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White Matter Injury and Structural Anomalies in Infants with
Prenatal Opioid Exposue

S.L. Merhar, N.A. Parikh, A. Braimah, B.B. Poindexter, J. Tkach, and B. Kline-Fath

ABSTRACT

SUMMARY: Previous studies have not found structural injury or brain malformations in infants and children with prenatal opioid ex-
posure. As part of an ongoing study evaluating neuroimaging in infants with prenatal opioid exposure, we reviewed structural brain
MR imaging in 20 term infants with prenatal opioid exposure and 20 term controls at 4–8weeks of age. We found that 8 of the
20 opioid-exposed infants had punctate white matter lesions or white matter signal abnormality on structural MR imaging, and 2
of the opioid-exposed infants had a septopreoptic fusion anomaly. No controls had white matter injury or structural malforma-
tions. Our findings underscore the importance of clinical neurodevelopmental follow-up and the need for more comprehensive
imaging and long-term outcomes research following prenatal opioid exposure.

Due to the ongoing opioid epidemic,.40,000 infants are now
born exposed to opioids each year in the United States. The

few previous studies evaluating structural neuroimaging in
infants with prenatal opioid exposure have found no increase in
the incidence of macrostructural injury or malformations.1,2

More recent studies have shown decreased head circumference,3

decreased brain volumes,4,5 and altered white matter microstruc-
ture6 in infants with prenatal opioid exposure compared with
controls. Prior studies may have been confounded by coexpo-
sures because most opioid-exposed infants are also exposed to
tobacco in utero,7 and a large proportion are also exposed to hep-
atitis C.8 Prenatal tobacco exposure is also associated with
decreased head circumference9 and brain volumes.10-12 There are
no reports of neuroimaging after prenatal hepatitis C exposure in
infants or children, but adults with active hepatitis C infection are
known to have white matter changes.13 As part of a larger pro-
spective study, we acquired structural brain MRIs in infants with
prenatal opioid exposure and controls. Here we report our find-
ings of white matter injury and congenital structural malforma-
tions in infants with prenatal opioid exposure, all of whom also

had tobacco exposure and all of whom except one had hepatitis C
exposure.

MATERIALS AND METHODS
As part of an ongoing prospective cohort study on functional
brain connectivity in infants with opioid exposure, we acquired
structural MR imaging in 4- to 8-week-old infants with con-
firmed prenatal opioid exposure and unexposed healthy term
controls. Inclusion criteria for the opioid-exposed group included
infants $37weeks’ gestation with known exposure to maternal
buprenorphine or methadone during pregnancy and no known
prenatal alcohol exposure. Inclusion criteria for controls were
infants of $37weeks’ gestation with no opioid, alcohol, or illicit
drug exposure during pregnancy confirmed by maternal urine
toxicology screen and maternal history. Exclusion criteria for
both groups included a 5-minute Apgar score of ,7, any need
for positive pressure ventilation at any time after birth, head
trauma, and known chromosomal or congenital anomalies
potentially affecting the central nervous system. Opioid-exposed
infants were recruited from surrounding birth hospitals and the
Cincinnati Children’s opioid-exposed follow-up clinic. Controls
were recruited from surrounding birth hospitals, flyers in sur-
rounding pediatric offices, and e-mails sent to all hospital
employees.

The study was approved by the Cincinnati Children’s Hospital
Medical Center Institutional Review Board, and written informed
consent was obtained from parents/guardians. Images were
acquired on a 3T Ingenia scanner (Philips Healthcare, Best, the
Netherlands) with a 32-channel head coil during natural sleep
using the feed-and-swaddle method. MR imaging included a
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sagittal 3D T1-weighted gradient-echo sequence (voxel size 4
1 � 1 � 1mm; scan time 3 minutes 6 seconds), an axial T2-
weighted fast spin-echo sequence (voxel size 4 1 �1.11 �
1mm; scan time 3 minutes 19 seconds), an axial 6-direction
single-shot echo-planar DWI sequence (b-value 4 800; voxel
size 4 2 � 2 � 2mm; scan time 4 1:47 minutes), and an axial
3D-SWI sequence (voxel size 4 0.6 �0.6 � 2mm; scan time 4
minutes 3 seconds).

We reviewed electronic medical records from the infant’s
birth hospitalization for information including gestational age,

birth weight/length/head circumfer-
ence, sex, Apgar scores, results of
maternal urine toxicology screen
(done universally at the time of deliv-
ery at our surrounding birth hospitals),
maternal medications and medical
problems during pregnancy, maternal
hepatitis C status, and length of hos-
pital stay. Additional information
reviewed for infants with opioid expo-
sure included the results of neonate
toxicology screen, the need for and
type of treatment for neonatal absti-
nence syndrome, and the length of
opioid treatment for neonatal absti-
nence syndrome, if necessary. At the
time of the MR imaging visit, mothers
filled out a questionnaire with self-
reported information about their use
of prescription medications, illicit
drugs, alcohol, and tobacco during
pregnancy.

MR images were reviewed by a sin-
gle pediatric neuroradiologist blinded
to clinical history. Initially a clinical
read was reported to rule out structural
injury, and then MRIs were scored in
detail using a scoring system based on
Kidokoro et al,14 which included white
matter abnormalities (cystic white
matter lesions, focal signal abnormal-
ity, corpus callosum thinning, dilated
lateral ventricles), cortical gray matter
abnormalities, and deep gray matter
and cerebellar abnormalities. The MR
imaging scores were based on all 4
sequences (T1, T2, DWI, and SWI).

RESULTS
We included 40 infants, 20 with pre-
natal opioid exposure and 20 controls.
Eight of the 20 infants (40%) with pre-
natal opioid exposure had punctate
foci of white matter injury or more
diffuse white matter injury seen on the
initial clinical read by the radiologist.
Two of the opioid-exposed infants

were also incidentally found to have septopreoptic fusion, a very
mild form of holoprosencephaly. One of these 2 infants also had
punctate white matter lesions. An example of the punctate white
matter injury is shown in Fig 1. An example of the diffuse white
matter injury is shown in Fig 2. No white matter injury or con-
genital structural malformations were observed in any of the con-
trol infants. One control infant had mildly enlarged extra-axial
fluid spaces, one had a borderline small cerebellar vermis, and
one had germinolytic cysts at the caudothalamic grooves bilater-
ally. One infant in each group (opioid-exposed and controls) had

FIG 1. Example of punctate white matter injury seen in an infant with prenatal opioid exposure.
Arrows show punctate white matter lesions. Upper row, T1-weighted images. Lower row, T2-
weighted images.

FIG 2. Example of diffuse white matter injury in infants with prenatal opioid exposure. Solid
arrows denote abnormal T1 and T2 prolongation (which is bilateral but only denoted on the
right). Dotted arrow demonstrates an example of perivascular space enlargement. Left, T1-
weighted image. Right, T2-weighted image.
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a small cerebellar germinal matrix hemorrhage. No other
infants in either group had cortical gray matter, deep gray mat-
ter, or cerebellar abnormalities. Demographics and exposures
for the 3 groups (prenatal opioid exposure with WM injury,
prenatal opioid exposure without WM injury, and unexposed
controls) are shown in the Table. As shown in the Table, all 8
infants with white matter injury also had tobacco exposure
and 7 of the 8 also had hepatitis C exposure. No infant in any
group was exposed to alcohol prenatally per parental report.

DISCUSSION
White matter injury is described most commonly in infants born
preterm, but it can also occur in full-term infants who sustain in
utero insults during a susceptible period of white matter develop-
ment.15 Both diffuse and punctate white matter lesions are
thought to be related to the selective vulnerability of preoligoden-
drocytes.15 Punctate white matter lesions are small patches of
increased signal intensity seen on T1-weighted imaging corre-
sponding to areas of either small necroses, glial scars, or microhe-
morrhage.16 Punctate white matter lesions have also been
reported in term and late-preterm infants with congenital heart
disease, hypoxic-ischemic encephalopathy, and genetic disorders,
and following neonatal surgery.17 In term infants with congenital
heart disease, punctate white matter lesions are thought to be due
to abnormal brain maturation due to disrupted blood flow and
hypoxia from the cardiac lesion,18 leading to a delay in the matu-
ration of preoligodendrocytes.19 Neurodevelopmental sequelae of
punctate white matter lesions are variable, with some preterm
infants with small isolated lesions (as in our cohort) reported as
healthy, while others with more extensive lesion burden display-
ing motor and cognitive delays.20,21 Diffuse non-necrotic white
matter injury is also commonly seen in preterm infants and also
reflects disruption of the normal maturation of preoligodendro-
cytes.15,16,22 Outcomes after this diffuse mild injury are also vari-
able. Studies that used qualitative diagnosis of diffuse signal
abnormalities report normal developmental outcomes,23-25 while
studies that quantify it objectively or follow children with exten-
sive hyperintensity report later cognitive and language delays.26,27

In our cohort of infants with prenatal opioid exposure, the eti-
ology of the white matter injury is unclear. All 8 mothers were on
medication-assisted therapy (in methadone treatment programs

and 4 in buprenorphine treatment
programs) throughout pregnancy, and
3 mothers had used street drugs early
in pregnancy per maternal report and
review of maternal urine toxicology.
All of the mothers smoked during this
pregnancy, and all except 1 of the
mothers were positive for hepatitis
C. WM injury has not been previ-
ously re-ported in the literature in
association with prenatal opioid,
tobacco, or hepatitis C exposure.

Two of the infants with prenatal
opioid exposure were also incidentally
found to have a septopreoptic fusion
anomaly. This anomaly has been

described in a single case series in the literature as the mildest
form of holoprosencephaly, in which the septal and preoptic
regions are fused and the rest of the brain undergoes normal
cleavage.28 Cleavage of the prosencephalon normally occurs
between days 18 and 28 of gestation.29 Holoprosencephaly has
been associated with various genes and also environmental fac-
tors such as maternal diabetes, maternal alcohol use, and mater-
nal infections.30 One of the 2 infants with this malformation had
a mother with “borderline gestational diabetes” during her preg-
nancy, but the other had no record of diabetes in the maternal or
infant chart. We could not find any literature describing an asso-
ciation between prenatal opioid exposure and holoprosencephaly
in animal models. This finding in 2 of our 20 patients could very
well be coincidental because there are no other reported cases of
this association in either the human or animal literature.

The few studies evaluating structural brain MR imaging in
infants with prenatal opioid exposure have concluded that
there is no increase in macrostructural injury compared with
controls.1,2 One of these studies used a 1.5T MR imaging scan-
ner with thicker slices (4mm), which could explain the lack of
findings,2 but the other used a 3T scanner with 1-mm slices,1

similar to our protocol. Studies using more advanced MR
imaging techniques have documented smaller brain vol-
umes,4,5,31,32 altered white matter microstructure,6,33,34 and
decreased cortical surface area and thickness5 in opioid-
exposed infants and children compared with controls. None of
these studies controlled for maternal smoking, and many
included mothers with polysubstance use during pregnancy.
However, animal studies have consistently shown the effects of
prenatal methadone and buprenorphine on neurotransmitter
biosynthesis,35,36 neurogenesis,37 and white matter develop-
ment,38,39 providing evidence that opioids themselves likely
affect brain development.

Overt brain injury has not been reported in infants exposed to
tobacco during pregnancy. However, studies have shown an asso-
ciation between prenatal tobacco exposure and smaller brain vol-
umes10 and decreased cortical thickness.10,12,40 There is no
information in the literature about perinatal hepatitis C exposure
and the developing brain, especially in the large majority of
infants who are exposed to the virus but do not acquire the infec-
tion. However, hepatitis C is known to invade the central nervous

Characteristics of prenatal opioid-exposed and healthy term control study cohorts

WMI (n4 8) No WMI (n4 12) Control (n4 20)
Gestational age at birth (weeks)a 38.9 (0.74) 38.9 (0.93) 39.0 (0.80)
Day of life at scana 40.6 (9.5) 43.0 (8.5) 39.3 (6.1)
Birth weight (g)a 3172 (302) 2982 (321) 3201 (460)
Birth head circumference (cm)a 34.4 (1.2) 33.9 (1.4) 34.0 (1.5)
Mom methadoneb 4 (50%) 4 (33%) 0 (0%)
Mom buprenorphineb 4 (50%) 8 (67%) 0 (0%)
Mom street drugsb 3 (38%) 3 (25%) 0 (0%)
Mom alcoholb 0 (0%) 0 (0%) 0 (0%)
Mom smokingb 8 (100%) 11 (92%) 0 (0%)
Mom hepatitis Cb 7 (88%) 9 (75%) 0 (0%)
Baby treated for NASb 5 (63%) 7 (58%) 0 (0%)

Note:—NAS indicates neonatal abstinence syndrome; WMI, WM injury; Mom, mother.
a Values are mean (SD).
b Values are No. (%).
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system and lead to neurotoxicity, including altered white matter
integrity in adults.13

CONCLUSIONS
We found that 8 of 20 infants with prenatal opioid exposure, all
of whom also had coexposure to tobacco and all except 1 who
had exposure to hepatitis C, had mild white matter injury seen on
structural MR imaging at 4–8weeks of age, and 2 of the 20
opioid-exposed infants had a septopreoptic fusion anomaly. Our
study was limited by small sample size, and further studies must
explore these associations in a much larger population.
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