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ORIGINAL RESEARCH
HEAD & NECK

Convolutional Neural Network to Stratify the Malignancy Risk
of Thyroid Nodules: Diagnostic Performance Compared with

the American College of Radiology Thyroid Imaging Reporting
and Data System Implemented by Experienced Radiologists

G.R. Kim, E. Lee, H.R. Kim, J.H. Yoon, V.Y. Park, and J.Y. Kwak

ABSTRACT

BACKGROUND AND PURPOSE: Comparison of the diagnostic performance for thyroid cancer on ultrasound between a convolu-
tional neural network and visual assessment by radiologists has been inconsistent. Thus, we aimed to evaluate the diagnostic per-
formance of the convolutional neural network compared with the American College of Radiology Thyroid Imaging Reporting and
Data System (TI-RADS) for the diagnosis of thyroid cancer using ultrasound images.

MATERIALS AND METHODS: From March 2019 to September 2019, seven hundred sixty thyroid nodules ($10 mm) in 757 patients
were diagnosed as benign or malignant through fine-needle aspiration, core needle biopsy, or an operation. Experienced radiologists
assessed the sonographic descriptors of the nodules, and 1 of 5 American College of Radiology TI-RADS categories was assigned.
The convolutional neural network provided malignancy risk percentages for nodules based on sonographic images. Sensitivity, spec-
ificity, accuracy, positive predictive value, and negative predictive value were calculated with cutoff values using the Youden index
and compared between the convolutional neural network and the American College of Radiology TI-RADS. Areas under the re-
ceiver operating characteristic curve were also compared.

RESULTS:Of 760 nodules, 176 (23.2%) were malignant. At an optimal threshold derived from the Youden index, sensitivity and negative pre-
dictive values were higher with the convolutional neural network than with the American College of Radiology TI-RADS (81.8% versus 73.9%,
P ¼ .009; 94.0% versus 92.2%, P¼ .046). Specificity, accuracy, and positive predictive values were lower with the convolutional neural net-
work than with the American College of Radiology TI-RADS (86.1% versus 93.7%, P, .001; 85.1% versus 89.1%, P¼ .003; and 64.0% versus
77.8%, P, .001). The area under the curve of the convolutional neural network was higher than that of the American College of Radiology
TI-RADS (0.917 versus 0.891, P¼ .017).

CONCLUSIONS: The convolutional neural network provided diagnostic performance comparable with that of the American College
of Radiology TI-RADS categories assigned by experienced radiologists.

ABBREVIATIONS: ACR ¼ American College of Radiology; AUC ¼ area under the curve; AI ¼ artificial intelligence; CNB ¼ core needle biopsy; CNN ¼ con-
volutional neural network; FNA ¼ fine-needle aspiration; ROC ¼ receiver operating characteristic; TI-RADS ¼ Thyroid Imaging and Reporting and Data System;
TR ¼ category of TI-RADS; US ¼ ultrasound

Thyroid ultrasound (US) is the best tool to evaluate thyroid
nodules for ultrasound-guided fine-needle aspiration (US-

FNA).1,2 However, the diagnostic performance of US varies
because it is operator-dependent, and interobserver variability is
inevitable.3,4 To overcome this limitation, studies have been

conducted on the computerized diagnosis of thyroid cancer with
US images.5-8 The convolutional neural network (CNN) is a deep
learning technique that incorporates fully trainable models and
can potentially cover various medical imaging tasks.9 Recently,
multiple CNN models have been investigated for the diagnosis of
thyroid cancer.10-17 Computerized algorithms were designed to
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predict thyroid cancer, and the deep CNN was used to differenti-
ate malignant and benign thyroid nodules on the basis of US
images.

Findings of past studies have been inconsistent when the diag-
nostic performance of the CNN was compared with visual assess-
ment by radiologists. Even when US images were assessed according
to published guidelines, the diagnostic performance of the CNN
could be inferior to or favorable compared with that of radiologists,
and in some studies even superior.10-12,15 This variation might be
due to unpredictable human judgment as well as differing algo-
rithms that were developed by researchers or corporations individu-
ally; radiologists have been known to make their own final
assessment, with guidelines being simply a point of reference. Thus,
we aimed to compare the diagnostic performance of a CNN with a
well-established guideline, the American College of Radiology
(ACR) Thyroid Imaging Reporting and Data System (TI-RADS),
which reduces benign FNAs with high specificity and accuracy in an
era when the overdiagnosis and overtreatment of thyroid cancer
have become issues of concern.18-22 ACR TI-RADS guides the diag-
nosis of thyroid cancer through a summation of points assigned to
each US feature and then classifies nodules into 5 categories, TI-
RADS (TR) 1 to TR5.23 In our institution, the radiologist perform-
ing the US prospectively records the US features of all thyroid nod-
ules expected to undergo US-FNA or US-guided core needle biopsy
(US-CNB), and each thyroid nodule is assigned to 1 of the 5 ACR
TI-RADS categories, TR1 to TR5, according to the recorded US
features.

Therefore, the aim of this study was to evaluate the diagnostic
performance of the CNN compared with ACR TI-RADS for the
diagnosis of thyroid cancer using US images.

MATERIALS AND METHODS
Study Population
FromMarch 2019 to September 2019, US-FNA or US-CNBwas ini-
tially performed on 1096 thyroid nodules measuring $10 mm in
1087 patients 19 years of age or older in Severance Hospital. Of

the original 1096 nodules, 259 were
excluded because they did not receive
further management such as repeat
FNA or an operation after US-FNA
showed the results as nondiagnostic
(n¼ 125 in FNA; n¼ 1 in CNB).
Exclusions were also due to atypia
of undetermined significance/follicular
lesion of undetermined significance
(n¼ 107 in FNA), indeterminate (n¼ 6
in CNB), follicular neoplasm (n¼ 3 in
FNA; n¼ 4 in CNB), or suspicion for
malignancy (n¼ 13). Seventy-seven
nodules were also excluded because
they were aspirated by an inexperienced
radiologist who had ,1 year of experi-
ence dedicated to thyroid imaging. The
remaining 760 nodules met 1 of the fol-
lowing criteria: 1) nodules with benign
or malignant results on US-FNA or US-

CNB (n¼ 551), 2) nodules that underwent an operation (n¼ 191),
and 3) nodules that were confirmed as benign on repeat US-FNA or
US-CNB after initial cytology results of nondiagnostic (n¼ 4) or
atypia of undetermined significance/follicular lesion of undeter-
mined significance (n¼ 14). Finally, 760 thyroid nodules in 757
patients were included (Fig 1). Three patients had 2 nodules that
were aspirated from both sides of the thyroid gland.

US Image Acquisition
All US examinations were performed using a 7- to 17-mHz linear
transducer (EPIQ 7; Phillips Healthcare). One of 5 radiologists
dedicated to thyroid imaging with 6–21 years of experience per-
formed the US examinations and subsequent US-FNAs. The radi-
ologist who performed the US-FNA prospectively recorded the US
features of each thyroid nodule with respect to composition, echo-
genicity, shape, margin, and calcifications.2,24 Composition was
assessed as solid, predominantly solid (solid component$50%), or
predominantly cystic (solid component,50%) or spongiform.
Echogenicity was assessed as hyperechoic (hyperechogenicity com-
pared with the surrounding thyroid parenchyma), isoechoic (isoe-
chogenicity compared with the surrounding thyroid parenchyma),
hypoechoic (hypoechogenicity compared with the surrounding
thyroid parenchyma), or markedly hypoechoic (hypoechogenicity
compared with the strap muscles). Shape was assessed as parallel
or nonparallel (greater in the anteroposterior dimension than the
transverse dimension, taller-than-wide). Margin was assessed as
well-defined, microlobulated, or irregular. Calcifications were clas-
sified as eggshell calcifications, macrocalcifications, microcalcifica-
tions, mixed calcifications, or no calcifications.

Image Analyses
A representative US image of each thyroid nodule was selected by
an experienced radiologist (J.Y.K. with 18 years of experience dedi-
cated to thyroid imaging), and the chosen images were stored as
JPEG images in the PACS. The radiologist (J.Y.K.) drew a square
ROI to cover the targeted thyroid nodule entirely using the
Windows 10 Paint program. The extracted ROIs were analyzed by

FIG 1. Flowchart of the study population. AUS/FLUS indicates atypia of undetermined signifi-
cance/follicular lesion of undetermined significance.
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the deep CNN, and malignancy risk was shown as a percentage
between 0 and 100 for each thyroid nodule (Fig 2). The deep CNN
implementation was based on an algorithm that was trained
(fine-tuned) with 589 thyroid nodule datasets from our institu-
tion.10 Using 3 pretrained CNNs, AlexNet, GoogLeNet, and
InceptionResNetV2, we created thyroid classifiers and collected
the area under the receiver operating characteristic (ROC) curve
(AUC) corresponding to each CNN using Matlab 2019a
(MathWorks). These classifiers and AUCs were then used to pro-
duce the mean of classification scores expressed as posterior proba-
bility in which the AUCs were used as weights. This process yields
more objective results by gathering various opinions and tends to
hold the final result if predictions are the same and follows the
higher score if predictions contradict (see more details in the previ-
ous studies).10,25

One radiologist (G.R.K.) with 7years of experience dedicated to
thyroid imaging arranged the previously recorded US features to
match the US descriptors used in the ACR TI-RADS and summed
up the score of each nodule as follows: TR1 (0–1 point), TR2 (2
points), TR3 (3 points), TR4 (4–6 points), and TR5 ($7 points).21

Regarding the US features of ACR TI-RADS, “predominantly cystic”
nodules were considered to have cystic or almost completely cystic
composition, and “predominantly solid” nodules were considered to
have mixed cystic and solid composition. “Solid” nodules were con-
sidered to have solid or almost completely solid composition. An
echogenicity of “marked hypoechoic” was regarded as “very hypoe-
choic.” “Well-defined”margins were regarded as smooth andmicro-
lobulated, and “irregular” margins were regarded as lobulated or

irregular. “Eggshell calcifications” were
regarded as peripheral (rim) calcifica-
tions. and “mixed calcification” and
“microcalcifications” were regarded as
punctate echogenic.

Data and Statistical Analysis
Benign results on US-FNA or US-CNB
and benign or malignant histopatho-
logic results from an operation and
follow-up US-FNA or US-CNB were
the reference standards for analysis.
On the basis of these results, we calcu-
lated themalignancy risk of the 5 catego-
ries of ACR TI-RADS, respectively. Each
nodule that had its percentage of malig-
nancy risk calculated by the CNN was
re-categorized into 1 of the 5 TR catego-
ries according to the malignancy risk
range suggested for each TR category by
ACR TI-RADS.22,26 Malignancy risk was
also calculated for those TR categories
created from the CNN (CNN-TR).

Variables were compared between
the benign and malignant nodules
using the Mann-Whitney U test and
the x 2 test or the Fisher exact test.
Diagnostic performances including
sensitivity, specificity, accuracy, posi-

tive predictive value, and negative predictive value for predicting
thyroid malignancy were calculated for the CNN and ACR TI-
RADS with 95% confidence intervals. The cutoff value to diag-
nose thyroid malignancy was defined using the Youden index in
the CNN (malignancy risk percentage as a continuous variable)
and ACR TI-RADS (TR category as an ordinal variable).27

Logistic regression using the generalized estimating equation
method was used to test the significance of comparisons with
adjustments for correlated observations of clustered data. The
AUCs of the CNN using a malignancy risk percentage between 0
and 100 and ACR TI-RADS categories using a TR category from
1 to 5 were compared as continuous values using the DeLong
method.28

All statistical analyses were performed with SAS (Version 9.4;
SAS Institute) and SPSS 25.0 for Windows (IBM). Statistical sig-
nificance was defined with P values, .05.

RESULTS
Study Population and Nodule Characteristics
In 760 thyroid nodules, 176 (23.2%) were malignant. Final diag-
noses of the 176 malignant nodules were confirmed through sur-
gical resection (n¼ 142; one hundred thirty-two papillary thyroid
carcinomas, 5 follicular carcinomas, 2 poorly differentiated carci-
nomas, 1 medullary carcinoma, 1 Hurthle cell carcinoma, and 1
squamous cell carcinoma) and US-FNA (n¼ 34; 33 papillary thy-
roid carcinomas and 1 small-cell carcinoma). The median size of
all 176 nodules was 20mm (interquartile range, 14–30mm). The
median age of the 757 patients was 51 years (interquartile range,

FIG 2. Comparison of ROC curves between the CNN (solid line) and ACR TI-RADS categories
(dotted line). The area under the ROC curve of the CNN (0.917; 95% confidence interval, 0.895–
0.936) was higher than that in the ACR TI-RADS categories (0.891; 95% confidence interval, 0.867–
0.912) (P¼ .017). The areas under the ROC curve of the CNN using a malignancy risk percentage
between 0 and 100 and ACR TI-RADS categories using a TR category from 1 to 5 were compared
as continuous values.
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39–61 years). Of the 757 patients, 587 (77.5%) were women and
170 (22.5%) were men.

The US features of the benign and malignant nodules accord-
ing to ACR TI-RADS and their distributions are described in
Table 1. The median size of the benign nodules was 23mm,
which was larger than the that of malignant nodules (median,
14mm; P, . 001). Solid or almost completely solid composition
(161 of 176, 91.5%), hypoechoic or very hypoechoic echogenicity
(153 of 176, 86.9%), taller-than-wide shape (59 of 176, 33.5%),
lobulated or irregular margins (132 of 176, 75.0%), and punctate
echogenic foci (95 of 176, 54.0%) were frequently seen in the ma-
lignant nodules (P, . 001, respectively).

Malignancy Risk According to ACR TI-RADS Category
Table 2 summarizes the malignancy risk of each category in ACR
TI-RADS and CNN-TR that was calculated after nodules were

re-categorized according to the malignancy-risk ranges suggested
by ACR TI-RADS.22,26 The malignancy risk of ACR TR5 was
77.8% (130 of 167), which was much higher than the suggested
malignancy risk of 20%. The malignancy risks of ACR TR1 to
TR4 were within the risk ranges suggested by the ACR.
According to the CNN, 403 thyroid nodules had malignancy risks
higher than 20% and were re-categorized as CNN-TR5. Among
403 nodules, 167 were thyroid cancers (41.4%). Of 760 nodules,
307 nodules that had a 5%–20% range of malignancy risk accord-
ing to the CNN were re-categorized to CNN-TR4 and 9 of these
307 (2.9%) nodules were thyroid cancers.

Comparing the Diagnostic Performances of CNN and ACR
TI-RADS
According to the cutoff value found using the Youden index in
the CNN and ACR TR categories, respectively, thyroid nodules

Table 1: Patient demographics and distribution of ACR TI-RADS features in benign and malignant thyroid nodules (n= 760)a

Characteristics All (n= 760) Benign Nodules (n= 584) Malignant Nodules (n= 176) P Value
Sex .035
Women 587 462 (79.4%) 125 (71.4%)
Men 170 120 (20.6%) 50 (28.6%)

Age (median) (interquartile range) (yr) 51 (39–61) 52 (41–61) 45 (34–60) ,.001
Nodule size (median) (interquartile range) (mm) 20 (14–30) 23 (15–32) 14 (11–20) ,.001
Nodule features
Composition ,.001
Cystic or almost completely cystic 50 47 (8.0%) 3 (1.7%)
Spongiform 1 1 (0.2%) 0
Mixed cystic and solid 234 222 (38.0%) 12 (6.8%)
Solid or almost completely solid 475 314 (53.8%) 161 (91.5%)

Echogenicity ,.001
Anechoic 0 0
Hyperechoic or isoechoic 410 387 (66.3%) 23 (13.1%)
Hypoechoic 329 191 (32.7%) 138 (78.4%)
Very hypoechoic 21 6 (1.0%) 15 (8.5%)

Shape ,.001
Wider-than-tall 671 554 (94.9%) 117 (66.5%)
Taller-than-wide 89 30 (5.1%) 59 (33.5%)

Margin ,.001
Smooth 579 535 (91.6%) 44 (25.0%)
Ill-defined 0 0 0
Lobulated or irregular 181 49 (8.4%) 132 (75.0%)
Extrathyroidal extension 0 0 0

Echogenic foci ,.001
None or large comet-tail artifacts 536 477 (81.7%) 59 (33.5%)
Macrocalcifications 91 69 (11.8%) 22 (12.5%)
Peripheral (rim) calcifications 10 10 (1.7%) 0
Punctate echogenic foci 123 28 (4.8%) 95 (54.0%)

a Data are numbers of nodules, with percentages in parentheses.

Table 2: Calculated malignancy risk of each category according to the risk stratification of ACR TI-RADS

TR1 TR2 TR3 TR4 TR5 Total
Suggested risk of malignancy (%)20,24 #2 #2 2, and#5 5, and#20 .20
ACR TI-RADS category
No. of malignant nodules 0 4 9 33 130 176
Assigned total nodules 41 158 185 209 167 760
Calculated risk of malignancy (%) 0 2.5 4.9 15.8 77.8 23.2

CNNa

No. of malignant nodules 0 0 0 9 167 176
Assigned total nodules 0 5 45 307 403 760
Calculated risk of malignancy (%) 0 0 0 2.9 41.4 23.2

aMalignancy percentages provided by the CNN were re-categorized according to the suggested cancer risk levels of ACR TI-RADS.
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with a malignancy risk of 52.6% or higher in the CNN or nodules
equal to or higher than TR5 according to ACR TI-RADS were
considered malignant. The diagnostic performances of the ACR
TI-RADS and CNN are summarized in Table 3. Sensitivity was
significantly higher with the CNN than with ACR TI-RADS
(81.8% versus 73.9%, P¼ .009). Specificity, accuracy, and positive
predictive values were significantly lower with the CNN than
with ACR TI-RADS (86.1% versus 93.7%, P, .001; 85.1% versus
89.1%, P¼ .003; and 64.0% versus 77.8%, P, .001, respectively).
The negative predictive value was significantly higher with the
CNN than with ACR TI-RADS (94.0% versus 92.2%, P¼ .046).
Figure 2 shows the ROC curves for the diagnosis of thyroid can-
cer with the CNN and ACR TI-RADS. The AUC of the CNN
(0.917; 95% CI, 0.895–0.936) was higher than that of the ACR TI-
RADS categories (0.891; 95% CI, 0.867–0.912) (P¼ .017).

DISCUSSION
Our study demonstrates that the CNN shows diagnostic perform-
ance comparable with that of ACR TI-RADS when experienced
radiologists assigned US descriptors and scored their observa-
tions. The malignancy risk of each ACR TR category in our study
was within the range suggested by ACR TI-RADS. In our study,
the sensitivity (81.8%), specificity (86.1%), and accuracy (85.1%)
of the CNN were within ranges similar to those reported in previ-
ous publications on the deep CNN for the diagnosis of thyroid
cancer.10,11,16,17 At an optimal threshold derived from the
Youden index, our CNN was more sensitive but less specific and
accurate compared with the ACR TI-RADS (sensitivity, 81.8%
versus 73.9%; specificity, 86.1% versus 93.7%; and accuracy,
85.1% versus 89.1%). The AUC was higher in the CNN than in
ACR TI-RADS (0.917 versus 0.891, P= .017).

Past studies have shown different results for the diagnostic
performance of the CNN compared with visual assessment by
radiologists. According to Ko et al,10 the CNN showed favorable
diagnostic performances for predicting thyroid cancer on US,
with sensitivities of 84.0%–91.0%, specificities of 82.0%–90.0%,
accuracies of 86.0%–88.0%, and AUCs of 0.835–0.850, values that
were like those of experienced radiologists. Li et al11 reported
somewhat higher performances for the CNN with AUCs of
0.908–0.947; compared with experienced radiologists, the CNN
showed similar sensitivity (84.3%–93.4%) and significantly higher
specificity (86.1%–87.3%) and accuracy (85.7%–89.8%). Unlike
the favorable performances of the CNN observed in the above-
mentioned studies, the CNN in the study of Kim et al12 had lower
specificity (68.2%) and accuracy (73.4%) compared with radiol-
ogists for the diagnosis of thyroid cancer, even though it achieved

similar sensitivity (81.4%). In our study, the specificity and accu-
racy of the CNN were somewhat higher than those reported in
Kim et al. The different frequencies of punctate echogenic foci
(considered as microcalcifications) in malignant nodules (54.0%
in our study versus 72.1% in Kim et al) might be 1 explanation
because Kim et al suggested the recognition of microcalcifications
as a cause of inaccuracy for the CNN in their study. In addition,
the inferior performance of the CNN in their study was thought
to originate from manual manipulation for segmentation and
human-designed features applied to the computer-aided diagno-
sis system. Moreover, the experience level of the performing op-
erator had an effect on the performance of computer-aided
diagnosis because of the manual manipulation required for com-
puter-aided diagnosis.29

Unlike the traditional machine learning algorithm or the tradi-
tional commercial system that is connected to US machines and al-
ready applied in clinical practice,5,12,29 the recently introduced
deep CNN is not limited to or influenced by human-designed fea-
tures known to represent thyroid cancer on US, though its opera-
tional principles for diagnosing thyroid malignancy are not yet
completely explained by humans. In our study, the radiologist just
drew a square ROI covering the entire targeted nodule without any
human interference with the diagnostic process of the CNN.
Instead of using features engineered by humans, the deep CNN
extracts image information directly from imaging data, and the
CNN might be able to recognize cancer-specific US features that
are not identified explicitly by the naked eye.30

Because US is performed and interpreted by humans, any di-
agnosis of thyroid cancer based on US images is subjective, thus
requiring experience and expertise.3,4 Recent studies have eval-
uated the computer-aided diagnosis of thyroid cancer, which
incorporates texture analysis and machine learning and deep
learning techniques for US images; the authors reported that
computer-aided diagnosis showed comparable and even higher
diagnostic performance compared with radiologists.5,6,11,29 While
artificial intelligence (AI) is not yet considered ready for a clinical
setting,31 computer software is already thought to have several
strong advantages over radiologists because its use can overcome
human variation and provide diagnostic reproducibility and con-
sistency in image interpretation. However, past studies have
shown greatly differing results when the diagnostic performance
of the CNN is compared with human interpretation. This might
be due to the diversity of assessments possible by radiologists as
well as the different algorithms developed by individual research-
ers or corporations. Despite referring to guidelines, radiologists
might eventually reach diagnoses independently on the basis of
their individual expertise and experience.

Table 3: Comparison of diagnostic performance between CNN and ACR TI-RADS

CNN (95% CI) ACR TI-RADS (95% CI) P Value
Sensitivity 81.8% (76.1–87.5) 73.9% (67.4–80.4) .009
Specificity 86.1% (83.3–88.9) 93.7% (91.7–95.6) ,.001
Accuracy 85.1% (82.6–87.7) 89.1% (86.9–91.3) .003
Positive predictive value 64.0% (57.7–70.3) 77.8% (71.6–84.1) ,.001
Negative predictive value 94.0% (92–96) 92.2% (90.1–94.4) .046
AUCa 0.917 (0.895-0.936) 0.891 (0.867-0.912) .017

a The AUCs of the CNN using a malignancy risk percentage between 0 and 100 and ACR TI-RADS categories using a TR category from 1 to 5 were compared as continuous
values.
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On the other hand, we intended to directly compare the per-
formances of our CNN with that of an established guideline,
ACR TI-RADS, which is known to have a high specificity and
positive predictive value without sacrificing sensitivity, and to
further use this knowledge to help radiologists achieve optimal
performances with the ACR TI-RADS.20,21,32,33 We used results
found with prospectively recorded descriptors that were obtained
during real-time evaluations of entire 3D nodules instead of those
collected through a retrospective human review of single US
images. This choice might represent ACR TI-RADS more prop-
erly and objectively than a new individual human review. The
experienced radiologists in the study of Li et al11 showed a less
specific and accurate performance than the CNN; the radiologists
in the study of Li et al showed low specificities of 57.1%–68.6%
and low accuracies of 72.7%–78.8% compared with the previous
studies and our study. Regarding this matter, Li et al replied that
their reviewers were burdened due to the larger subject sample
and subsequent large amounts of image reviews needed.11,34,35

In this study, the malignancy risk of each ACR TR category
was within the theoretic percentage of malignancy risk, which
meant that nodules had been assessed appropriately with ACR
TI-RADS. The ACR TR categories of our study showed enough
specificity and accuracy for diagnosis, fulfilling the original goals
of ACR TI-RADS to decrease biopsies with benign findings and
improve accuracy. On the other hand, radiologists have shown a
wide range in diagnostic performance with ACR TI-RADS
because sensitivity has been reported to be 81.7%–96.7%; specific-
ity, 47.7%–77.3%; and accuracy, 69.3%–84.9%.20,21,32,36 This
inconsistency in performance might be caused by the different
experience levels of the radiologists or by the different cutoff val-
ues of each study. In our study, we were able to conduct a rela-
tively objective validation of ACR TI-RADS by experienced
radiologists using US features and to compare its diagnostic per-
formance with that of the AI diagnosis. The diagnostic perform-
ance of the CNN was comparable with that of ACR TI-RADS
with a somewhat higher AUC for thyroid cancer. Given that a
recent study reported that alteration of ACR TI-RADS by AI led
to improvement in specificity, the adequate modification and
fusion of the settled guidelines and AI, ie, AI–powered US, might
be a potential aid to better diagnostic performance and imple-
mentation of AI.36,37

This study has several limitations. First, US examinations are
performed in real-time. The process of image acquisition such as
capturing 2D-US images and selecting a representative image
from the acquired images is inevitably operator-dependent.
Additionally, there are limits to how much 2D US images can
represent the entire thyroid nodule. AI studies that analyze 3D-
US images might be of more help in the future.37 Second, we
used data prospectively recorded in our institutional data base, in
which US features were described with different terminology
than that suggested by the ACR guidelines. Because information
about “anechoic,” “ill-defined” or “extrathyroidal,” and large
comet-tail artifacts was not collected during the study period, de-
spite being listed in the ACR guidelines, this issue might be a
limitation of our study. However, we did not conduct an inten-
tional retrospective review for this study because we aimed to
investigate ACR TI-RADS itself and not the man-made final

assessments. Third, our institution is a tertiary center, and we
included thyroid nodules that underwent US-FNA or US-CNB
only, which meant that surgical histopathology was unavailable.
Thus, there might be false-negative or false-positive results, even
though the rates would be very low with a false-negative rate
of ,3% and a false-positive rate of about 3%–4%.38 Fourth, the
ROC-derived cutoff value that we used to calculate diagnostic
performance cannot be accepted as a diagnostic standard in real
clinical practice without further validation.

CONCLUSIONS
The CNN provided diagnostic performance comparable with that
of the ACR TI-RADS categories assigned by experienced radiolog-
ists. Before AI can be used to diagnose thyroid cancer, a thorough
evaluation of AI diagnosis compared with pre-existing guidelines is
needed, and our study should be able to present a relatively objective
comparison of diagnostic performances between the ACR TI-RADS
and CNN for thyroid cancer. Adequate modification and fusion of
the ACR TI-RADS and CNN that takes advantage of their unique
characteristics will help optimize overall diagnostic performance.

Disclosures: Jin Young Kwak—RELATED: Grant: National Research Foundation of
Korea grant funded by the Korean government (Ministry of Science and ICT)
(2019R1A2C1002375).

REFERENCES
1. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid

AssociationManagement Guidelines for Adult Patients with Thyroid
Nodules and Differentiated Thyroid Cancer: The American Thy-
roid Association Guidelines Task Force on Thyroid Nodules and
Differentiated Thyroid Cancer. Thyroid 2016;26:1–133 CrossRef
Medline

2. Kwak JY, Han KH, Yoon JH, et al. Thyroid imaging reporting and
data system for US features of nodules: a step in establishing better
stratification of cancer risk. Radiology 2011;260:892–99 CrossRef
Medline

3. Choi SH, Kim EK, Kwak JY, et al. Interobserver and intraobserver
variations in ultrasound assessment of thyroid nodules. Thyroid
2010;20:167–72 CrossRef Medline

4. Park SH, Kim SJ, Kim EK, et al. Interobserver agreement in assessing
the sonographic and elastographic features of malignant thyroid
nodules. AJR Am J Roentgenol 2009;193:W416–23 CrossRef Medline

5. Chang Y, Paul AK, Kim N, et al. Computer-aided diagnosis for clas-
sifying benign versus malignant thyroid nodules based on ultra-
sound images: a comparison with radiologist-based assessments.
Med Phys 2016;43:554 CrossRef Medline

6. Choi YJ, Baek JH, Park HS, et al. A computer-aided diagnosis sys-
tem using artificial intelligence for the diagnosis and characteriza-
tion of thyroid nodules on ultrasound: initial clinical assessment.
Thyroid 2017;27:546–52 CrossRef Medline

7. Acharya UR, Swapna G, Sree SV, et al. A review on ultrasound-based
thyroid cancer tissue characterization and automated classification.
Technol Cancer Res Treat 2014;13:289–301 CrossRef Medline

8. Gopinath B, Shanthi N. Computer-aided diagnosis system for clas-
sifying benign and malignant thyroid nodules in multi-stained
FNAB cytological images. Australas Phys Eng Sci Med 2013;36:219–
30 CrossRef Medline

9. Shin HC, Roth HR, Gao M, et al. Deep convolutional neural net-
works for computer-aided detection: CNN architectures, dataset
characteristics and transfer learning. IEEE Trans Med Imaging
2016;35:1285–98 CrossRef Medline

6 Kim � 2021 www.ajnr.org

http://dx.doi.org/10.1089/thy.2015.0020
https://www.ncbi.nlm.nih.gov/pubmed/26462967
http://dx.doi.org/10.1148/radiol.11110206
https://www.ncbi.nlm.nih.gov/pubmed/21771959
http://dx.doi.org/10.1089/thy.2008.0354
https://www.ncbi.nlm.nih.gov/pubmed/19725777
http://dx.doi.org/10.2214/AJR.09.2541
https://www.ncbi.nlm.nih.gov/pubmed/19843721
http://dx.doi.org/10.1118/1.4939060
https://www.ncbi.nlm.nih.gov/pubmed/26745948
http://dx.doi.org/10.1089/thy.2016.0372
https://www.ncbi.nlm.nih.gov/pubmed/28071987
http://dx.doi.org/10.7785/tcrt.2012.500381
https://www.ncbi.nlm.nih.gov/pubmed/24206204
http://dx.doi.org/10.1007/s13246-013-0199-8
https://www.ncbi.nlm.nih.gov/pubmed/23690210
http://dx.doi.org/10.1109/TMI.2016.2528162
https://www.ncbi.nlm.nih.gov/pubmed/26886976


10. Ko SY, Lee JH, Yoon JH, et al. Deep convolutional neural network
for the diagnosis of thyroid nodules on ultrasound. Head Neck
2019;41:885–91 CrossRef Medline

11. Li X, Zhang S, Zhang Q, et al.Diagnosis of thyroid cancer using deep
convolutional neural network models applied to sonographic
images: a retrospective, multicohort, diagnostic study. Lancet Oncol
2019;20:193–201 CrossRef Medline

12. Kim HL, Ha EJ, Han M. Real-world performance of computer-
aided diagnosis system for thyroid nodules using ultrasonography.
Ultrasound Med Biol 2019;45:2672–78 CrossRef Medline

13. Ma J, Wu F, Zhu J, et al. A pre-trained convolutional neural net-
work based method for thyroid nodule diagnosis. Ultrasonics
2017;73:221–30 CrossRef Medline

14. Ma J, Wu F, Jiang T, et al. Cascade convolutional neural networks
for automatic detection of thyroid nodules in ultrasound images.
Med Phys 2017;44:1678–91 CrossRef Medline

15. Buda M, Wildman-Tobriner B, Hoang JK, et al. Management of thy-
roid nodules seen on US images: deep learning may match perform-
ance of radiologists. Radiology 2019;292:695–701 CrossRef Medline

16. Koh J, Lee E, Han K, et al.Diagnosis of thyroid nodules on ultrasonog-
raphy by a deep convolutional neural network. Sci Rep 2020;10:15245
CrossRef Medline

17. Jin Z, Zhu Y, Zhang S, et al. Ultrasound computer-aided diagnosis
(CAD) based on the thyroid imaging reporting and data system
(TI-RADS) to distinguish benign from malignant thyroid nodules
and the diagnostic performance of radiologists with different diag-
nostic experience.Med Sci Monit 2020;26:e918452 CrossRef Medline

18. Park S, Oh CM, Cho H, et al. Association between screening and
the thyroid cancer “epidemic” in South Korea: evidence from a
nationwide study. BMJ 2016;355:i5745 CrossRef Medline

19. Jegerlehner S, Bulliard JL, Aujesky D, et al. NICER Working Group.
Overdiagnosis and overtreatment of thyroid cancer: a population-
based temporal trend study. PLoS One 2017;12:e0179387 CrossRef
Medline

20. Wu XL, Du JR, Wang H, et al. Comparison and preliminary discus-
sion of the reasons for the differences in diagnostic performance
and unnecessary FNA biopsies between the ACR TIRADS and
2015 ATA guidelines. Endocrine 2019;65:121–31 CrossRef Medline

21. Yoon JH, Lee HS, Kim EK, et al. Pattern-based vs. score-based
guidelines using ultrasound features have different strengths in
risk stratification of thyroid nodules. Eur Radiol 2020;30:3793–3802
CrossRef Medline

22. Tappouni RR, Itri JN, McQueen TS, et al. ACR TI-RADS: pitfalls,
solutions, and future directions. Radiographics 2019;39:2040–52
CrossRef Medline

23. Tessler FN, Middleton WD, Grant EG, et al. ACR thyroid imaging,
reporting and data system (TI-RADS): White Paper of the ACR
TI-RADS Committee. J Am Coll Radiol 2017;14:587–95 CrossRef
Medline

24. Kim EK, Park CS, Chung WY, et al. New sonographic criteria for
recommending fine-needle aspiration biopsy of nonpalpable solid

nodules of the thyroid. AJR Am J Roentgenol 2002;178:687–91
CrossRef Medline

25. Lee E, Ha H, Kim HJ, et al. Differentiation of thyroid nodules on
US using features learned and extracted from various convolu-
tional neural networks. Sci Rep 2019;9:19854 CrossRef Medline

26. MiddletonWD, Teefey SA, Reading CC, et al. Comparison of perform-
ance characteristics of American College of Radiology TI-RADS,
Korean Society of Thyroid Radiology TIRADS, and American
Thyroid Association Guidelines. AJR Am J Roentgenol 2018;210:1148–
54 CrossRef Medline

27. Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32–35
CrossRef Medline

28. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas
under two or more correlated receiver operating characteristic
curves: a nonparametric approach. Biometrics 1988;44:837–45Medline

29. Jeong EY, Kim HL, Ha EJ, et al. Computer-aided diagnosis system
for thyroid nodules on ultrasonography: diagnostic performance
and reproducibility based on the experience level of operators. Eur
Radiol 2019;29:1978–85 CrossRef Medline

30. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–
44 CrossRef Medline

31. Park SH, Han K. Methodologic guide for evaluating clinical per-
formance and effect of artificial intelligence technology for medi-
cal diagnosis and prediction. Radiology 2018;286:800–09 CrossRef
Medline

32. Ruan JL, Yang HY, Liu RB, et al. Fine needle aspiration biopsy indi-
cations for thyroid nodules: compare a point-based risk stratifica-
tion system with a pattern-based risk stratification system. Eur
Radiol 2019;29:4871–78 CrossRef Medline

33. Ha EJ, Na DG, Baek JH, et al. US fine-needle aspiration biopsy for
thyroid malignancy: diagnostic performance of seven society guide-
lines applied to 2000 thyroid nodules. Radiology 2018;287:893–900
CrossRef Medline

34. Ha EJ, Baek JH, Na DG.Deep convolutional neural network models
for the diagnosis of thyroid cancer. Lancet Oncol 2019;20:e130 e130
CrossRef Medline

35. Li X, Zhang S, Zhang Q, et al. Deep convolutional neural network
models for the diagnosis of thyroid cancer: authors’ reply. Lancet
Oncol 2019;20:e131 CrossRef Medline

36. Wildman-Tobriner B, Buda M, Hoang JK, et al.Using artificial intelli-
gence to revise ACR TI-RADS risk stratification of thyroid nodules:
diagnostic accuracy and utility. Radiology 2019;292:112–19 CrossRef
Medline

37. Akkus Z, Cai J, Boonrod A, et al. A survey of deep-learning applica-
tions in ultrasound: artificial intelligence-powered ultrasound for
improving clinical workflow. J Am Coll Radiol 2019;16:1318–28
CrossRef Medline

38. Cibas ES, Ali SZ. The 2017 Bethesda System for reporting thyroid
cytopathology. Thyroid 2017;27:1341–46 CrossRef Medline

AJNR Am J Neuroradiol �:� � 2021 www.ajnr.org 7

http://dx.doi.org/10.1002/hed.25415
https://www.ncbi.nlm.nih.gov/pubmed/30715773
http://dx.doi.org/10.1016/S1470-2045(18)30762-9
https://www.ncbi.nlm.nih.gov/pubmed/30583848
http://dx.doi.org/10.1016/j.ultrasmedbio.2019.05.032
https://www.ncbi.nlm.nih.gov/pubmed/31262524
http://dx.doi.org/10.1016/j.ultras.2016.09.011
https://www.ncbi.nlm.nih.gov/pubmed/27668999
http://dx.doi.org/10.1002/mp.12134
https://www.ncbi.nlm.nih.gov/pubmed/28186630
http://dx.doi.org/10.1148/radiol.2019181343
https://www.ncbi.nlm.nih.gov/pubmed/31287391
http://dx.doi.org/10.1038/s41598-020-72270-6
https://www.ncbi.nlm.nih.gov/pubmed/30583848
http://dx.doi.org/10.12659/MSM.918452
https://www.ncbi.nlm.nih.gov/pubmed/31929498
http://dx.doi.org/10.1136/bmj.i5745
https://www.ncbi.nlm.nih.gov/pubmed/27903497
http://dx.doi.org/10.1371/journal.pone.0179387
https://www.ncbi.nlm.nih.gov/pubmed/28614405
http://dx.doi.org/10.1007/s12020-019-01886-0
https://www.ncbi.nlm.nih.gov/pubmed/30830584
http://dx.doi.org/10.1007/s00330-020-06722-y
https://www.ncbi.nlm.nih.gov/pubmed/32088739
http://dx.doi.org/10.1148/rg.2019190026
https://www.ncbi.nlm.nih.gov/pubmed/31603734
http://dx.doi.org/10.1016/j.jacr.2017.01.046
https://www.ncbi.nlm.nih.gov/pubmed/28372962
http://dx.doi.org/10.2214/ajr.178.3.1780687
https://www.ncbi.nlm.nih.gov/pubmed/11856699
http://dx.doi.org/10.1038/s41598-019-56395-x
https://www.ncbi.nlm.nih.gov/pubmed/31882683
http://dx.doi.org/10.2214/AJR.17.18822
https://www.ncbi.nlm.nih.gov/pubmed/29629797
http://dx.doi.org/10.1002/1097-0142(1950)3:1&hx003C;32::AID-CNCR2820030106&hx003E;3.0.CO;2-3
https://www.ncbi.nlm.nih.gov/pubmed/15405679
https://www.ncbi.nlm.nih.gov/pubmed/3203132
http://dx.doi.org/10.1007/s00330-018-5772-9
https://www.ncbi.nlm.nih.gov/pubmed/30350161
http://dx.doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1148/radiol.2017171920
https://www.ncbi.nlm.nih.gov/pubmed/29309734
http://dx.doi.org/10.1007/s00330-018-5992-z
https://www.ncbi.nlm.nih.gov/pubmed/30715590
http://dx.doi.org/10.1148/radiol.2018171074
https://www.ncbi.nlm.nih.gov/pubmed/29465333
http://dx.doi.org/10.1016/S1470-2045(19)30086-5
https://www.ncbi.nlm.nih.gov/pubmed/30842054
http://dx.doi.org/10.1016/S1470-2045(19)30083-X
https://www.ncbi.nlm.nih.gov/pubmed/30842055
http://dx.doi.org/10.1148/radiol.2019182128
https://www.ncbi.nlm.nih.gov/pubmed/31112088
http://dx.doi.org/10.1016/j.jacr.2019.06.004
https://www.ncbi.nlm.nih.gov/pubmed/31492410
http://dx.doi.org/10.1089/thy.2017.0500
https://www.ncbi.nlm.nih.gov/pubmed/29091573

	Convolutional Neural Network to Stratify the Malignancy Risk of Thyroid Nodules: Diagnostic Performance Compared with the American College of Radiology Thyroid Imaging Rep ...
	MATERIALS AND METHODS
	STUDY POPULATION
	US IMAGE ACQUISITION
	IMAGE ANALYSES
	DATA AND STATISTICAL ANALYSIS
	RESULTS
	STUDY POPULATION AND NODULE CHARACTERISTICS
	MALIGNANCY RISK ACCORDING TO ACR TI-RADS CATEGORY
	COMPARING THE DIAGNOSTIC PERFORMANCES OF CNN AND ACR TI-RADS
	DISCUSSION
	CONCLUSIONS
	REFERENCES


