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REVIEW ARTICLE

SodiumMR Neuroimaging
A. Hagiwara, M. Bydder, T.C. Oughourlian, J. Yao, N. Salamon, R. Jahan, J.P. Villablanca, D.R. Enzmann, and

B.M. Ellingson

ABSTRACT

SUMMARY: Sodium MR imaging has the potential to complement routine proton MR imaging examinations with the goal of
improving diagnosis, disease characterization, and clinical monitoring in neurologic diseases. In the past, the utility and exploration
of sodium MR imaging as a valuable clinical tool have been limited due to the extremely low MR signal, but with recent improve-
ments in imaging techniques and hardware, sodium MR imaging is on the verge of becoming clinically realistic for conditions that
include brain tumors, ischemic stroke, and epilepsy. In this review, we briefly describe the fundamental physics of sodium MR imag-
ing tailored to the neuroradiologist, focusing on the basics necessary to understand factors that play into making sodium MR imag-
ing feasible for clinical settings and describing current controversies in the field. We will also discuss the current state of the field
and the potential future clinical uses of sodium MR imaging in the diagnosis, phenotyping, and therapeutic monitoring in neurologic
diseases.

ABBREVIATIONS: ESC ¼ extracellular sodium concentration; IDH ¼ isocitrate dehydrogenase; ISC ¼ intracellular sodium concentration; NHE1 ¼ Na1/H1
exchanger isoform 1; TSC ¼ total sodium concentration

Routine clinical MR imaging is performed exclusively by using
hydrogen nuclei (ie, protons, H1) because it is the most

abundant element in the human body in the form of water.
However, other nuclei are also detectable with MR imaging and
may provide complementary physiologic information to conven-
tional proton MR imaging. Referred to collectively as “X-nuclei,”
elements including sodium (23Na), potassium (35K), chloride
(35Cl), and phosphorus (31P) all have detectable magnetic
moments and all play critical roles in the biochemistry of living
tissues.

Sodium is the second most abundant element in the body
detectable on MR imaging. Sodium homeostasis is crucial for
life because it is a major determinant of body fluid osmolality,
and sodium sensing is performed in the brain by specialized so-
dium channels within the circumventricular organs to maintain
a range of 135–145mM.1 Sodium also plays a crucial role in the
propagation of neural signals in and between neurons,2,3 and
disruption in sodium homeostasis as well as structural and met-
abolic integrity has been identified in a variety of neurologic
disorders including brain tumors,4 stroke,5 and epilepsy.6

Hence, sodium MR imaging has remarkable potential for use in
diagnosis, characterization, and treatment monitoring in neuro-
logic diseases.

The fundamental limitation to translational use of sodium MR
imaging for clinical care is the low inherent MR signal. The MR
imaging signal is approximately 10,000 times lower than that of
protons, which is due to a combination of the following: 1) a con-
centration of about 0.055% of that of water protons; 2) a gyromag-
netic ratio (g , relates the main magnetic field strength, B0, to the
resonance frequency) of about 26.5% of that of the proton, thus a
lower energy (DE¼ g�hB0) and lower inherent bulk magnetization;
and 3) a nuclear spin of 3/2, leading to electric quadrupolar inter-
actions between the nucleus and its environment resulting in faster
T2* decay. Overcoming these issues and achieving adequate MR
signal levels necessitates acquisition schemes with low spatial reso-
lution, short TE, multiple measurements, and long scan times.
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Researchers have put considerable effort into optimizing these
various factors and taking advantage of both the acquisition
algorithm and hardware improvements. In this review, we
briefly describe the fundamental physics of sodium MR imaging
tailored to the neuroradiologist, focusing on the basics neces-
sary to understand factors that are involved in making sodium
MR imaging feasible for clinical settings and describing current
controversies in the field, including the measurement of intra-
cellular sodium concentration. We will also discuss the current
state of the field and the potential future clinical uses of sodium
MR imaging in the diagnosis, phenotyping, and therapeutic
monitoring in neurologic diseases.

SodiumMR Imaging Physics and Acquisition
In practice, MR imaging of sodium ions is essentially the same as
imaging protons, but with lower SNR and shorter (and more
complex) T2 relaxation characteristics. Due to the inherent nu-
clear spin of 3/2, the sodium ion exhibits electric quadrupolar
interactions between the nucleus and its environment,7,8 leading
to what appears to be a biexponential T2 decay in many biologic
tissues. The short T2 species appears to occur most often in vis-
cous liquids or semisolid tissues, where there is a continuum of
electric field gradients (depending on the orientation of the so-
dium ion and the position of an anion) that produces a broad
range of energy levels and gives rise to short T2 relaxation. A lon-
ger T2 component is observed from the energy levels unper-
turbed by the electric field gradients,7 such as those in CSF and
other nonviscous liquids because the motion of the ions causes
electric field gradients to average to zero over the measurement
time scale, resulting in a single, longer T2 relaxation. This obser-
vation has been replicated in the human brain, where paren-
chyma, including both white and gray matter, exhibits a
characteristic biexponential T2 decay, while the nonviscous CSF
displays monoexponential T2 relaxation.9

Most measurements used in clinical sodium MR imaging
focus on estimation of the total sodium concentration (TSC) or
the volume-weighted average of the intra- and extracellular so-
dium concentrations (ISC and ESC, respectively). Notably, ISC
and ESC do not correspond to short and long sodium T2 relaxa-
tion (explained later in this section). Because ESC is stable at
around 140mM, TSC is mainly affected by changes in ISC and
alterations in the volume fractions between the intra- and extrac-
ellular space. TSC in the brain was reported to range from 30 to
56 mM10-12 and remain constant throughout adulthood in cogni-
tively healthy individuals, and its regional variation in the brain
was reported to be minimal.12 Sodium concentration in the CSF
has been known to show circadian fluctuation;13 however,
whether TSC in the brain tissue also shows circadian fluctuation
and whether the degree of fluctuation is different between normal
and pathologic brain tissues are unknown. Remarkable effort has
been made to measure ISC during the past decades in animal
models to elucidate cellular homeostasis, energetic state, and
functionality of sodium pumps; however, these measurements
involve the use of highly toxic extracellular paramagnetic “fre-
quency shift reagents” that are trapped within the extracellular
space and shift the resonance frequency of extracellular sodium,

resulting in isolation of purely intracellular sodium ions.14,15

Unfortunately, due to their toxicity and the fact they do not cross
the blood-brain barrier, shift reagents for sodium MR imaging
are not used in humans.

Two major physics approaches to measure the ISC in
humans that have been explored include the use of inversion re-
covery16-19 and multiple quantum filtering20-22 techniques.
Similar to FLAIR, the inversion recovery approach assumes that
a simple inversion pulse can suppress the sodium signals free
from macromolecules; hence, the sodium signal in the extracel-
lular space is also presumed to be suppressed. However, there is
evidence that the T1 relaxation times of intra- and extracellular
sodium are very similar,23-28 and there is little reason to assume
that the T1 of the sodium within the extracellular compartment
is more similar to that in CSF than in the intracellular compart-
ment. Indeed, extracellular fluid in brain tissue is largely differ-
ent from CSF in composition.29

Multiple quantum filtering is a relatively sophisticated
approach that works on the premise that the slow-moving so-
dium, presumably in the intracellular space, can be selectively
detected on the basis of the underlying biexponential T2 relaxa-
tion of sodium.30 However, molecular interactions that result in
equivalently small T2 values in both intra- and extracellular com-
partments are expected to result in similar multiple quantum
coherences.27 Indeed, previous experiments have shown a contri-
bution of the extracellular sodium to the multiple quantum
coherences detected by multiple quantum-filtering sodium MR
imaging, and the degree of contamination is largely unex-
plored.31-33 Therefore, direct measurement of the ISC solely using
sodium MR imaging physics without the use of exogenous
contrast agents is not yet plausible, and such claims in previous
literature using the relaxation behavior of sodium should be cau-
tiously interpreted. Furthermore, the exchange rate of sodium
between intra- and extracellular space, which might affect the
measurement of the ISC, has not been considered in previous
studies. Future studies aimed at using multiparametric input
from proton diffusion MR imaging and/or PET may be useful for
using estimates of cell density34 to disentangle the ISC from the
TSC measured by sodium MR imaging, but as of now, TSC is the
most reliable measurement parameter for routine sodium MR
imaging examinations.

The primary challenge for clinical sodium MR imaging is the
very short T2, meaning that most of the sodium MR imaging sig-
nal is lost within a few milliseconds. Hence, imaging with a very
short, ultrashort, or zero TE (ie, TE of ,1ms) is almost manda-
tory for any sodiumMR imaging application. High quantification
accuracy of the sodium concentration with ultrashort TE imaging
has been reported.10,35 To reduce the duration of signal readout
while maintaining sufficient SNR, non-Cartesian sequences (eg,
radial or spiral trajectories) are preferred.36,37 For example,
Ridley et al38 used a 3D radial projection for whole-brain imag-
ing, with 3-mm isotropic resolution on a 3T clinical scanner in
34minutes. On the other hand, Thulborn et al39 showed that a
twisted radial k-space imaging trajectory could be used for
whole-brain coverage with 5-mm isotropic resolution (44 slices)
on a 3T clinical scanner in approximately 8minutes, which was
sufficient for brain tumor imaging applications.
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In addition to creative k-space trajectories, advancements in
hardware have also made sodium MR imaging more clinically
realizable. The use of high- and ultra-high-field strength scan-
ners, for example, proportionally increases the SNR, making
commercial 7T MR imaging scanners feasible for faster or higher
resolution sodium imaging.11 Of note, higher resolution, espe-
cially with 3D imaging, helps reduce partial volume effects. In
addition to the use of high-field-strength scanners, receiver coil
architecture is also of great importance because the design of this
coil predetermines the maximum attainable SNR. Because proton
MR imaging is often performed concurrently with sodium imag-
ing, the same physical coil housing (ie, “dual tuned” coils) is
desired. Dual-tuned designs of different Larmor frequencies
come with unique challenges, however, such as coupling between
the sodium and proton coils.40 This issue could be addressed by
using 2-coil geometries that are intrinsically decoupled, dual-tun-
ing a single coil, or strategies to actively decouple the 2 coils.40

Use of array coils is an attractive approach in sodium imaging to
further increase the SNR and reduce scan time by using parallel
imaging strategies.41 For example, Lee et al42 demonstrated up to
a 400% increases in the SNR using a 4-channel coil .20 years
ago. To date, the highest number of channels reported for a head
sodium coil is 32,28 while 20- to 30-channel coils are commercial-
ized and available through third-party coil vendors. However, de-
spite remarkable progress, array coils are still rarely used in
sodium imaging because of hardware and software limitations
and additional costs.41 For using array coils in sodium MR imag-
ing, the receivers should be capable of handling the frequencies
relevant to sodium acquired with analog-to-digital converters
and having processing engines capable of sorting and combining
the signals from each coil properly. Most commercial scanners

have offered only a single broadband X-nuclei receiver channel,
limiting the use of array coils.

Neurologic Applications
Brain Tumors. In brain tumors, sodium MR imaging has the
potential to reveal molecular information related to cell viability,
proliferation, migration, invasion, and immunogenicity43-45 and
may enable us to reveal molecular responses to treatment before
morphologic changes can be observed. TSC is reportedly elevated
in brain tumors both in humans19,22,39,46-48 and animals,49,50 a fea-
ture that may be due to the ISC, the volume of the extracellular
space, or both, considering that the ESC remains relatively con-
stant and much higher than the ISC as long as there is moderate
tissue perfusion.51 Increases of the ISC in tumors are partly related
to the increased energy demand arising from cell proliferation,
because negative sodium gradients across the cell membranes are
maintained by consumption of adenosine triphosphate.52 In addi-
tion, the Na1/H1 exchanger isoform (NHE1) (SLC9A1) is upregu-
lated in gliomas and is a potential therapeutic target due to its role
in the progression of malignant gliomas,53-55 influence on pH ho-
meostasis in glioma cells,54-57 influence on seizure activity,6 and
potential increased resistance to both chemoradiation58 and anti-
PD-1 immunotherapy.56

Although the literature is sparse, studies have shown differen-
ces in sodium MR imaging contrast among different tumor
grades48,59 and between active tumors and peritumoral edema46

or other types of lesions,60 and these differences appear to reflect
the general prognosis,59 with higher TSC in areas of more aggres-
sive tumor. Despite this general trend, a number of studies have
shown differences in sodiumMR imaging contrast between isoci-
trate dehydrogenase (IDH) mutant and wild-type gliomas,22,59,61

with IDH-mutant human gliomas showing higher TSC than IDH
wild-type gliomas (Fig 1).22,61 While this finding is counterintui-
tive, it could be due to the lower cellular density of IDH-mutant
gliomas,62 leading to a larger extracellular space and higher TSC.
Alternatively, IDH-mutant gliomas often result in more frequent
seizures compared with more aggressive high-grade IDH wild-
type malignant gliomas,63,64 and because expression of NHE1s is
strongly linked to seizure activity,6 this finding may also explain
the differences in TSC observed between IDH-mutant and wild-
type gliomas.

Sodium MR imaging has also shown some promise in identi-
fying the early treatment response in brain tumors.39,65,66 For
example, in rat glioma models, response to chemotherapy using
sodium MR imaging was detectable even earlier than in proton
diffusion MR imaging.67 In rat models of subcutaneously
implanted gliomas, lower total sodium signals were observed in
gliomas treated with 1,3-Bis(2-chloroethyl)-1-nitrosourea com-
pared with untreated gliomas.68 Another study showed a pro-
nounced increase in the TSC following 1,3-Bis(2-chloroethyl)-1-
nitrosourea treatment in orthotropic rat gliomas compared with
untreated gliomas.50 Notably, the increase in TSC after treatment
occurred before tumor shrinkage. Even though the discrepancy
in the results between these 2 studies may partly lie in differences
in the implantation sites of gliomas and acquisition methods, the
increase in TSC observed in the latter study may also be due to a
combination of treatment response leading to necrosis and an

FIG 1. A, MR imaging of a 38-year-old male patient with an IDH-
mutated glioblastoma, World Health Organization grade IV. The tu-
mor (white arrows) shows focal contrast enhancement in the T1-
weighted image and is clearly depicted in the FLAIR image. Sodium
imaging shows increased TSC. B, MR imaging of a 78-year-old male
patient with an IDH wild-type anaplastic astrocytoma, World Health
Organization grade III, in the right basal ganglia. The tumor (white
arrows) shows focal contrast enhancement in the T1-weighted image
and diffuse abnormalities in the FLAIR image. Sodium imaging shows
no abnormality. Adapted and reproduced with permission from
Shymanskaya et al.22
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increase in the extracellular space. Additionally, Thulborn et al39

evaluated the effects of the standard chemoradiotherapy on 20
patients with human glioblastomas using sodium MR imaging
and noted an increase in TSC after successful treatment.

Acute Ischemic Stroke. Acute ischemic stroke occurs due to sud-
den occlusion of arteries within the brain, resulting in reductions
of adenosine triphosphate production and Na1/K1-ATPase ac-
tivity. Inadequate Na1/K1-ATPase activity disrupts the ion ho-
meostasis, leading to an increase in the ISC, cytotoxic cell
swelling, and eventual cell death.69 Sodium MR imaging may be
useful as a surrogate marker of Na1/K1-ATPase activity and cell
viability in the ischemic tissue, with potential implications for
determining tissue viability.70 Monotonic increases in the TSC af-
ter acute ischemic stroke have been reported both in animals71,72

and humans,73,74 using time scales relevant for patient manage-
ment (ie, 0–24 hours following onset), and this increase does not
appear to normalize in the natural course following stroke. In
contrast, decreased ADC in the acute phase normalizes when
vasogenic edema starts in the subacute phase (ie, 24–72hours fol-
lowing onset).75 Hussain et al73 demonstrated that there was a
10% increase in sodium signal in the first 7 hours, followed by a
rapid increase in sodium until a plateau of a 69% increase at
48 hours relative to baseline values, during which time the ADC
did not fluctuate. Because sodium concentration correlates with
the duration of ischemia, the onset time may be more accurately
estimated by the sodium concentration than diffusion MR imag-
ing changes, providing potential utility in “wake-up” strokes.

Additional studies have demonstrated that sodium MR imag-
ing signals in the region with a perfusion-diffusion mismatch
may not differ from those in contralateral normal tissue until
around 32 hours after symptom onset, indicating that sodium
MR imaging may help identify the viable tissue in the penumbra,
even when the onset time of a stroke is unknown (Fig 2).76

Despite these initial studies, the specific thresholds of TSC for
determining reversible and irreversible ischemic tissues and the
vulnerability of infarcted tissues to hemorrhage following reper-
fusion therapy are yet to be determined. Conceivably, sodium
MR imaging in combination with conventional imaging techni-
ques may enable more judicious selection of candidates for endo-
vascular thrombectomy in the future, rather than using a fixed
time window as is the current practice.

Epilepsy. Because sodium homeostasis affects neuronal excitabil-
ity,6 sodiumMR imaging has the potential to detect subtle distur-
bances in sodium concentration in seizure disorders including
epilepsy. Several pathologic mechanisms in epilepsy are impli-
cated in the change of the TSC observed in the brain, with the
primary mechanism being dysfunction of sodium channels and
Na1/K1-ATPase in patients with epilepsy due to genetic muta-
tion and mitochondrial dysfunction, leading to depolarization
and the increase in the ISC.77-79 Additionally, reduction in the
size of the extracellular space due to an increase in the intracellu-
lar osmolarity can occur during seizure activity,80,81 and an
increase in the extracellular space due to neuronal loss, gliosis,
and blood-brain barrier disruption, arising from chronic epilepsy
or underlying diseases such as stroke or trauma, can lead to alter-
ations in TSC measurements using sodiumMR imaging.82

Despite the potential impact, to date, very few sodium MR
imaging studies have been performed in epilepsy and seizure dis-
orders. Wang et al83 reported a dynamic postictal temporal
change in proton ADC and TSC using sodium MR imaging after
the administration of kainic acid to rats. In the pyriform cortex
and amygdala, decreases in the ADC were noted as early as
5 hours after kainic acid administration, and the ADC values fur-
ther decreased until 24 hours after the seizures. ADC values
returned to normal levels 7 days postictally. Meanwhile, the TSC
did not change at 5 hours postictally but increased at 24 hours
and remained elevated even at 7 days postictally. These changes
in ADC and TSC were interpreted as being influenced by sodium
entry into the excited neurons and accompanying cellular swel-
ling, followed by energy deficiencies and cell death, in line with
pathologically-confirmed extensive neuronal cell loss by day 7.
However, future research is desired to elucidate the relationship
between the change in sodium concentration and pathophysiol-
ogy in more detail by using shift reagents in animal models, to
determine the degree of contribution by the change in the ISC to
the increased TSC.

Additionally, Ridley et al38 used sodiumMR imaging to examine
9 patients with epilepsy during interictal periods and 1 patient who
incidentally presented with several seizures during the MR imaging
examination. TSC in the intracerebral electroencephalogram-
defined epileptogenic regions was increased in the interictal group, a
finding that can be explained by an increase in the ISC due to
voltage-gated sodium channel mutations leading to a persistent

FIG 2. Images of a representative section from a patient with ischemic
stroke showing the hypoperfused (time-to-maximum1 4 seconds)
perfusion maps, the DWI with a DWI-hyperintense core in the dotted
outline, the PWI-DWI mismatch tissue (penumbra) in the solid outline,
and sodium images for (A) 4 and (B) 25.5 hours after the onset. This
patient had a perfusion/diffusion mismatch at the first time point. The
absolute lesion volume of the core enlarged from the first to the sec-
ond time point, while the penumbral volume diminished. Note that
the sodium signal is not increased in the first time point, while the high
sodium signal is matched with DWI hyperintensity at the second time
point. Adapted and reproduced with permission from Tsang et al.76
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inward sodium current, along with an increase in the extracellular
space due to cell loss and glial formation (Fig 3).6,82 In contrast to
patients in the interictal period and consistent with preclinical stud-
ies, the TSC was slightly decreased in the epileptogenic area in the
patient who presented with multiple seizures during the MR imag-
ing examination. Together, these preliminary studies suggest that
sodium MR imaging may be useful for identification and illumina-
tion of epileptic activity, but important questions remain, including
the precise temporal changes in TSC that occur during and after sei-
zure activity, the effects of antiepileptic medication, the sensitivity of
sodium MR imaging for epileptic foci detection compared with
standard proton MR imaging, and the value of sodiumMR imaging
as a tool to predict surgical outcome in patients with refractory
epilepsy.

CONCLUSIONS
Sodium MR imaging has the potential to complement routine
proton MR imaging examinations with the goal of improving di-
agnosis, disease characterization, and clinical monitoring in neu-
rologic diseases. In the past, the utility and exploration of sodium
MR imaging as a valuable clinical tool have been limited due to
the extremely low MR signal, but with recent improvements in
imaging techniques and hardware, sodium MR imaging is on the
verge of becoming clinically feasible for conditions including
brain tumors, stroke, and epilepsy.

Disclosures: Akifumi Hagiwara—RELATED: Grant: Japan Society for the Promotion
of Science Grants-in-Aid for Scientific Research, Comments: 19K17150.
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