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ORIGINAL RESEARCH
ADULT BRAIN

Evaluation of Artificial Intelligence–Powered Identification
of Large-Vessel Occlusions in a Comprehensive Stroke

Center
A. Yahav-Dovrat, M. Saban, G. Merhav, I. Lankri, E. Abergel, A. Eran, D. Tanne, R.G. Nogueira, and

R. Sivan-Hoffmann

ABSTRACT

BACKGROUND AND PURPOSE: Artificial intelligence algorithms have the potential to become an important diagnostic tool to opti-
mize stroke workflow. Viz LVO is a medical product leveraging a convolutional neural network designed to detect large-vessel
occlusions on CTA scans and notify the treatment team within minutes via a dedicated mobile application. We aimed to evaluate
the detection accuracy of the Viz LVO in real clinical practice at a comprehensive stroke center.

MATERIALS AND METHODS: Viz LVO was installed for this study in a comprehensive stroke center. All consecutive head and neck
CTAs performed from January 2018 to March 2019 were scanned by the algorithm for detection of large-vessel occlusions. The sys-
tem results were compared with the formal reports of senior neuroradiologists used as ground truth for the presence of a large-
vessel occlusion.

RESULTS: A total of 1167 CTAs were included in the study. Of these, 404 were stroke protocols. Seventy-five (6.4%) patients had a
large-vessel occlusion as ground truth; 61 were detected by the system. Sensitivity was 0.81, negative predictive value was 0.99, and
accuracy was 0.94. In the stroke protocol subgroup, 72 (17.8%) of 404 patients had a large-vessel occlusion, with 59 identified by
the system, showing a sensitivity of 0.82, negative predictive value of 0.96, and accuracy of 0.89.

CONCLUSIONS: Our experience evaluating Viz LVO shows that the system has the potential for early identification of patients
with stroke with large-vessel occlusions, hopefully improving future management and stroke care.

ABBREVIATIONS: ICA-T ¼ ICA terminus; ICC ¼ intraclass correlation coefficient; LVO ¼ large-vessel occlusion; PPV ¼ positive predictive value

A cute ischemic stroke caused by large-vessel occlusion (LVO)
contributes disproportionately to stroke-related disability

and death.1,2 It requires emergent detection and treatment ideally
by an endovascular approach. Management has changed dramat-
ically during the past few years, most notably due to the numer-
ous clinical trials published in 2015 that indicated that
endovascular treatment is superior to tPA alone in the treatment
of LVO acute ischemic stroke.3,4 One of the major contributors
to this revolutionary result was the proper selection of eligible
patients.5 As opposed to earlier trials,6,7 patients in recent studies

were selected primarily by CTA scans. These trials demonstrated
the efficacy of mechanical thrombectomy in patients with a lim-
ited ischemic core in the setting of moderate-to-severe clinical
deficits, which designated such patients as ideal candidates for re-
vascularization therapy. The window for treatment was further
extended at the beginning of 2018 to 24hours,8 following 2 trials
that demonstrated the efficacy of endovascular treatment for
selected patients in timeframes of 6–16hours9 and 6–24hours.10

The immediate consequence was an increase in the number of
patients eligible for transfer from primary and secondary hospi-
tals to comprehensive stroke centers for endovascular treatment.
Thus, fast and accurate recognition of pathology on CT scans has
become crucial.

Artificial intelligence algorithms, particularly deep learn-
ing, have demonstrated remarkable progress in image-recog-
nition tasks. Methods ranging from convolutional neural
networks to variational autoencoders have found great appli-
cation in the medical image-analysis field, pushing it forward
at a rapid pace. Deep learning has the potential to revolu-
tionize entire industries, and given the centrality of neuroi-
maging in the diagnosis and treatment of neurologic disease,
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deep learning will likely affect neuroradiologists most
profoundly.11,12

Viz LVO (Viz.ai) is a medical product leveraging a convolu-
tional neural network designed to detect LVOs on CTA scans
and notify a neurointerventional specialist within minutes via a
dedicated mobile application.

Our aim was to evaluate the detection accuracy of the Viz
LVO in real clinical practice at a comprehensive stroke and
trauma center.

MATERIALS AND METHODS
A retrospective study was conducted. Viz LVO was installed at
the Rambam Health Care Campus in January 2018 for this study.
All CTA scans obtained from January 2018 to March 2019 were
scanned by the system, including nonacute ischemic stroke cases.
The scans were analyzed by the Viz LVO Algorithm, Version
4.1.3, a convolutional neural network using deep learning to
detect occlusions from the ICA terminus (ICA-T) to the Sylvian
fissure. Analysis of this area would include all occlusions of the
M1 segment of the MCA and possibly proximal M2 segment
occlusions. Posterior circulation arteries are not assessed by the
system.

The results of the system were compared with the formal
CTA reading documented in the patients’ files. Each CTA read-
ing was performed by a single reader. The readers were 4 senior
neuroradiologists, with 7–25 years of experience. A separate des-
ignated pool of 15 examinations was used for evaluating inter-
rater and intrarater reliability among 4 raters. No variation was
found between the results given for each CTA examination
(intraclass correlation coefficient [ICC]. 0.99).

LVO was considered as either an ICA-T or MCA-M1 occlu-
sion. A second analysis included M2, which was further divided
into proximal and distal occlusions using the curve into the
Sylvian fissure as an anatomic landmark (Fig 1).

Other major pathologies reported in the formal neuroradiolo-
gist read were also documented, including cerebral hemorrhage,
tumors, and intracranial arterial stenosis. Arterial stenosis was
defined as a decrease of more than that in the arterial cross-sec-
tional area calculated by the NASCET formula for ICA or MCA
reported in the formal CTA read.

Examinations with metal artifacts (n ¼ 7) as well as those
with severe motion or incomplete skull scanning (n ¼ 6) were
excluded from the analysis a priori because they are automatically
not analyzed by the algorithm. Such examinations are transferred
to the server and the mobile application by the system, marked as
technically inadequate and classified as negative for LVO. This
process is further explained in the Algorithm Description seg-
ment and illustrated in Figs 2 and 3.

Algorithm Description
The LVO-detection algorithm involves several steps. First, ap-
plicable CTA series are identified by inspecting the DICOM
metadata. Once an applicable series is identified, the next step
is to verify the existence of contrast. The soft matter is
extracted by creating a mask of all bone voxels, based on
Hounsfield unit thresholding, dilation, and connected compo-
nent analysis, and removing the bone mask and all voxels

external to it. Once the soft matter is extracted, it is inspected
for the existence of contrast by counting the total number of
voxels with Hounsfield unit values consistent with iodine con-
trast (100–800 HU). If no contrast is identified, the scan is
flagged as a suspected missed bolus and no further processing
is conducted.

In the selected examinations, 3D registration of the brain is
performed followed by cropping of a 3D cuboid, with dimensions
determined so that the ICA-T, M1, and M2 regions are contained
within the cuboid. The cuboid is inspected for the presence of
metal by looking for voxels with Hounsfield unit values of
.3000. If such voxels are identified, the scan is flagged as sus-
pected of containing metallic artifacts and no further processing
is conducted. Scans that were not processed due to bad bolus tim-
ing or metal artifacts are still available for viewing but are marked
by a red frame to notify the user that the algorithm rejected the
series. Examples are given in Fig 2, and an illustration of the pro-
cess is provided in Fig 3.

The 3D cuboid is fed through a 3D segmentation convolu-
tional neural network inspired by the U-Net architecture.13 The
output of the network is a 3D cuboid of the same dimension as
the input, whereby each voxel is assigned a number between 0
and 1 by the network, describing the probability (as estimated by
the network) that this voxel is part of the ICA-T or M1 segments.
The network was trained on hundreds of manual segmentations
of the ICA-T and M1 regions.

Next, the lengths of the left and right segmentations are com-
pared. This step is to identify cases in which due to an ICA occlu-
sion and no retrograde filling, the ICA-T and M1 segments are
not visible in the scan. If one of the sides is significantly shorter
than the other, an LVO is detected and the system triggers an
alert.

FIG 1. Division of the M2 segment of the MCA into proximal and dis-
tal segments at the curve of the artery into the Sylvian fissure
(marked bilaterally by the dashed lines).
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If, however, sizable segmentations are available on both sides,
these segmentations are extended using another segmentation
convolutional neural network of similar architecture that was
trained to segment all vessels (not just ICA-T and M1 vessels).
The combination of the outputs of both networks is refined to
generate the MCA vessel tree. Following this step, end points of
the MCA vessels are identified. If the total distance between the
ICA-T and the end point is below a predefined threshold, an
LVO is detected and the system triggers an alert. The threshold
was determined on the basis of the receiver operating characteris-
tic curve to yield approximately equal sensitivity and specificity
on the suspected-stroke population and corresponds, roughly, to
the beginning of the Sylvian fissure. The process is visualized in
Fig 4.

If no end point on either side is shorter than the threshold,
the algorithm looks for partial occlusions. This is done by
computing the centerline of the segmentation and inspecting
the average Hounsfield unit value in the vicinity of the center-
line. The algorithm is looking for a pattern of a drop in
Hounsfield units, followed by an increase (Fig 5). If such a
case is identified, an LVO is detected and the system triggers
an alert.

Examples of system identification of both partial and com-
plete occlusions and the matching images sent to the end user by
the application during an alert are provided in Fig 6.

Statistical Analysis
Statistical analyses were performed using descriptive data analy-
sis, including ranges, means, medians, SDs, and interquartile
ranges for continuous variables and frequencies and percentages
for categoric variables.

FIG 2. Alerts as they appear on the user end of the mobile application, showing the overview screen of examinations with (A) and without (B) a
suspected LVO. An overview screen of failed processing is shown in C, in this case, due to metallic artifacts.

FIG 3. Flow diagram delineating the various steps of the algorithm.
App indicates mobile application.
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Interrater reliability between system results and the formal
read was quantified using an ICC model, namely 2-way random
effects, absolute agreement, and single measurement. This model
was selected because all ratings were performed by a different set

of raters,14 a scenario that would be
expected in routine clinical settings.
Thus, this model can be considered
a realistic estimate of reliability for
this scenario. The interrater ICCs
were calculated between the model
predictions and senior radiologist
reports.

Measures of system performance
were examined using sensitivity, speci-
ficity, positive predictive value (PPV),
negative predictive value, and total
accuracy.

In addition, logistic regression
models were performed to predict
the effect of each factor category—
age, sex, and identification of
LVO by the Viz LVO system—on
LVO detection. ORs and 95% CIs
were estimated for each predictor.

To test the additive value of each
factor, we entered the variables into receiver operating character-
istic (area under the curve) curves one at a time: patient charac-
teristics (age, sex) followed by Viz LVO results. When a logistic
regression is fit, receiver operating characteristic curves are

FIG 5. Algorithm processing of a partial occlusion. The cropped scan on the left visualizes a left
M1 partial occlusion. The segmentation (on the right) extends through the partial occlusion.
However, the average Hounsfield unit value decreases and then increases and a notification is
triggered, even though the length of the segmentation exceeds the threshold.

FIG 4. Overview of the algorithm steps. A, Identification of an applicable scan based on metadata. B, Cropping the head region. Registration (C)
and segmentation (D) of ICA-T/M1 regions. E, Additional segmentation of all vessels. Refinement of the segmentations to include only the MCA
branches (F) and detection of suspected LVO based on vessel length (G).
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routinely used to summarize the model fit and to determine the
best cutoff value for predicting whether a new observation is a
failure (0) or a success (1).

The receiver operating characteristic curve is the sensitiv-
ity or recall as a function of fall-out. Overall, if the probability
distributions for both detection and false-positives are known,
the curve can be generated by plotting the cumulative distri-
bution function (area under the probability distribution from
infinity to the discrimination threshold) of the detection
probability in the y-axis versus the cumulative distribution
function of the false-positive probability on the x-axis. Ideal
prediction produces an area under the curve of 1.00; area
under the curve values of 0.70 and higher would be considered
strong effects.15

The level of significance for all statistical analyses was 5%. We
analyzed the data using the SPSS, Version 25.0 (IBM). This study
was approved by the local Helsinki committee at Rambam Health
Care Campus (IRB 0417–17).

RESULTS
A total of 1180 CTAs were scanned by the system and sent to
the server and the mobile application during the study period.
Thirteen cases had been flagged by the system as technically
inadequate and were excluded a priori because they were not

analyzed by the algorithm. Of the 1167 cases included in the
study, 404 were stroke protocols, with others performed due
to trauma, suspected stenosis, and other miscellaneous rea-
sons (Table 1).

The interrater ICC for all cases was 0.83 (95% CI, 0.725–
0.867). For stroke protocol only, the ICC was higher (0.86; 95%
CI, 0.837–0.892). Of 1167 patients, 75 had an LVO as per a senior
neuroradiologist’s formal read, representing 6.4% of the cases.

Table 1: Descriptive statistics of the study samplea

Patients (n = 1167)
Age (mean) [SD] 62.2 19.6
Male 689 59
Stenosis (50%.) 66 5.7

Extracranial ICA 43 3.7
Intracranial 23 2.0

Stroke protocol 404 34.6
Hemorrhage 80 6.8
Tumor 12 1.0
LVO 75 6.4
LVO location (n ¼ 75)

Carotid terminus 28 37.3
M1 47 62.6

Distal occlusion (non-LVO) (n ¼ 44)
Proximal M2 21 47.7
Distal M2–3 23 52.3

a Data are number and percentage unless otherwise indicated.

FIG 6. System identification illustration demonstrates stenosis of the M1 segment of the left MCA (A), occlusion of the M1 segment of the left
MCA (C), and occlusion of the proximal M2 segment of the right MCA (E), as they appear as preliminary convolutional neural network outcomes
(green boxes represent original annotations by the Viz LVO system during identification). The images on the lower row (B, D, and F, respectively)
match processed images sent by the system via the application and received by the viewer during an alert.
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Sixty-one of these cases were detected by the system, leaving 14
cases of false-negative results.

The system alerted a possible LVO in 117 examinations, 56 of
which did not show occlusion of the ICA-T or MCAM1, defined

in our study as an LVO. Nevertheless, in 12 of these false-positive
cases an occlusion of a more distal part of the MCA (M2 or M3)
was detected. Additionally, 25 more of the false-positive alerts
had different major pathologies, such as hemorrhage, tumors, or
intracranial stenosis, defined as a decrease of,50% in the arterial
cross-sectional area (Table 2).

Measures of system performance for the entire group were a
sensitivity of 0.81 (95% CI, 0.74–0.91), negative predictive value
of 0.99 (95% CI, 0.98–0.99), PPV of 0.65 (95% CI, 0.55–0.74), and
accuracy of 0.94 (95% CI, 0.92–0.96).

Logistic regression analysis adjusted for age and sex showed
that Viz LVO strongly predicts LVO (OR¼ 51.75; 95% CI,
28.84–92.84) (Table 3). Further receiver operating characteristic
analysis demonstrated an area under the curve of 0.91 (Fig 7).

In the stroke protocol subgroup, 72 (17.8%) of 404 patients
had an LVO acute ischemic stroke. Of the 72 cases, 59 LVOs
were identified by the system. Thirteen false-negative cases were
encountered. Sensitivity was 0.82 (95% CI, 0.71–0.89); PPV, 0.64
(95% CI, 0.53–0.73); negative predictive value, 0.96 (95% CI,
0.93–0.98); and accuracy, 0.89 (95% CI, 0.86–0.94). Measures of
system performance are summarized in Table 4.

Three non-stroke protocol cases were found to have LVOs
and were detected by the system: An elderly lady brought in as

FIG 7. Prediction of LVO logistic regression (adjusted for age and sex). The area under the curve is shown to be 0.91. ROC indicates receiver
operating characteristic.

Table 3: Prediction of LVO by the Viz LVO system—logistic
regression (adjusted for age and sex)

Variable OR SE Sig
95% CI

Lower Upper
Suspected LVO 51.75 0.298 .000 28.84 92.84
Age 1.030 0.009 .001 1.013 1.048
Sex 1.474 0.295 .188 0.828 2.626

Note:—SE indicates standard error; Sig, significance.

Table 2: Pathologies detected in false-positive cases
Pathology No. %

Stenosis (.50%) 9 16.1
Distal occlusions 12 21.4

Proximal M2 8 14.3
Distal M2/M3 4 7.14

Hemorrhage 12 21.4
Tumor 4 7.14
No revealed pathology 19 33.9
Overall 56 100
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a trauma patient due to an automobile collision, a 41-year-old
patient referred from another hospital with a suspect mass
found to be an infarct, and a man suspected of having carotid
artery stenosis, who was found to have complete occlusion of
the ICA-T. In all cases, the system alerted the team by identi-
fying an LVO.

DISCUSSION
Computer-aided detection and diagnosis performed using
machine learning algorithms can be an important tool in helping
physicians interpret medical imaging findings and reducing inter-
pretation times.16 Imaging analysis has been shown to be the
main artificial intelligence medical flagship, with especially
promising results in the field of neuroradiology.11 This pairs well
with stroke care, in which both timeliness and precision are
needed.17,18 Various artificial intelligence–based systems have
been developed for emergent detection of acute ischemic stroke,
with Viz LVO being the first to include automatic direct LVO
detection from CTA data.19 Evaluation of the accuracy and sensi-
tivity of the system on a large patient population is imperative for
future implementation into common clinical practice. In
Rambam Health Care Center, about 150 cases of endovascular
treatment for acute ischemic stroke are performed annually,
allowing rapid evaluation of the system on a sizeable cohort.

In this retrospective single-center study, we found the Viz
LVO detection system to be highly accurate. Similar results
were previously reported by Chatterjee et al20 in a study per-
formed using an older version of the software (Viz.ai-
Algorithm, Version 4.1.2) exclusively on patients with stroke.
A recent study by Barreira et al21 showed a sensitivity of 0.90
and accuracy of 0.86 using the Viz.ai Algorithm, Version
4.1.3. Both studies focused on stroke-activation protocols and,
therefore, showed high rates of LVOs, 30% of the cohort in
the former and 49% in the latter, in contrast to our results of
18% for the stroke protocols and 7% for the entire cohort,
regardless of the scan indication.

The system encountered 56 false-positive results, 37 (66%)
of which had major pathologies and 19 that had no identified
pathology. The high prevalence of pathologic examinations
being accidentally flagged as LVOs is related to tissue distor-
tion, resulting in vessels being pushed and changing their
course. These results, including identification of 12 M2/3
occlusion cases and 9 cases of stenosis, are difficult to inter-
pret because the inner working of deep learning systems is not
completely understood. Future improvements to the algo-
rithms are needed to enable higher accuracy of subtler pathol-
ogies on the one hand and exclusion of nonrelevant ones on
the other.

The main advantage of using artificial intelligence software in
medical analysis is that it can accelerate decision-making, a fea-
ture that is especially valuable in situations that demand quick
action as in LVO stroke. The system showed suboptimal sensitiv-
ity, which prevents it from being used as a diagnostic tool to date.
The PPV in our cohort was 0.65. A high PPV is essential to avoid
an unacceptable burden on the application end-users due to mul-
tiple false-positive alerts.

The main advantage of the system in the clinical setting of
acute stroke at this point relies on its ability to accelerate deci-
sion-making in cases positive for LVO stroke. This may show
great significance in environments in which interventional neu-
roradiology consultants are less accessible, such as in prehospital
advanced imaging used in mobile stroke units, which is a fast-
evolving field,22 and in primary care centers.

The study was conducted in the setting of routine clinical
practice, unlike previous studies. The patients were not prese-
lected, and the neuroradiologists involved were not notified of
the evaluation performed. This feature allowed analysis and
assessment of the performance of the system for everyday
patients in the emergency department. It accounts for the low
rate of LVO acute ischemic stroke in our patient population
and the lower PPV found compared with previous publica-
tions in stroke-only series. Because the system is being in-
stalled currently in multiple medical centers, some without
dedicated stroke protocols, it could provide a better reflection
of the real impact of the system on the diagnostic and thera-
peutic flow of patients.

The system uncovered 3 LVOs in patients with a non-
stroke protocol that could have been easily missed due to low
clinical suspicion. Such alerts could accelerate proper care in
this scenario.

This study has several limitations. First, it is not an interven-
tional study. The system was assessed without changing the treat-
ment provided to patients in real-time, due to ethical limitations,
thus preventing concrete discussion of improved time and cost
with use of the system. Further research is already planned.

Furthermore, the criterion standard for LVO detection
relied on a single neuroradiologist read per examination.
Although the ICC showed no variation among readers, such
evaluation is still subject to mistakes. Data were collected by ra-
diology residents and assessed for possible discrepancies in fol-
low-up examinations and the general clinical course of the
patient to minimize such errors. In any case of inconsistency,
examinations were marked and reread by a second senior
neuroradiologist.

Another point is the exclusion of 13 examinations
rejected by the system as technically inadequate, as described
above. These examinations were not included in the study

Table 4: Prediction of LVO by the Viz LVO system
System LVO Detection Sensitivity 95% CI Specificity 95% CI NPV 95% CI PPV 95% CI Accuracy 95% CI

Entire cohort (n ¼ 1167) 0.81 0.74–0.91 0.96 0.95–0.97 0.99 0.98–0.99 0.65 0.55–0.74 0.94 0.92–0.96
Stroke protocol subgroup
(n ¼ 404)

0.82 0.71–0.89 0.90 0.86–0.93 0.96 0.93–0.98 0.64 0.53–0.73 0.89 0.86–0.94

Note:—NPV indicates negative predictive value.
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because they were not processed by the algorithm for LVO
detection.

This study was conducted in a single comprehensive stroke
center. One of the most fundamental future applications of the
system is in improving notification, assessment, and treatment
times for patients arriving at primary stroke centers. Thus, the
next step in the evaluation of the system will need to be a multi-
center study, comparing treatment timelines.

CONCLUSIONS
Our experience evaluating Viz LVO shows that the system has
real potential for early, accurate identification of patients with
stroke, hopefully improving workflow and patient care.
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