolomide. The exclusion criteria were as follows: 1) patients
with loss of raw data (n ¼ 22), 2) lost to follow-up (n ¼ 41), 3)
who had undergone partial resection (n ¼ 12), 4) who had under-
gone biopsy only (n¼ 14), 5) who did not complete standard treat-
ment (n¼ 12), 6) who had unreadable data (n¼ 28), and 7) a loss
of clinical information (n ¼ 2). Under these inclusion and exclu-
sion criteria, a total of 142 patients (85 men and 57 women; age
range, 22–84 years) were ultimately enrolled in this study (Online
Supplemental Data).

All included patients were divided into the progression group
(n ¼ 113) or the nonprogression group (n ¼ 29) 1 year after the
operation. The patients periodically underwent clinicoradiologic
follow-up after completion of the standard treatment and were
diagnosed with disease progression if they met at least 1 criterion
of the Response Assessment in Neuro-Oncology (RANO) criteria.
The RANO criteria are as follows: 1) $ 25% increase in the sum
of the products of perpendicular diameters of enhancing lesions
with the smallest tumor measurement, 2) any new lesion, 3) clear
clinical deterioration not attributable to cause other than the
tumor, and 4) clear progression of nonmeasurable disease.17

Mask Segmentation and Advanced Image Processing
The 3D CE-T1WIs of all patients were registered and resliced
into isometric voxels of 1� 1 � 1 mm3 to achieve spatial align-
ment and correct motion artifacts across consecutive images. The
T2 FLAIR, nCBV, Ktrans, and ADC maps were then coregistered
and resliced to the isovoxel CE-T1WI using rigid transformations
with 6 df in the SPM package (Version 12; www.fil.ion.ucl.ac.uk/
spm/).

A 3D U-Net-based deep learning model was created using the
open data set and images from several organizations, and the tumor
segmentation masks were generated on the basis of 3D CE-T1WI
and FLAIR images. Using the tumor masks, we analyzed nCBV,
Ktrans, and ADC values in the NE-T2HSILs, and the segmentation
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of the NE-T2HSIL was validated by an experienced neuroradiolo-
gist (with 19 years of experience in neuro-oncologic imaging). The
process of mask segmentation and image processing is shown in
the Online Supplemental Data.

K-Means Clustering Analysis and Optimization of the
Number of Clusters
Using the tumor-segmentation masks, we performed voxelwise K-
means clustering in the NE-T2HSILs based on nCBV, Ktrans, and
ADC maps. The K-means clustering module in the scikit-learn
Python package (https://scikit-learn.org/stable/index.html) was
used. K-means clustering is an iterative analysis that partitions a
data set into K clusters, optimizing the similarities among data in a
group while maintaining the greatest possible separation between
different groups. K initial means are randomly selected, and each
time new data are added to the program, they are assigned to the
cluster with the closest mean. In the next step, the mean of the
selected cluster is recalculated, and this process is repeated until all
the data have been added to the program.18 All voxels from all seg-
mented masks in the training set were first combined and then di-
vided into multiple clusters based on the similarities across data
points in the same cluster and the differences across data points in
different clusters. To determine the optimal number of clusters, we
ran the program several times from 3 to 6 clusters. Finally, the best
cluster number was chosen, which best discriminates the 1-year
progression-free survival (PFS) in the training set on the basis of a
univariate analysis.

Patient Population: Training and Test Sets
We randomly assigned all patients to a training or test set to pre-
vent overfitting in the K-means clustering analysis. We divided the
training set and test set at a ratio of 1:1. Each training set consisted
of 71 patients, and the test set consisted of 71 patients. The patients
in the training and the test sets were equally balanced with respect
to the 2 prognosis groups. Next, the K-means clustering perform-
ance was evaluated using the parametric data of all patients in the
test set.

Clinical Predictors and Outcome Definition
Clinical predictors were obtained from all patients’ medical
records, including sex, age, isocitrate dehydrogenase isozyme 1
(IDH1) mutation status, andO6-methylguanine-DNAmethyltrans-
ferase (MGMT) promoter methylation status. The primary end
point of this study was PFS. For those patients who were diag-
nosed with tumor progression according to the RANO criteria,

PFS was calculated from the day of the operation until the day of
progression. For those patients who showed no progression dur-
ing the follow-up period, PFS was monitored at the time of the
last follow-up MR imaging examination, and PFS was estimated
by survival analysis.

Variable Selection
The selection of variables that are significantly relevant to the
patient’s survival outcome is extremely important in developing a
prognostic model. The variables we analyzed in this study
included the volume fractions of each parametric cluster in the
NE-T2HSIL and several clinical predictors, including sex, age,
IDH1 mutation status, and MGMT promoter methylation status.
We first applied these variables in the univariate analysis and then
included the variables that were found to be statistically significant
in the multivariate analysis.

MR imaging protocol, imaging processing, and statistical
analysis are summarized in the Online Supplemental Data.

RESULTS
Demographic Data of the Study Population
A total of 142 patients who were diagnosed with GBM were en-
rolled in our study. The demographic data of all enrolled patients
are summarized in Table 1. During the follow-up period, 113
(79.6%) patients experienced progression, and 29 (20.4%) patients
did not experience progression 1 year after the operation. Patient
demographics in the training and test sets are summarized in the
Online Supplemental Data.

Optimization of the Number of Clusters Using the
Training and Test Sets
To determine the optimal number of clusters, we randomly di-
vided all enrolled patients into a training set and a test set at a ratio
of 1:1. The initial K-means clustering was performed on the para-
metric data of all patients in the training set. All voxels from the
segmented NE-T2HSIL masks were divided into clusters on the
basis of the nCBV, Ktrans, and ADC maps. A range of cluster num-
bers was entered, and finally, the cluster number of 6 (k ¼ 6) was
chosen because it best discriminated the 1-year PFS in the training
set on the basis of univariate analysis (Online Supplemental Data).
Receiver operating characteristic analysis was performed for both
the training and test sets, and the areas under the curve were 0.69
and 0.67, respectively. The area under the curve values suggest that
the division into 6 clusters is an acceptable distinction (Online
Supplemental Data).

Class 4r Correlated with PFS in All Patients
After we validated the number of clusters, the training and test
sets were combined for survival analysis. The 2D clustering plots
based on the nCBV, Ktrans, and ADC values are demonstrated in
the Online Supplemental Data. The average percentages of vox-
els in each of the 6 clusters were 4.99%, 18.42%, 8.41%, 27.34%,
29.24%, and 19.60% in numeric order. The parametric informa-
tion for each cluster is shown in the Online Supplemental Data.
Among the 6 clusters, “class 4” was the cluster with the relatively
low nCBV and Ktrans values and the lowest ADC values in the
segmented NE-T2HSIL mask. We found that a higher class 4

Table 1: Clinical characteristics of the study population
Characteristics Mean (SD) or No. (%)
Age (yr) 56.0 (13.2)
Sex
Male 85 (59.9%)
Female 57 (40.1%)

IDH1
Wild-type 133 (93.4%)
Mutant 9 (6.3%)

MGMT promoter
Unmethylated 68 (47.9%)
Methylated 74 (52.1%)
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volume fraction was associated with a shorter PFS in patients
with GBM. We defined the term “class 4r” as the volume frac-
tion of cluster 4 in the total NE-T2HSIL of each patient. A video
clip with a 3D clustering plot can be accessed in the Online
Supplemental Data.

Stratification Based on Class 4r and Survival Analysis in
All Patients
Our study suggested that class 4r in the NE-T2HSIL was associ-
ated with 1-year PFS prediction in GBM. The optimal cutoff of
class 4r for stratifying the shorter and longer PFS groups was
9.70% of the NE-T2HSIL volume fraction. The cutoff value dis-
tinguished the 2 PFS groups with a significant difference in the
log-rank test (P= .037). Thus, our results showed that patients
with GBM with a class 4r of,9.7% had a significantly longer PFS
time than patients with a class 4r of$9.7%. The Kaplan-Meier
survival curves and a table with the “numbers at risk” are shown
in Fig 1.

Univariate and Multivariate Analysis in All Patients
The univariate Cox proportional hazard analysis showed that clini-
cal variables such as age, IDH1 mutation status, and MGMT pro-
moter methylation status were independent predictors of 1-year
PFS in patients with GBM. In addition, among the MR imaging
parametric variables, only an increase in class 4r was identified as
an adverse predictor of PFS (Table 2).

In the multivariate Cox proportional hazard analysis, a stat-
istically significant difference in PFS between patients with low
and high class 4r values (hazard ratio, 3.04; 95% CI, 1.00–9.10; P
value ¼ .048) was observed, which was independent of prognos-
tic genetic factors, including IDH1 mutation status and MGMT
promoter methylation status (Table 3). The concordance index
value for PFS was 0.699 (standard error, 0.025), indicating that
the volume fraction of regions with the relatively low nCBV and
Ktrans values and the lowest ADC value is a moderately good

FIG 1. Kaplan-Meier survival curves stratified on the basis of the optimal class 4r cut-point value (9.70%) for PFS and the number at risk table
(blue). Kaplan-Meier curve with class 4r$ 9.70% (yellow). Kaplan-Meier curve with class 4r, 9.70%. Two KM curves showed a statistically signifi-
cant difference (P¼ .037).

Table 2: Univariate Cox proportional hazard analysis of the
potential prognostic factors for 1-year PFS

Variables Hazard Ratio Wald P Value
Age 1.02 3.90 .047
Sex
Female 0.70 3.40 .066

Preoperative KPS 0.98 3.74 .054
IDH1 mutation
Mutant 0.21 7.10 .008

MGMT promoter
Methylated 0.31 35 ,.001

NE-T2HSIL volume
Class 1 1.00 0.08 .78
Class 2 1.00 0.32 .57
Class 3 1.00 0.00 .98
Class 4 1.00 2.30 .13
Class 5 1.00 0.01 .92
Class 6 1.00 0.59 .44

NE-T2HSIL VF
Class 1r 0.84 0.02 .89
Class 2r 0.66 0.46 .50
Class 3r 2.69 0.02 .90
Class 4r 3.04 3.90 .048
Class 5r 0.59 0.51 .47
Class 6r 0.64 0.46 .50

Note:—KPS, karnofsky performance status; VF, volume fraction.
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predictor of 1-year PFS. Two representative cases of a patient with
a PFS of,1 year and a patient with a PFS of.1 year are shown in
Figs 2 and 3.

DISCUSSION
In this study, we developed a multiparametric prognostic model
for patients with GBM who received GTR of the CEL mass. We
found that a higher volume fraction of voxels with relatively low
nCBV and Ktrans values and the lowest ADC value in NE-T2HSIL
showed a significant association with worse GBM prognosis: A
low Ktrans value indicates preserved vascular permeability due to
subtle BBB damage,19 a low nCBV value implies a lack of tumor

angiogenesis,20 and a low ADC value reflects an increase in tumor
cellularity.13 Thus, regions of relatively low nCBV and Ktrans val-
ues and the lowest ADC value represent the hypoxic hypercellular
regions within the NE-T2HSIL. We believe that a high content of
these regions in the NE-T2HSIL can be a significant prognostic
factor in predicting the survival outcomes of GBM.

Few studies have used DSCMR imaging, DCE MR imaging, or
DWI to evaluate MR imaging–derived parameters in the NE-
T2HSIL to predict the prognosis of GBM. Derived from DWI, a
low ADC value can be used as a marker indicating regions with a
high content of microscopic tumor cells.13 On T2WI, however,
these microscopic tumor cells are in a mixture of vasogenic edema,
where high ADC values are present.21 Hence, the low ADC level
helps locate the regions with high microscopic tumor cell content
from the vasogenic edema mixture.21,22 Consistent with our find-
ing, Lee et al21 also suggested that the minimum ADC value of
NE-T2HSIL may indicate the infiltration of neoplastic cells in peri-
tumoral edema.

Derived from DCE and DSC MR imaging, Ktrans and nCBV
values reflect the extent of perfusion and tissue vascularity. Our
finding of low Ktrans and low nCBV levels can be interpreted as
hypoxic tumor regions, which are key to the highly infiltrative

Table 3: Multivariate Cox proportional hazard analysis to ana-
lyze significant independent predictors of 1-year PFS

Variables Hazard Ratio 95% CI P Value
NE-T2HSIL VF
Class 4r 3.36 1.17–9.63 .024

Age 1.02 1.00–1.04 .014
IDH1 0.44 0.13–1.45 .178
MGMT promoter 0.27 0.17–0.41 ,.001

Note:—VF indicates volume fraction.

FIG 2. A representative case of a patient with a PFS, 1 year (PFS ¼ 6.73months) after the operation. A, Depiction of the preoperative 3D CE-
T1WI and FLAIR images, segmentation of the NE-T2HSIL, and nCBV, ADC, Ktrans maps derived from DSC MR imaging, DWI, and DCE MR imaging,
respectively. B, 2D plots defined by the clustered voxels within the NE-T2HSIL based on the nCBV, ADC, and Ktrans maps.
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nature of GBM.23-25 Local hypoxic tumor conditions prompt
the activation of hypoxia-inducible factor 1, leading to vascular
endothelial growth factor production. The vascular endothelial
growth factor then promotes angiogenesis and invasion of the
normal brain parenchyma, which ultimately lead to tumor pro-
gression.25,26 However, our results contradict those of previous
studies. For example, Kim et al27 recently suggested the poten-
tial of a high Ktrans value within the NE-T2HSIL in predicting
the prognosis of GBM. According to that study, patients with
GBM with higher Ktrans values in the 99th percentile had a worse
prognosis. With respect to rCBV, Jain et al9 reported that higher
mean rCBV values in NE-T2HSIL are associated with a worse
prognosis in GBM. The reason for the discrepancies between
our current data and these 2 previous studies is that these 2
reports did not include the ADC parameter, a tissue cellularity
imaging marker. We believe that in the NE-T2HSIL, a low ADC
value resulting from hypercellularity is more important than
hypervascularity or hyperpermeability for the prognosis; addi-
tionally, hypoxic hypercellular areas seem to have an aggressive
potential.

We believe that this discrepancy is caused by the following 2
factors: First, while the previous studies used only 1 or 2 MR imag-
ing parameters, our study included 3 MR imaging parameters
(ADC, Ktrans, and nCBV) at the same time to create a prognostic
model of GBM. Therefore, we detected the most prognostic com-
ponents reflecting tumor cellularity, angiogenesis, and vascular
permeability in patients with GBM. Second, in previous studies,
the NE-T2HSILs were analyzed as a whole, with a representative
parametric value being determined independent of their composi-
tion. Our study, however, divided the NE-T2HSILs into edematous
parts and microscopic tumor cells on the basis of DSC MR imag-
ing, DCE MR imaging, and DWI, taking into account the different
components that make up the NE-T2HSILs in GBM.

Despite the discrepancy between our results and previous
studies, we suggest that regions with low parametric values within
the NE-T2HSILs may relate to the early stages of pseudopalisade
development. Pseudopalisades are unique pathologic features that
differentiate GBM from low-grade gliomas.28 Although the
detailed mechanism for the formation of pseudopalisades remains
unclear, a new model proposed by Rong et al26 may provide

FIG 3. A representative case of a patient with a PFS of .1 year (PFS ¼ 7.97 years) after the operation. A, Depiction of the preoperative 3D CE-
T1WI and FLAIR images, segmentation of the NE-T2HSIL, and nCBV, ADC, Ktrans maps derived from DSC MR imaging, DWI, and DCE MR imaging,
respectively. B, 2D plots defined by the clustered voxels within the NE-T2HSIL based on the nCBV, ADC, and Ktrans maps.
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insight into our results. According to this model, the high inci-
dence of intravascular thrombosis in patients with GBM can
directly trigger or spread hypoxia within the tumor. After vascular
insult, however, the BBB and vascular structure remain intact to
some extent. This feature keeps permeability relatively low until
pseudopalisading cells migrate away from the vascular occlusion
site, secrete proangiogenic factors, and develop central necrosis.26

Therefore, tumor voxels with relatively low nCBV and Ktrans val-
ues and the lowest ADC value could represent NE-T2HSILs with
large numbers of pseudopalisading cells in the early stages of
development.

Our study has several limitations. First, it is based on a retro-
spective design that is inevitably prone to selection bias. However,
we tried to minimize the selection bias by collecting most of the
data from April 2010 to December 2019 in the Seoul National
University Hospital. Second, all patient data were collected from a
single medical center. Future studies with multicenter data could
help validate and generalize our results. Third, the size of our study
population was relatively small, especially the number of samples
in the nonprogression groups, so a future study is warranted in a
large population for the validation of our results. Last, although we
have suggested a plausible correlation between pathologic features
and imaging features, this study lacks pathologic validation because
the NE-T2HSILs are not the usual target of GBM.

CONCLUSIONS
The multiparametric model showed that the NE-T2HSILs with the
relatively low nCBV and Ktrans values and the lowest ADC value
could serve as useful imaging markers in predicting survival out-
comes in patients with GBM. Our investigation could help radiol-
ogists locate hypoxic, hypercellular regions of the NE-T2HSIL,
consider more aggressive treatment to prevent early tumor recur-
rence, and ultimately improve the overall survival of patients with
GBM.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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