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ABSTRACT

BACKGROUND AND PURPOSE: Attempts have been made to associate intracranial aneurysmal hemodynamics with aneurysm growth
and rupture status. Hemodynamics in aneurysms is traditionally determined with computational fluid dynamics by using generalized inflow
boundary conditions in a parent artery. Recently, patient-specific inflow boundary conditions are being implemented more frequently.
Our purpose was to compare intracranial aneurysm hemodynamics based on generalized versus patient-specific inflow boundary
conditions.

MATERIALS AND METHODS: For 36 patients, geometric models of aneurysms were determined by using 3D rotational angiography. 2D
phase-contrast MR imaging velocity measurements of the parent artery were performed. Computational fluid dynamics simulations were
performed twice: once by using patient-specific phase-contrast MR imaging velocity profiles and once by using generalized Womersley
profiles as inflow boundary conditions. Resulting mean and maximum wall shear stress and oscillatory shear index values were analyzed,
and hemodynamic characteristics were qualitatively compared.

RESULTS: Quantitative analysis showed statistically significant differences for mean and maximum wall shear stress values between both
inflow boundary conditions (P � .001). Qualitative assessment of hemodynamic characteristics showed differences in 21 cases: high wall
shear stress location (n � 8), deflection location (n � 3), lobulation wall shear stress (n � 12), and/or vortex and inflow jet stability (n � 9).
The latter showed more instability for the generalized inflow boundary conditions in 7 of 9 patients.

CONCLUSIONS: Using generalized and patient-specific inflow boundary conditions for computational fluid dynamics results in different
wall shear stress magnitudes and hemodynamic characteristics. Generalized inflow boundary conditions result in more vortices and inflow
jet instabilities. This study emphasizes the necessity of patient-specific inflow boundary conditions for calculation of hemodynamics in
cerebral aneurysms by using computational fluid dynamics techniques.

ABBREVIATIONS: CFD � computational fluid dynamics; PC-MR imaging � 2D phase-contrast MR imaging; WSS � wall shear stress

It has been estimated that the prevalence of intracranial aneurysms

in the adult population is between 1% and 5%.1 Although most

aneurysms go undetected, acute rupture resulting in subarachnoid

hemorrhage is associated with high morbidity and fatality rates.2,3

Ruptured aneurysms are treated by coiling or clipping to prevent

rebleed. The indication for preventive treatment of unruptured an-

eurysms is, however, not straightforward.4,5 The risk of treatment has

to be carefully balanced against the risk of rupture. At present, rup-

ture-risk assessment of unruptured intracranial aneurysms and the

decision to treat or wait and scan are mainly based on size, location,

and growth of the aneurysm.6 It is, however, clear that the predictive

value of these characteristics is limited.1,6-8 It is therefore crucial to

search for additional and more predictive parameters for aneurysm

rupture risk assessment.

Aneurysmal hemodynamics, in particular wall shear stress (WSS)

and vortex instability, have been proposed as additional risk factors

for aneurysm growth and rupture.9,10 It has been shown that the

combination of vortex instability and high or low WSS within the

aneurysm is more prevalent in ruptured cases.11-13
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In many studies, computational fluid dynamics (CFD) is used

to simulate aneurysmal hemodynamics. CFD is traditionally per-

formed by using generalized inflow boundary conditions based

on typical flow rates in a healthy adult.14-27 Recently, several stud-

ies have replaced these generalized inflow boundary conditions by

patient-specific velocity measurements in the vessels proximal to

the aneurysm.10,12,28-32 In these studies, either 2D phase-contrast

MR imaging (PC-MR imaging) or transcranial Doppler sonogra-

phy was used to measure the flow. So far, only 3 studies have

compared patient-specific with generalized inflow boundary con-

ditions in a total of 14 aneurysms.28-30 Evidently, the necessity of

using patient-specific inflow boundary conditions has not been

elucidated to the full extent. In this study, we assessed the effects of

patient-specific inflow boundary conditions in a group of 36

patients.

MATERIALS AND METHODS
Patient Selection
Image data of 36 aneurysms in 36 patients who presented at the

Academic Medical Center, Amsterdam, The Netherlands with

ruptured or unruptured aneurysms from January 2009 to Octo-

ber 2011 were retrospectively selected from a cohort of 164 pa-

tients in an ongoing study of aneurysm hemodynamics. This was

done on the basis of the high signal quality of inflow velocity

measurements. Of the selected aneurysms, 9 were located in the

medial cerebral artery; 7 in the carotid artery; 6 in the anterior

communicating artery; 6 in the posterior communicating artery;

3 in the basilar artery; 2 in the pericallosal artery; 1 in the anterior

cerebral artery; 1 in the vertebral artery; and 1 in the ophthalmic

artery. Six aneurysms were ruptured. Aneurysm size ranged from

3.2 to 12.4 mm. Dome-to-neck ratio ranged from 0.72 to 2.32. A

Glasgow Outcome Score of �4 for patients with ruptured aneu-

rysms was mandatory.33 Exclusion criteria were contraindica-

tions for MR imaging, including treatment of the aneurysm by

surgical clipping. The study was approved by the local ethics com-

mittee. Written informed consent was obtained from all patients.

Imaging
All patients underwent high-resolution 3D rotational angiogra-

phy as part of the standard clinical work-up with de novo aneu-

rysms. This was done in either the awake state (in the case of

unruptured aneurysms) or during endovascular treatment with

the patient under general anesthesia (in the case of ruptured an-

eurysms). A single-plane angiographic unit was used (Integris Al-

lura Neuro; Philips Healthcare, Best, the Netherlands). Twenty-

one milliliters of contrast agent was administered at 3 mL/s

(iodixanol, Visipaque; GE Healthcare, Cork, Ireland). This re-

sulted in a 2563 isotropic image volume. Following this, 3D veloc-

ity measurements proximal to the aneurysm were obtained with

PC-MR imaging. A single-section PC-MR imaging was per-

formed on a 3T scanner (Intera; Philips Healthcare). Scan resolu-

tion was 0.64 � 0.65 � 3 mm. Further imaging parameters were

the following: TE/TR/flip angle, 5.7 ms/8.5 ms/10°; receiver band-

width, 172 kHz; imaging volume, 200 � 200 � 3 mm in 1 section;

parallel imaging factor, 2. The velocity-encoding was 100 cm/s in

all directions. The number of measured cardiac phases (ie, tem-

poral resolution) depended on the heart rate and ranged between

23 and 36 cardiac phases, to keep the scanning time close to 3

minutes 30 seconds. The view-sharing factor for the retrospective

sorting of acquired k-lines was set to 1.8.

Because patients with ruptured aneurysms were treated within

24 hours after onset, MR imaging velocity measurements to assess

inflow boundary conditions could not be performed before the

coiling procedure. Therefore, for this patient group, postproce-

dural PC-MR images were obtained at the standard follow-up 6

months after coiling. Patients with unruptured aneurysms were

requested to undergo an additional preprocedural PC-MR imag-

ing study at admission.

Geometric Vascular Models
To generate vascular models that were usable for CFD, we seg-

mented the aneurysm and its connected arteries in 3D rotational

angiography images by using a level-set algorithm by using the

Vascular Modeling Toolkit, VMTK Version 0.9.0 (http://

www.vmtk.org). Subsequently, the segmented volumes were con-

verted to volumetric meshes consisting of approximately

1,000,000 tetrahedral elements.

Computational Fluid Dynamics
For each aneurysm, we performed 2 CFD simulations: one apply-

ing spatiotemporal patient-specific inflow boundary conditions,

acquired by PC-MR imaging velocity measurements, and the

other applying generalized inflow boundary conditions.34 The

generalized inflow velocity profile was defined by predetermined

Womersley profiles for fully developed pulsatile flow.35,36 The

flow was scaled so that the total generalized inflow equaled the

measured inflow rate as determined by PC-MR imaging. Zero

pressure boundary conditions were prescribed at all outlets. A

no-slip boundary was set, and rigid walls were assumed. Transient

Navier-Stokes equations were solved by using a pressure-based,

3D double-precision solver following the Semi-Implicit Method

for Pressure Linked Equations.37 Blood was modeled with an at-

tenuation of 1040 kg/m3 and a dynamic viscosity of 0.004 Pa/s.

CFD simulations were performed with Fluent software

(ANSYS, Canonsburg, Pennsylvania). Three cardiac cycles

were simulated to account for the transient character. Only the

third complete cycle was used for analysis.36

Quantitative Assessment of Hemodynamic Features
The mean WSS, maximum WSS, mean oscillatory shear index, and

maximum oscillatory shear index values were calculated. Paired dif-

ferences between the generalized and patient-specific inflow bound-

ary conditions were analyzed by using paired t test statistics. Results

with P values of �.05 were considered statistically significant.

Qualitative Assessment of Hemodynamic Features
Velocity-based streamlines and WSS patterns within the aneu-

rysm during 1 cardiac cycle were visualized as movie clips with

ParaView software (Kitware; Los Alamos National Laboratory,

Los Alamos, New Mexico). On the basis of these movie clips,

hemodynamic characteristics were scored in consensus by 2 neu-

roradiologists with �10 years of experience. The cases were ran-

domly presented to the observers, who were blinded to the

method of inflow boundary conditions used.
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We assessed the following hemodynamic characteristics: inflow

jet concentration, inflow jet stability, number of vortices, vortex sta-

bility, location of the highest WSS, and location of the deflection

zone. If the aneurysm contained a lobulation, WSS on the lobulation

sac and on the ostium of the lobulation were also assessed, as well as

the direction of the main inflow jet toward the lobulation.

The inflow jet was defined as an isosurface of 25% of the max-

imum velocity magnitude within the aneurysm. It was considered

“concentrated” when interpreted as smaller than half the size of

the aneurysm neck, and “diffuse” if larger. In the event of the flow

pattern deteriorating or changing considerably during the cardiac

cycle, it was labeled as “unstable.” The number of vortices was

defined as the number of flow structures within the aneurysm

and, if present, in the lobulation. The location of the highest WSS

and deflection zone were classified according to their position as

dome, body, or neck.36 The “deflection zone” was defined as the

area of divergence of the inflow jet on the aneurysm wall. For each

hemodynamic parameter, differences between the 2 inflow

boundary conditions were assessed and the amount of difference

was rated between 1 and 5, with 5 representing a large difference.

Differences between the scores of the observers were discussed in

an additional meeting to reach a consensus.

RESULTS
Figure 1 presents differences in hemodynamic characteristics be-

tween generalized or patient-specific inflow boundary conditions

in the same aneurysm. For each scored hemodynamic character-

istic, 1 example is given. An example of the flow rate curve for

both methods is displayed in Fig 2.

Quantitative Assessment of Hemodynamic Features
Table 1 displays the mean and maximum WSS and oscillatory

shear index values per method, including their relative differ-

ences. Mean WSS was larger for the generalized inflow boundary

FIG 1. Examples of visualized differences in hemodynamic characteristics. The left column shows patient-specific inflow boundary conditions;
the right column shows generalized boundary conditions. A–H, Differences in distribution for all assessed WSS characteristics. A, No difference
in any characteristic. B, High WSS area on the ostium of lobulation. C, High WSS location on the primary aneurysm. D, High WSS on the lobulation
sac. E, Deflection zone. F and G, Isosurface projections of inflow jet characteristics. F, Inflow jet concentration. G, Inflow jet aim in the lobulation.
H, Visualization of intra-aneurysmal flow structures represented by velocity magnitude streamlines. On this figure, a difference in the number
of vortices can be appreciated, with an additional vortex for the patient-specific inflow boundary conditions (blue arrow).
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conditions, with an average of 3.5 Pa (P � .001). The maximum

WSS was also larger for the generalized approach with an average

of 65 Pa (P � .0013). The differences for mean or maximum

oscillatory shear index values were not statistically significant

(P � .42 and P � .65, respectively). In On-line Table 1, all mea-

sured values per case used in the quantitative assessment, includ-

ing their relative differences, are displayed.

Qualitative Assessment of Hemodynamic Features
Table 2 displays the number of differences in hemodynamic char-

acteristics as scored during the qualitative assessment. In 21 of 36

aneurysms, at least 1 of the characteristics was scored differently

for the 2 inflow boundary conditions. Seven aneurysms with dif-

ferences in WSS characteristics showed no differences in vortex

and inflow jet characteristics (eg, patient 16). Six patients with no

differences in WSS characteristics showed distinct differences in

vortex and inflow jet characteristics (eg, patient 27). Furthermore,

aneurysms showing differences in vortex and inflow jet character-

istics were more often assessed as unstable for the generalized

inflow boundary conditions. This was seen in 7 of 9 aneurysms

with differences in vortex characteristics and all aneurysms with

differences in inflow jet characteristics. In On-line Table 2, a de-

tailed overview of the qualitative assessment is given, in which

each case can be appreciated for which hemodynamic character-

istic differences between the 2 methods were scored.

DISCUSSION
We showed that the choice of general or patient-specific inflow

boundary conditions results in large differences in WSS magni-

tude and distribution. Differences in vortex and inflow jet char-

acteristics occurred less frequently. The approach by using gener-

alized inflow boundary conditions led to considerably more

unstable vortices and inflow jets, suggesting that inflow jet and

vortex instability are sensitive to inflow boundary conditions.

These data indicate that previous findings on vortex instability by

using generalized inflow boundary conditions should be consid-

ered with caution.38

Both patient-specific and generalized inflow boundary condi-

tions are traditionally used for CFD analysis of cerebral aneurysm

hemodynamics. However, only 2 authors have so far compared

both approaches.28-30 The large differences in WSS magnitude

and WSS distribution found in our study are in line with findings

of a smaller study in 6 patients by Karmonik et al,28 who pointed

out differences in both WSS values and in WSS distribution be-

tween the 2 inflow boundary conditions. In addition, Venugopal

et al39 showed that WSS distributions are sensitive to changes in

flow-rate distribution in the proximal artery. Marzo et al30 also

reported differences in WSS magnitude but did not report

changes in WSS distribution outside the order of physiologic

variations.

Twenty-one of 36 aneurysms showed at least 1 difference in a

hemodynamic characteristic for the 2 inflow boundary condi-

tions. Most of these were WSS-related, such as high WSS location

and level of WSS on the lobulation sac. Fewer differences were

found in vortex- or inflow jet–related characteristics. This dis-

crepancy could be explained by findings of Cebral et al,36 who

have shown that variations of up to 25% in blood flow rate do not

affect the flow patterns inside the aneurysm.

There are several limitations related to the design of this study.

It did not address the role of outflow boundary conditions and

flow divisions distal to the aneurysm, which could influence the

accuracy of the results. In addition, for patients with a ruptured

aneurysm, postprocedural PC-MR imaging velocity measure-

ments were used for the inflow boundary conditions to simulate

preprocedural hemodynamics. The embolization itself may alter

the local hemodynamics, resulting in an inadequate representa-

FIG 2. Examples of the applied flow-rate pattern during 1 heart cycle
for both methods. PS indicates patient-specific flow rate curves of 3
separate cases (blue, purple, and green); G, generalized flow-rate
curve (red).

Table 1: Quantitative values for mean and maximum WSS and OSIa

Method

Mean WSS (Pa) Max WSS (Pa) Mean OSI (Pa) Max OSI (Pa)

PS G � PS G � PS G � PS G �

Median 2.1 2.9 �28% 38 54 �11% 0.013 0.011 18% 0.40 0.36 11%
Average 2.5 3.5 �29% 43 64 �33% 0.020 0.017 18% 0.36 0.35 0.3%
SD 1.7 2.7 �29% 27 44 �39% 0.024 0.021 14% 0.11 0.10 1%

Note:—PS indicates patient-specific inflow boundary conditions; G, generalized inflow boundary conditions; �, (PS�G)/G � 100%; Max, maximum; OSI, oscillatory shear index.
a Relative differences are presented as percentages.

Table 2: Qualitative assessment: number of cases for each scored hemodynamic characteristic showing a difference between the
patient-specific inflow boundary conditions and the generalized inflow boundary conditions

Inflow Jet Vortex WSS Location Lobulation

Concentration Stability No. Stability High WSS Deflection WSS Jet Aim Ostium WSS
No. 1 7 5 6 9 3 9 2 8
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tion of pre-embolization hemodynamics. However, we have com-

pared pre- and postprocedural PC-MR imaging measurements of

the parent artery in a small number of patients (with unruptured

aneurysms) and did not detect notable differences. Finally, vascu-

lar compliance and fluid-wall interaction were not incorporated

in this model. Disregarding these effects may have influenced the

resulting hemodynamic characteristics and may have led to an

overestimation of mean and maximum WSS values.10

The findings of this study emphasize that running simulations

with generalized boundary conditions may result in variations in

WSS magnitude and distribution and may overestimate vortex

instability. These variations could greatly influence the associa-

tion of hemodynamics with the rupture of cerebral aneurysms.

Therefore, interpretation of WSS profiles should be applied with

great caution when generalized inflow boundary conditions are

used for this purpose. More research is also needed to further

investigate the influence of other boundary conditions on CFD in

aneurysms, ideally incorporating the effect of wall and outflow

boundary conditions.

CONCLUSIONS
Patient-specific and generalized inflow boundary conditions in

CFD-based simulations of aneurysmal hemodynamics resulted in

large differences in WSS magnitudes. In addition, 21 of 36 aneu-

rysms showed differences in hemodynamics characteristics. An-

eurysms showing differences in vortex and inflow jet characteris-

tics were more often assessed as unstable when generalized inflow

boundary conditions were applied. This study emphasizes the ne-

cessity of the use of patient-specific inflow boundary conditions

for the calculation of hemodynamics in cerebral aneurysms by

using CFD techniques.
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