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ORIGINAL RESEARCH
ADULT BRAIN

MRI-Based Deep-Learning Method for Determining Glioma
MGMT Promoter Methylation Status

C.G.B. Yogananda, B.R. Shah, S.S. Nalawade, G.K. Murugesan, F.F. Yu, M.C. Pinho, B.C. Wagner, B. Mickey,
T.R. Patel, B. Fei, A.J. Madhuranthakam, and J.A. Maldjian

ABSTRACT

BACKGROUND AND PURPOSE: O6-Methylguanine-DNA methyltransferase (MGMT) promoter methylation confers an improved
prognosis and treatment response in gliomas. We developed a deep learning network for determining MGMT promoter methyla-
tion status using T2 weighted Images (T2WI) only.

MATERIALS AND METHODS: Brain MR imaging and corresponding genomic information were obtained for 247 subjects from The
Cancer Imaging Archive and The Cancer Genome Atlas. One hundred sixty-three subjects had a methylated MGMT promoter. A
T2WI-only network (MGMT-net) was developed to determine MGMT promoter methylation status and simultaneous single-label
tumor segmentation. The network was trained using 3D-dense-UNets. Three-fold cross-validation was performed to generalize the
performance of the networks. Dice scores were computed to determine tumor-segmentation accuracy.

RESULTS: The MGMT-net demonstrated a mean cross-validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, [SD,
0.66%]) in predicting MGMT methylation status with a sensitivity and specificity of 96.31% [SD, 0.04%] and 91.66% [SD, 2.06%], respec-
tively, and a mean area under the curve of 0.93 [SD, 0.01]. The whole tumor-segmentation mean Dice score was 0.82 [SD, 0.008].

CONCLUSIONS: We demonstrate high classification accuracy in predicting MGMT promoter methylation status using only T2WI.
Our network surpasses the sensitivity, specificity, and accuracy of histologic and molecular methods. This result represents an im-
portant milestone toward using MR imaging to predict prognosis and treatment response.

ABBREVIATIONS: IDH ¼ isocitrate dehydrogenase; MGMT ¼ O6-methylguanine-DNA methyltransferase; PCR ¼ polymerase chain reaction; T2WI ¼ T2
weighted Images; TCGA ¼ The Cancer Genome Atlas; TCIA ¼ The Cancer Imaging Archive

O6-methylguanine-DNA methyltransferase (MGMT) pro-
moter methylation is a molecular biomarker of gliomas

that has prognostic and therapeutic implications. Unlike isoci-
trate dehydrogenase (IDH) mutations and 1p/19q co-deletions,
MGMT promoter methylation is an epigenetic event. Epigenetic
events are functionally relevant but do not involve a change in
the nucleotide sequence. Therefore, while MGMT promoter
methylation is an important prognostic marker, it does not

define a distinct subset of gliomas. MGMT is a DNA repair
enzyme that protects normal and glioma cells from alkylating
chemotherapeutic agents. The methylation of the MGMT pro-
moter is an example of epigenetic silencing, which results in a
loss of function of the MGMT enzyme and its protective effect
on glioma cells. The survival benefit incurred by MGMT pro-
moter methylation in patients treated with temozolomide
(TMZ) was determined in 2005.1 Subsequent work by Stupp et
al2 has shown that in patients who received both radiation and
temozolomide, MGMT promoter methylation improved me-
dian survival compared with patients with unmethylated glio-
mas (21.7 versus 12.7months).2 Long-term follow-up from that
initial study has further substantiated the survival benefit.2,3 As
a result, determining MGMT promoter methylation status is
an important step in predicting survival and determining
treatment.

Currently, the only reliable way to determineMGMT promoter
methylation status requires analysis of glioma tissue obtained ei-
ther via an invasive brain biopsy or following open surgical resec-
tion. Surgical procedures carry the risk of neurologic injury and
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complications. Therefore, considerable attention has been dedi-
cated to developing noninvasive, image-based diagnostic methods
to determineMGMT promoter methylation status. A meta-analysis
of MR imaging features demonstrated that glioblastomas with
methylated MGMT promoters were associated with less edema,
high ADC, and low perfusion. However, the summary sensitivity
and specificity of these clinical features was only 79% and 78%,
respectively.4 Although multiple radiomic approaches have also
been attempted forMGMT prediction, none, to date, have achieved
accuracies sufficient for clinical viability.5-9 Sasaki et al10 attempted
to establish an MR imaging–based radiomic model for predicting
MGMT promoter status of the tumor, but it reached a predictive
accuracy of only 67%. Wei et al11 extracted radiomic features from
the tumor and peritumoral edema using multisequence, postcon-
trast MR imaging but only achieved an accuracy of 51%–74% in
predicting MGMT promoter methylation status in astrocytomas.
Drabycz et al5 performed texture analysis on MR images to predict
MGMT promoter methylation status in glioblastoma, but it reached
an accuracy of only 71%. Korfiatis et al9 combined texture features
with supervised classification schemes as potential imaging bio-
markers for predicting the MGMT methylation status of glioblas-
toma multiforme, but they achieved a sensitivity and specificity of
only 0.803 and 0.813, respectively. Ahn et al7 used dynamic con-
trast-enhancedMR imaging and diffusion tensor imaging to predict
MGMT promoter methylation in glioblastoma, but this method

achieved a sensitivity and specificity of only 56.3% and 85.2%,
respectively.

Recent advances in deep learning methods have also been
used for noninvasive, image-based molecular profiling. Our
group has previously demonstrated highly accurate, MR imag-
ing–based, voxelwise, deep learning networks for determining
IDH classification and 1p/19q co-deletion status using only
T2WI.12,13 The benefits of using T2WIs are that they are rou-
tinely acquired, they can be obtained quickly, and high quality
T2WI can even be obtained in the setting of motion degradation.
Because MGMT promoter methylation in gliomas is such an im-
portant biomarker, we sought to develop a highly accurate, fully
automated deep learning 3D network for MGMT promoter
determination of methylation status using only T2WI.

MATERIALS AND METHODS
Data and Preprocessing
Multiparametric MR images of patients with brain gliomas were
obtained from The Cancer Imaging Archive (TCIA) data base.14,15

The genomic information was obtained from both The Cancer
Genome Atlas (TCGA) and TCIA data bases.14,16,17 Subject data-
sets were screened for the availability of preoperative MR images,
T2WI, and known MGMT promoter status. The final dataset of
247 subjects included 163 methylated cases and 84 unmethylated
cases. TCGA subject identification, MGMT status, and tumor
grade are listed in Table 1 of the Online Supplemental Data.

Tumor masks for 179 subjects were available through previ-
ous expert segmentation.18-20 Tumor masks for the remaining 68
subjects were generated by our previously trained 3D-IDH net-
work and were reviewed by 2 neuroradiologists for accuracy.20

These tumor masks were used as ground truth for tumor segmen-
tation in the training step. Ground truth whole-tumor masks for
methylated and unmethylated MGMT promoter type were la-
beled with 1’s and 2’s, respectively (Fig 1). Data preprocessing
steps included the following: 1) the Advanced Normalization
Tools software package (http://stnava.github.io/ANTs/) affine
coregistration21 to the SRI24 T2 template,22 2) skull stripping
using the Brain Extraction Tool (BET; http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/BET)23 from FSL,23-26 3) removing radiofrequency
inhomogeneity using N4 Bias Field Correction (https://simpleitk.
readthedocs.io/en/master/link_N4BiasFieldCorrection_docs.html),27

and 4) normalizing intensity to zero-mean and unit variance. The
preprocessing took,5minutes per dataset.

Network Details
Transfer learning for determination of MGMT promoter status
was implemented using our previously trained 3D-IDH net-
work.20 The decoder part of the network was fine-tuned for a
voxelwise dual-class segmentation of the whole tumor, with 1
and 2 representing methylated and unmethylated MGMT pro-
moter types, respectively. The network architecture is shown in
Fig 2B. A detailed schematic of the network is provided in the
Online Supplemental Data.

Network Implementation and Cross-Validation
To generalize the network’s performance, we performed a 3-fold
cross-validation. The dataset of 247 subjects was randomly shuffled

Cross-validation results

Fold Description MGMT-Net
Fold Number % Accuracy AUC Dice score
Fold 1 95.12 0.9574 0.8140
Fold 2 93.98 0.8978 0.8165
Fold 3 95.12 0.9390 0.8291
Average 94.73 0.93 0.82

[SD, 0.66] [SD, 0.03] [SD, 0.008]

Note:—AUC indicates area under the curve.

FIG 1. Ground truth whole-tumor masks. Red voxels represent
methylated MGMT promoter status (values of 1) and blue voxels
represent unmethylated MGMT promoter status (values of 2). The
ground truth labels have the same MGMT promoter status for all
voxels in each tumor.
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and distributed into 3 groups (approximately 82 subjects for each
group). Group 1 had 82 subjects (54 methylated, 28 unmethylated),
group 2 had 83 subjects (55 methylated, 28 unmethylated),
and group 3 had 82 subjects (54 methylated, 28 unmethylated).
The 3 groups alternated among training, in-training validation,
and held-out testing groups so that each fold of the cross-valida-
tion was a new training phase based on a unique combination of
the 3 groups. The network uses the in-training validation dataset
to evaluate its learning after each training round and updates
model parameters to improve performance. However, the network
performance is reported only on the held-out testing group for
each fold because it is never seen by the network. The group mem-
bership for each cross-validation fold is listed in the Online
Supplemental Data.

Seventy-five percent overlapping 3D patches (size: 32 � 32 �
32 voxels) were extracted from the training and in-training vali-
dation dataset. The patch extraction was performed as a transla-
tion in the x-y-z-plane. During training, only patches with at least
1 tumor voxel were included; thus, the number of patches
included per training cases varied depending on the size of the

tumor. For testing however, the entire image was sampled,
including background masked voxels (of value zero). No patch
from the same subject was mixed with the training, in-training
validation, or testing datasets to prevent the problem of data leak-
age.28,29 Data augmentation steps included horizontal and vertical
flipping, random and translational rotation, the addition of salt
and pepper noise, the addition of Gaussian noise, and projective
transformation. Additional data augmentation steps included
down-sampling images by 50% and 25% (reducing the voxel re-
solution to 2 and 4 mm3). The data augmentation provided a
total of approximately 300,000 patches for training and 300,000
patches for in-training validation for each fold. The networks
were implemented using the Tensorflow30 backend engine, the
Keras31 Python package, and an Adaptive Moment Estimation
optimizer (Adam).32 The initial learning rate was set to 10�5 with
a batch size of 15 and maximal epochs of 100 for each fold.

MGMT-net outputs 2 segmentation volumes (V1 and V2),
which are combined to generate the voxelwise prediction of
methylated and unmethylated MGMT promoter tumor voxels,
respectively. The 2 volumes are fused, and the largest connected

FIG 2. A,MGMT-net overview. Voxelwise classification ofMGMT promoter status is performed to create 2 volumes (methylated and unmethy-
latedMGMT promoter). Volumes are combined using Dual Volume Fusion to eliminate false-positives and generate a tumor-segmentation vol-
ume. Majority voting across voxels is used to determine the overallMGMT promoter status. B, Network architecture forMGMT-net. 3D-dense-
UNets are used with 7 dense blocks, 3 transition-down (TD) blocks, and 3 transition-up (TU) blocks. Conv indicates convolution layer.
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component (the 3D-connected component algorithm in Matlab
[MathWorks]) is obtained as the single tumor-segmentation map.
Majority voting over the voxelwise classes of methylated or unmethy-
lated type provided a single MGMT promoter classification for each
subject. Tesla V100s, P100, P40, and K80 NVIDIA-GPUs were used
to implement the networks. This MGMT promoter determination
process is fully automated, and a tumor segmentation map is a natu-
ral output of the voxelwise classification approach.

Statistical Analysis
Statistical analysis of the network’s performance was performed in
Matlab and R statistical and computing software (http://www.r-
project.org/). Network accuracies were evaluated using majority
voting (ie, a voxelwise cutoff of 50%). The accuracy, sensitivity,
specificity, positive predictive value, and negative predictive value
of the model for each fold of the cross-validation procedure were
calculated using this threshold. Receiver operating characteristic
curves for each fold were generated separately. Dice scores were
calculated to evaluate the tumor-segmentation performance of the
networks. The Dice score calculates the spatial overlap between the
ground truth segmentation and the network segmentation.

RESULTS
The network achieved a mean cross-validation testing accuracy of
94.73% across the 3 folds (95.12%, 93.98%, and 95.12% [SD,

0.66%]). Mean cross-validation sensi-
tivity, specificity, positive predictive
value, negative predictive value, and
area under the curve for the MGMT-
net was 96.31% [SD, 0.04%], 91.66%
[SD, 2.06%], 95.74% [SD, 0.95%],
92.76% [SD, 0.15%], and 0.93 [SD,
0.03], respectively. The mean cross-val-
idation Dice score for tumor segmenta-
tion was 0.82 [SD, 0.008] (Table). The
network misclassified 4 cases for fold
one, 5 cases for fold 2, and 4 cases for
fold three (13 total of 247 subjects). Six
subjects were misclassified as unmethy-
lated, and 7, as methylated.

Receiver Operating Characteristic
Analysis
The receiver operating characteristic
curves for each cross-validation fold
for the network are provided in Fig 3.
The network demonstrated very good
performance with high sensitivities
and specificities.

Voxelwise Classification
The network is a voxelwise classifier
with the tumor segmentationmap being
a natural output. Figure 4 shows exam-
ples of the voxelwise classification for
methylated and unmethylated MGMT
promoter types, respectively. The vol-

ume-fusion procedure was effective in removing false-positives and
improving the Dice scores by approximately 6%. We also computed
the voxelwise accuracy for the network. The mean voxelwise accura-
cies were 81.68% [SD, 0.02%] for methylated type and 70.83% [SD,
0.04%] for unmethylated type.

Training and Segmentation Times
Fine-tuning the network took approximately 1 week. The trained
network took approximately 3 minutes to segment the whole tu-
mor and determine theMGMT status for each subject.

DISCUSSION
We developed a fully-automated, highly accurate, deep learning
network for determining the methylation status of theMGMT pro-
moter that outperforms previously reported algorithms.33-35 Our
network is able to determine MGMT promoter methylation status
from T2WI alone. This eliminates potential failures from image-
acquisition artifacts and makes clinical translation straightforward
because T2WI is routinely obtained as part of standard clinical
brain MR imaging. Previous approaches have required multicon-
trast input, which can be compromised due to patient motion
from lengthier examination times and the need for gadolinium
contrast. Obviating the need for intravenous contrast makes our
algorithm applicable to patients with contrast allergies and renal
failure. Compared with previously published algorithms, our

FIG 3. Receiver operating characteristic (ROC) analysis for MGMT-net. Separate curves are plot-
ted for each cross-validation fold along with corresponding area under the curve (AUC) value.
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methodology is fully automated and uses minimal preprocessing.
The time required for theMGMT-net to segment the whole tumor
and predict the MGMT promoter methylation status for 1 subject
is approximately 3minutes on a K80 or P40 NVIDA-GPU.

Other groups have also proposed deep learning methods for
noninvasive, image-based MGMT molecular profiling, but each
of these has several limitations. Korfiatis et al9 implemented a
2D-based slice-wise network, pre-selecting only cases of glioblas-
toma multiforme for training and prediction. While they
achieved a high slice-wise accuracy, their average subject-wise
MGMT prediction accuracy was only 90%. Most important, in
clinical practice, the tumor grade is unknown a priori. Thus, the
approach of Korfiatis et al is a nonviable clinical method from the
outset. Our approach of using a mix of low-grade and high-grade
gliomas is a better approximation of the real-world clinical work-
flow in which tissue is not yet available.

Similar to the work of Korfiatis et al, Chang et al35 also imple-
mented a 2D-network, but instead used a case mix like ours (low-
grade and high-grade gliomas from the TCIA/TCGA). However,
they were only able to achieve an MGMT prediction accuracy of
83% (range, 76%–88%), and their network required tumor pre-
segmentation. Our algorithm far outperformed the approach of
Chang et al on a similar dataset without the need for presegmen-
tation. Additionally, it is unclear whether 2D algorithms of either
Korfiatis et al9 or Chang et al35 addressed the issue of “data leak-
age.”28,29 This is a potentially significant limitation for 2D net-
works that can occur during the slice-wise randomization process
if different slices of the same tumor from the same subject are
mixed among training, validation, and testing datasets. Unless
this is explicitly addressed during the slice-randomization

procedure, the reported accuracies can be upwardly biased. Our
approach outperforms all prior reports on noninvasive determi-
nation ofMGMT status and is the first to achieve tissue-level per-
formance, representing a milestone in the clinical viability of MR
imaging–basedMGMT promoter status prediction.

The higher performance achieved by our network compared
with previous image-based classification studies can be explained
by several factors. The dense connections in our 3D network
architecture are easier to train, carry information from the previ-
ous layers to the following layers, and can reduce over-fitting.36,37

3D networks also interpolate between slices to maintain interslice
information more accurately. The Dual Volume Fusion postpro-
cessing step improved the Dice scores by approximately 6% by
eliminating extraneous voxels not connected to the tumor. Our
approach also uses voxelwise classifiers and provides a classifica-
tion for each voxel in the image. These steps provide simultane-
ous single-label tumor segmentation. The cross-validation single-
label whole-tumor segmentation performance for the MGMT
network provided excellent Dice scores of 0.82 [SD, 0.008].

The ability to determine MGMT promoter methylation status
on the basis of MR images alone is clinically significant because it
helps determine whether the glioma will be susceptible to temo-
zolomide (TMZ). Alkylating agents such as temozolomide dam-
age DNA by methylating the oxygen at position 6 of the guanine
nucleotide (O6-methylguanine). The process by which many
DNA repair enzymes remove O6-methylguanine, results in DNA
breaks, culminating in cell death. However,MGMT works differ-
ently by restoring the normal guanine residue and rescuing the
glioma cell. Therefore,MGMT activity leads to resistance to ther-
apy. Methylation of theMGMT promoter leads to inactivation of

FIG 4. A, An example of voxelwise segmentation for a tumor with a methylatedMGMT promoter: native T2WI (a), ground truth segmentation
(b), and network output after Dual Volume Fusion (c). Red voxels correspond toMGMTmethylated class, and blue voxels correspond toMGMT
unmethylated class. B, An example of voxelwise segmentation for a tumor with an unmethylated MGMT promoter. The sharp borders visible
between methylated and unmethylated types result from the patch-wise classification approach.
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MGMT and loss of resistance of glioma cells to alkylating agents.
The MGMT protein is encoded on the long arm of chromosome
10 at position 26 (10q26). Transcription of the MGMT gene is
regulated by several promoters.29

Although incompletely understood, at least 9 specific regions
within the promoter’s gene determine whether a cell will express
or not express MGMT.29 However, some regions have been
shown to be more important for loss of MGMT expression.38 In
the clinical setting, methods for determiningMGMTmethylation
focus on these regions in the promoter gene. The 4 most preva-
lent methods to detect MGMT methylation are the following:
immunohistochemistry, pyrosequencing, quantitative methyla-
tion-specific polymerase chain reaction (PCR), and methylation-
specific PCR. Pyrosequencing is considered the theoretic
criterion standard but is not readily available, and although it is
quantitative, there is no agreement on what cutoff values to use
when determining MGMT promoter methylation status.30

Therefore, although it is not quantitative, methylation-specific
PCR is the most widely used method.39 Additionally, most cen-
ters perform MGMT methylation detection on formalin-fixed or
paraffin-embedded tissue specimens. These methods have several
limitations. Evaluating multiple different methylation sites is
technically challenging on a single tissue specimen.39 Tumor het-
erogeneity poses a substantial limitation of these methods because
sampling bias can lead to inaccurate determinations. The presence
of hemorrhage, necrosis, or nonmalignant cells contaminates the
specimen.39 Therefore, some institutions mandate that at least 50%
of the sample to be analyzed contains tumor cells. Prior to PCR,
several tissue-processing steps are required. Bisulfite treatment is
the most critical step because it will produce the modified DNA
that will be used for PCR; however, it also degrades the amount of
DNA available, and incomplete treatment can lead to false-positive
results.39 The reported sensitivity and specificity of methylation-
specific PCR is 91% and 75%, respectively, while the reported sen-
sitivity and specificity of pyrosequencing is 78% and 90%.32

Our noninvasive, MR imaging–based deep learning algorithm
outperformed these methods with a sensitivity and specificity of
96.3% and 91.6%, respectively. The overall determination of
MGMT promoter methylation status is based on the majority
voxels in the tumor. Given the variability in the cutoff values for
pyrosequencing-based detection, we performed a Youden statisti-
cal index analysis to determine whether the optimal cutoff for
our deep learning algorithm was different from majority voting
(.50%). The analysis demonstrated that maximum accuracy,
sensitivity, specificity, positive predictive value, and negative pre-
dictive value were obtained at an optimal cutoff of 50%, the same
as majority voting.

Our algorithm was trained on ground truth obtained from the
TCGA data base. TCGA uses the Infinium Methylation Assay
(https://www.illumina.com/science/technology/microarray/
infinium-methylation-assay.html) to determine MGMT pro-
moter methylation status.40–42 Infinium Methylation Assays are
an immunofluorescence method that uses next-generation high-
throughput microchip arrays and probes. While these methods
have been reported to be more sensitive and specific than the
most widely available clinical assays, they require pre-existing
probes to detect specific methylation sites.42 The sensitivity and

specificity values change depending on the probe and analytic
model used to interpret the results.42 The sensitivities for the best
probes range from 87.5% to 90.6%, while the specificity is
94.4%.42 The overall accuracy of these probes with an optimized
analytic model ranges from 91.24% to 93.6%.34 The accuracy of
the commercially available Infinium Methylation Assay with the
best analytic model is 92%.34 Our algorithm outperforms this
assay with a mean cross-validation testing accuracy of 94.73%.
While the algorithm appears to outperform the ground truth,
there are additional factors that need to be considered for this
dataset. The TCGA data base used very stringent tissue screening
before molecular testing, including review of tissue to ensure a
minimum of 80% tumor nuclei and a maximum of 50% necrosis
with additional quality-control measurements of the extracted
DNA and RNA before analyses. Additionally, the MGMT deter-
minations made in the TCGA data base were verified by a sec-
ondary test.43 Thus, the reported accuracy of the Infinium
Methylation Assay is not necessarily comparable with the accu-
racy in TCIA/TCGA datasets. It is also possible that the algorithm
learns features that allow it to perform better than the single-site
tissue-biopsy sample ground truth performance because the algo-
rithm “samples” the entire tumor and learns imaging features
that are specific toMGMTmutation.

Tissue-based methods for determining MGMT promoter
methylation status remain a complex, multistep process that is
susceptible to failure and inaccuracy even after an adequate tissue
sample has been obtained. Thus, the ability to determine MGMT
promoter methylation status on the basis of routine T2WI alone
is highly desirable. Additionally, because our algorithm was
trained and evaluated on the multi-institutional TCIA database,
it is a better representative of algorithm robustness, real-world
performance, and potential clinical use than the previously
reported methods.25

The algorithm misclassified 13 cases: Six subjects were mis-
classified as unmethylated, and 7, as methylated. Despite these
misclassifications, our network achieved a mean cross-validation
testing accuracy of 94.73%, which is higher than that for the
methylation-specific PCR, pyrosequencing (PYR), and Infinium
Methylation Assays.42 While these tissue-based methods require
an invasive procedure and subsequent tissue processing for at
least 48 hours, our deep learning algorithm can segment the
entire glioma and determine MGMT promoter methylation sta-
tus in 3minutes. The deep learning algorithm can also be fine-
tuned to variations in institutional MR imaging scanners, while
other tissue-based methods currently lack standardization as
mentioned above.

The limitations of our study are that deep learning studies
require large amounts of data and the relative number of subjects
with MGMT promoter methylation is small in the TCGA data-
base. While the number of subjects may seem small, we used a
patch-based algorithm with data augmentation, which provided
well over 300,000 samples (patches) for training and validation.
Additionally, acquisition parameters and imaging vendor plat-
forms vary across imaging centers that contribute data, though
this may also be a regarded as a desirable aspect for the generaliz-
ability of the approach. Our current classification approach uses a
largest connected component step to limit false-positives. As a
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consequence, multifocal tumors represent a potential limitation.
Despite these caveats, our algorithm demonstrated high accuracy
in determiningMGMT promoter methylation status approaching
tissue-level performance.

CONCLUSIONS
We demonstrate high accuracy in determiningMGMT promoter
methylation status using only T2WI. This represents an impor-
tant milestone toward using MR imaging to predict glioma histol-
ogy, prognosis, and appropriate treatment.
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