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ORIGINAL RESEARCH
PEDIATRIC NEUROIMAGING

Training and Comparison of nnU-Net and DeepMedic
Methods for Autosegmentation of Pediatric Brain Tumors

Arastoo Vossough, Nastaran Khalili, Ariana M. Familiar, Deep Gandhi, Karthik Viswanathan, Wenxin Tu, Debanjan Haldar,
Sina Bagheri, Hannah Anderson, Shuvanjan Haldar, Phillip B. Storm, Adam Resnick, Jeffrey B. Ware, Ali Nabavizadeh, and

Anahita Fathi Kazerooni

ABSTRACT

BACKGROUND AND PURPOSE: Tumor segmentation is essential in surgical and treatment planning and response assessment and
monitoring in pediatric brain tumors, the leading cause of cancer-related death among children. However, manual segmentation is
time-consuming and has high interoperator variability, underscoring the need for more efficient methods. After training, we com-
pared 2 deep-learning-based 3D segmentation models, DeepMedic and nnU-Net, with pediatric-specific multi-institutional brain tu-
mor data based on multiparametric MR images.

MATERIALS AND METHODS: Multiparametric preoperative MR imaging scans of 339 pediatric patients (n¼ 293 internal and n¼ 46
external cohorts) with a variety of tumor subtypes were preprocessed and manually segmented into 4 tumor subregions, ie,
enhancing tumor, nonenhancing tumor, cystic components, and peritumoral edema. After training, performances of the 2 models
on internal and external test sets were evaluated with reference to ground truth manual segmentations. Additionally, concordance
was assessed by comparing the volume of the subregions as a percentage of the whole tumor between model predictions and
ground truth segmentations using the Pearson or Spearman correlation coefficients and the Bland-Altman method.

RESULTS: The mean Dice score for nnU-Net internal test set was 0.9 (SD, 0.07) (median, 0.94) for whole tumor; 0.77 (SD, 0.29) for
enhancing tumor; 0.66 (SD, 0.32) for nonenhancing tumor; 0.71 (SD, 0.33) for cystic components, and 0.71 (SD, 0.40) for peritumoral
edema, respectively. For DeepMedic, the mean Dice scores were 0.82 (SD, 0.16) for whole tumor; 0.66 (SD, 0.32) for enhancing tu-
mor; 0.48 (SD, 0.27) for nonenhancing tumor; 0.48 (SD, 0.36) for cystic components, and 0.19 (SD, 0.33) for peritumoral edema,
respectively. Dice scores were significantly higher for nnU-Net (P# .01). Correlation coefficients for tumor subregion percentage
volumes were higher (0.98 versus 0.91 for enhancing tumor, 0.97 versus 0.75 for nonenhancing tumor, 0.98 versus 0.80 for cystic
components, 0.95 versus 0.33 for peritumoral edema in the internal test set). Bland-Altman plots were better for nnU-Net com-
pared with DeepMedic. External validation of the trained nnU-Net model on the multi-institutional Brain Tumor Segmentation
Challenge in Pediatrics (BraTS-PEDs) 2023 data set revealed high generalization capability in the segmentation of whole tumor, tu-
mor core (a combination of enhancing tumor, nonenhancing tumor, and cystic components), and enhancing tumor with mean Dice
scores of 0.87 (SD, 0.13) (median, 0.91), 0.83 (SD, 0.18) (median, 0.89), and 0.48 (SD, 0.38) (median, 0.58), respectively.

CONCLUSIONS: The pediatric-specific data-trained nnU-Net model is superior to DeepMedic for whole tumor and subregion seg-
mentation of pediatric brain tumors.

ABBREVIATIONS: AI ¼ artificial intelligence; BraTS ¼ Brain Tumor Segmentation Challenge; CBTN ¼ Children’s Brain Tumor Network; CC ¼ cystic component;
CNN ¼ convolutional neural network; DMG/DIPG ¼ diffuse midline glioma/diffuse intrinsic pontine glioma; ED ¼ edema; ET ¼ enhancing tumor; NET ¼ non-
enhancing tumor; TC ¼ tumor core; WT ¼ whole tumor

Pediatric CNS tumors are the second most common child-
hood cancer and represent the most prevalent solid tumor

and the leading cause of cancer-related mortality in children.1,2

These tumors encompass a wide range of histologies and display
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marked variations in their molecular origins, disease course,
and response to therapy, which complicates the clinical deci-
sion-making process for their management.3 MR images are im-
perative to precisely locate, characterize, and monitor the
treatment for these tumors. Achieving this precision relies heav-
ily on accurate delineation and characterization of the whole tu-
mor (WT) and tumor subcomponents. Quantitative measures
of change in tumors are highly desirable for objective assess-
ment of size and signal intensity, requiring visual and manual
measurement of the tumors and tumor components. Accurate,
automated tumor segmentation methods can offer rapid deter-
mination of tumor volumes with less effort and potentially more
consistency than manual segmentation methods.

Manual delineation of brain tumors presents distinct obstacles
that require specialized expertise, resources, and time.4 Moreover,
there are distinct differences in the prevalence, appearance, histol-
ogy, and behavior of pediatric brain tumors compared with adult
brain tumors.1,5 The most common pediatric brain tumors
include pilocytic astrocytoma, medulloblastoma, and other glio-
mas. In adults, the most common intracranial tumors are brain
metastases and meningiomas, and the most common primary
intra-axial brain tumors are glioblastoma.6 There is a higher prev-
alence of circumscribed gliomas in children compared with infil-
trating gliomas that are commonly seen in adults.7 Necrosis is
much more prevalent in adult brain tumors than in children,
whereas tumoral cysts are more common in pediatrics.7 Contrast
enhancement in adult brain tumors is more commonly associated
with high-grade tumors, whereas a large proportion of low-grade
pediatric tumors demonstrate contrast enhancement.8

The response assessment criteria for adult and pediatric
brain tumors are also considerably different.9-11 The differences
have implications for brain tumor subregion segmentation. In
adult brain tumor segmentations, typically nonenhancing tumor
(NET) and edema are combined into a single subregion label,
given the difficulty of separating these tissues and of common
infiltrative adult brain tumors. Alternatively, NET and tumor
necrosis may be combined into 1 label, though they are quite
distinct on imaging. As a result of these differences, segmenta-
tion models trained on adult brain tumors may not be well-
suited for segmentation of pediatric brain tumors, leading to
under- or oversegmentation of tumor subregions.12 Thus, there

is a relatively unmet need for training and validation of more
accurate, pediatric-specific, brain tumor segmentation models
with tumor subregion delineation.

Advancements in deep learning have broadened the potential
applications of artificial intelligence (AI) in the field of medical
imaging. In the context of brain tumors, 3D convolutional neural
networks (CNNs) have gained widespread use in this field for
image segmentation due to their ability to capture spatial features
in 3D data, which is particularly relevant for brain MR imaging.13

Nevertheless, optimal use of CNNs for pediatric brain tumor seg-
mentation remains inadequate.14 Distinctive characteristics of the
pediatric brain as well as inherent limitations in available data
sources present formidable challenges in the development of
automated segmentation methods tailored to pediatric cases.15

Moreover, given the necessity for AI systems to undergo specific
training and validation for each distinct application, it is evident
that focused research endeavors within the pediatric demo-
graphic are essential for optimal application of AI in segmenting
pediatric brain tumors.

Recent advancements in CNN structures like ShuffleNet
(https://arxiv.org/abs/1707.01083), ResNet (https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC7711146/), and DenseNet (https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC8300985/) have shown
promising results in various image analysis tasks, including adult
brain tumor segmentation.16,17 U-Net, a CNN based on an
encoder-decoder architecture, has become popular for medical
image segmentation, showing superior performance in small data
sets with a limited number of scans.18,19 Thus, U-Net and its
derivatives are potentially helpful for segmentation of pediatric
brain tumors. A few studies have used U-Net models to improve
segmentation performance on types of pediatric brain tumors,
yielding good agreement between predicted and manual segmen-
tations.20,21 Nevertheless, there is a paucity of available highly
accurate deep learning models that can be used for pediatric brain
tumor segmentation across a wide range of tumor pathologies.

In this article, we investigate 2 innovative, 3D deep learning
segmentation architectures that have been successfully applied in
adult brain tumor segmentations, namely DeepMedic (https://
deepmedic.org/) and nnU-Net models (https://www.nature.com/
articles/s41592-020-01008-z).22,23 DeepMedic is a multilayered,
multiscale, 3D deep CNN architecture coupled with a 3D fully

SUMMARY

PREVIOUS LITERATURE: The research on automated segmentation of pediatric brain tumors remains sporadic, particularly in the
context of multi-institutional and multi-histology data sets, and with validation on independent test sets. Studies employing
deep learning for the segmentation of whole lesions in pediatric brain tumors have documented Dice scores from 0.72 to 0.86.
Only one study has reported on the segmentation of different tumor subregions, including enhancing tumor, nonenhancing tu-
mor, cystic components, and edema, with Dice scores ranging between 0.35 and 0.74.

KEY FINDINGS: Our automated tumor segmentation method by using nnU-Net demonstrates better performance in segmenting
all subregions when compared with existing studies in the literature with high Dice scores of 0.90 for whole tumors, 0.77 for
enhancing regions, and a combined score (0.82) for all nonenhancing areas.

KNOWLEDGE ADVANCEMENT: This developed model, which is available for public access, generates reliable results for segmen-
tation of different tumor subregions across various histologies, validated with multi-institutional data.
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connected conditional random field,22 showing excellent per-
formance in adult brain tumors, notably in the 2017 BraTS
Challenge by the Medical Image Computing and Computer
Assisted Interventions (MICCAI) organization (https://arxiv.
org/html/2305.17033v6). nnU-Net, a self-configuring model for
biomedical image segmentation, excels in various applica-
tions,23 including The Brain Tumor Segmentation (BraTS) 2020
multiorgan segmentation challenge. nnU-Net extends the origi-
nal U-Net design with an automated end-to-end pipeline,
selecting the optimal configuration for diverse segmentation
tasks. Our objective was to harness an extensive collection of
multi-institutional ground truth segmentations to train these 2
models on carefully curated, pediatric-specific data and com-
pare the performance for automated pediatric brain tumor sub-
region segmentation across a wide spectrum of tumor types. We
hypothesized that the nnU-NET segmentation model would
perform better than DeepMedic.

MATERIALS AND METHODS
Data Description and Patient Cohort
This was a Health Insurance Portability and Accountability Act–
compliant, institutional review board (Children’s Hospital of
Philadelphia)–approved study of previously acquired multi-insti-
tutional data from the subjects enrolled onto the Children’s Brain
Tumor Network (CBTN) consortium (https://cbtn.org).24 MR
imaging examinations of pediatric patients with histologically
confirmed brain tumors from the CBTN consortium were retro-
spectively collected. Inclusion criteria were the availability of pre-
operative brain MR imaging comprising 4 conventional MR
imaging sequences, ie, precontrast T1WI, T2WI, T2 FLAIR, and
gadolinium postcontrast T1WI sequences, all acquired as a part
of standard-of-care clinical imaging evaluation for brain tumors.
Patients were still included if the only procedure was placement
of an external ventricular drain or needle biopsy. Patients were
excluded if the images were incomplete or if they were severely

degraded by artifacts. Internal site data
were from the Children’s Hospital of
Philadelphia, and external data were
from other consortium members of
the CBTN. A total of 339 patients (293
from the internal site, 46 from the
external sites) were included in this
study. Detailed descriptions of the
patients, tumor types, and MR image
characteristics are included in Table 1
and the Online Supplemental Data.
We also used another independent
data set (n¼ 92) from Brain Tumor
Segmentation Challenge in Pediatrics
(BraTS-PEDs) data set, for the purpose
of benchmarking our best performing
model (See “Benchmarking Our
Model in the BraTS-PEDs Context”
for more details). We report a level 5A
efficacy for our study.

Details about image preparation,
preprocessing, and tumor subregion segmentation can be found
in the Online Supplemental Data. Tumors were segmented into 4
subregions,12 including enhancing tumor (ET), NET, cystic com-
ponent (CC), and edema (ED). WT segmentation masks were
generated by the union of all 4 tumor components (ie, WT ¼ ET
1 NET1 CC1 ED). Tumor core (TC) was defined as a combi-
nation of ET, NET, and CC.25

Model Training and Validation
We trained and evaluated two 3D convolutional neural networks,
DeepMedic and nnU-Net, for automated tumor subregion seg-
mentation on multiparametric MR imaging sequences of 233
subjects from the internal cohort and tested them on withheld
sets of 60 internal and 46 external subjects from the CBTN. nnU-
Net v1 (https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1)
with 5-fold cross-validation was trained with an initial learning
rate of 0.0, stochastic gradient descent with Nesterov momentum
(m ¼ 0.99), and number of epochs¼1000 � 250 minibatches.
Because the DeepMedic approach does not inherently include
cross-validation, a validation set comprising 20% of the 293 train-
ing subjects (n¼ 47) was randomly selected. DeepMedic, Version
0.8.4 (https://github.com/deepmedic/deepmedic), was trained
from scratch with a learning rate¼ 0.001, number of epochs¼
35, and batch size¼ 10.

Benchmarking Our Model in the BraTS-PEDs Context
We extended the validation of our best-performing model (based
on the results on internal and external data sets) to include the
latest benchmarks in automated tumor segmentation, specifically
focusing on the multi-institutional data set provided through the
BraTS-PEDs 2023 data set.25,26 Our analysis involved applying
the best model to a cohort of 92 pediatric subjects diagnosed with
high-grade gliomas, which include astrocytoma and diffuse mid-
line glioma/diffuse intrinsic pontine glioma (DMG/DIPG).25

The evaluation of the performance of our model was con-
ducted in alignment with the BraTS-PEDs validation criteria,25

Table 1: Characteristics of patients, tumor histology, and MR imaging scanners in internal
and external patient cohorts

Internal Cohort External Cohort
Total patients 293 46
Median age at imaging (range) (yr) 7.84 (0.24–21.71) 9.42 (0.55–20.73)
Sex
Male 157 (53.5%) 22 (47.8%)
Female 134 (45.7%) 24 (52.1%)
NA 2 (0.6%)

Histology
Low-grade glioma/astrocytoma 152 (51.9%) 21 (45.7%)
High-grade glioma/astrocytoma 23 (7.8%) 3 (6.5%)
Ependymoma 7 (2.4%) 0 (0%)
Medulloblastoma 85 (29%) 17 (36.9%)
Brainstem glioma 15 (5.1%) 2 (4.3%)
Germinoma 2 (0.7%) 0 (0%)
Other 9 (3.1%) 3 (6.5%)

Percentage of tumors containing each subregion
ET 85.0% 91.3%
NET 95.0% 93.5%
CC 68.3% 84.8%
ED 43.3% 58.7%

Note:—NA indicates not available.
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which focus on the segmentation of ET, TC, and the WT. The
TC region encompasses the ET, NET, and CC regions.

Code Availability
All image-processing tools used in this study are freely available
for public use (CaPTk, https://www.cbica.upenn.edu/captk; ITK-
SNAP, http://www.itksnap.org/). The pretrained nnUNet tumor
segmentation model is publicly available on GitHub (https://
github.com/d3b-center/peds-brain-auto-seg-public). It is also a
software plug-in (“gear”) on the Flywheel platform (https://
flywheel.io/) and can be found by searching “Pediatric Brain
Automated Segmentation” in the Flywheel Gear Exchange library
(https://flywheel.io/gear-exchange/).

Statistical Methods
The performance of the DeepMedic and nnU-Net models with
respect to the expert manual ground truth segmentations was
evaluated using several evaluation metrics, including the Dice
score (Sørensen-Dice similarity coefficient), sensitivity, and 95%
Hausdorff distance. We assessed segmentation of the WT, ET,
NET, CC, and ED subregions along with the nonenhancing com-
ponent/edema, which encompassed the combination of NET,
CC, and ED. A paired t test was used for comparison of Dice
scores between the 2 automated segmentation methods. The
comparison between the predicted and expert tumor segmenta-
tions was further analyzed by measuring a selection of semantic
radiomic features, namely Visually AcceSAble Rembrandt
Images (VASARI) features (https://wiki.cancerimagingarchive.
net/display/Public/VASARI1Research1Project), which have
been extensively used in the studies on the diagnosis and progno-
sis of brain tumors.27,28 We calculated the proportion of the WT
volume, that is ET, NET, CC, or ED, for the nnU-Net and
DeepMedic models and compared them with the values obtained
using expert segmentations by using Pearson or Spearman corre-
lation coefficients, depending on the data distribution, the Bland-
Altman method, and Mann-WhitneyU test.

RESULTS
The Dice score, sensitivity, and 95% Hausdorf distance metrics of
the nnU-Net and DeepMedic deep learning models compared
with manual ground truth segmentations are shown in Table 2
and the Online Supplemental Data. The Online Supplemental
Data show the breakdown across different histologies. Median val-
ues are included in addition to means (SDs) because a discrepancy

in the mere absence or presence of even a small tumor subregion
label in one of the model-pair comparisons may tremendously
affect the metrics for a particular subject and disproportionately
affect the mean (eg, result in a calculated Dice score of 0).
Additionally, the distribution of the internal and external test
set Dice scores of WT and tumor subregions for the 2 models
is shown with violin plots in Fig 1 (The Online Supplemental
Data show the breakdown across different histologies). The
distribution of Dice scores in WT and across all tumor subre-
gions was more favorable for nnU-Net compared with DeepMedic,
with a tighter distribution toward higher Dice scores (Table 2).
Both models performed worse in ED segmentation compared
with other tumor subregions, but even here the nnU-Net per-
formed much better than DeepMedic (P, .001 and P¼ .003 for
internal and external sets, respectively), which had rather poor
results for ED delineation (Dice score¼ 0.19 and 0.21 for inter-
nal and external test subjects, respectively). Paired t test compar-
ison of Dice scores between the 2 automated segmentation
methods demonstrated higher nnU-Net Dice scores compared
with DeepMedic for ET segmentation in the internal test set
mean Dice score: 0.77 (SD, 0.29) (median, 0.86) versus 0.66 (SD,
0.32) (median, 0.75) (P¼ .01), and similarly for WT and all
other tumor subregions in both the internal and external test
sets (P, .001).

Correlation between the volume percentages of tumor subre-
gion segmentation compared with the ground truth for nnU-Net
and DeepMedic models are shown in Fig 2 and the Online
Supplemental Data. All correlation coefficient P values were
,.001, but again the lowest correlations were seen with
DeepMedic ED determination, with r¼ 0.48 and r¼ 0.33 for in-
ternal and external test subjects, respectively. All nnU-Net per-
centage volume correlation coefficients were close to or above
r¼ 0.9. Furthermore, the Bland-Altman assessment of agreement
between the methods showed tighter 95% intervals for nnU-Net
compared with the ground truth as opposed to DeepMedic (Fig 3
and the Online Supplemental Data).

Finally, the results of the Mann-Whitney U test comparing tu-
mor subregions as a proportion of WT in nnU-Net and
DeepMedic segmentations compared with ground truth segmen-
tation are shown in the Online Supplemental Data. ED segmenta-
tion proportions determined by DeepMedic were statistically
different from the ground truth for the internal test subjects. For
the internal test subjects, the DeepMedic model was significantly
different from ground truth in the proportion of ED with respect
to the WT (P value¼ .003).

Table 2: Results comparing the performance metrics of nnU-Net versus DeepMedic architectures for WT and tumor component
segmentations compared with the manual ground truth in terms of Dice score metric

Region

Internal Test Subjects External Test Subjects

Dice Score: Mean (median) Dice Score: Mean (median)
nnU-Net DeepMedic nnU-Net DeepMedic

WT 0.9 (SD,0.07) (0.94) 0.82 (SD, 0.16) (0.88) 0.88 (SD, 0.07) (0.9) 0.78 (SD, 0.18) (0.86)
ET 0.77 (SD, 0.29) (0.86) 0.66 (SD, 0.32) (0.75) 0.75 (SD, 0.26) (0.85) 0.65 (SD, 0.32) (0.8)
NET 0.66 (SD, 0.32) (0.80) 0.48 (SD, 0.27) (0.49) 0.53 (SD, 0.32) (0.64) 0.4 (SD, 0.27) (0.4)
CC 0.71 (SD, 0.33) (0.83) 0.48 (SD, 0.36) (0.55) 0.55 (SD, 0.33) (0.67) 0.37 (SD, 0.33) (0.35)
ED 0.71 (SD, 0.40) (1) 0.19 (SD, 0.33) (0) 0.4 (SD, 0.43) (0.19) 0.21 (SD, 0.32) (0)
NET1CC1ED 0.82 (SD, 0.14) (0.86) 0.67 (SD, 0.2) (0.73) 0.74 (SD, 0.2) (0.8) 0.59 (SD, 0.23) (0.65)
TC 0.91 (SD, 0.07) (0.94) 0.78 (SD, 0.18) (0.83) 0.87 (SD, 0.07) (0.88) 0.76 (SD, 0.18) (0.79)
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Sample MR images with results comparing ground truth seg-
mentation with nnU-Net and DeepMedic models are shown in
Fig 4 and the Online Supplemental Data.

Because the nnU-Net-based autosegmentation model per-
formed better than the DeepMedic model on our withheld inter-
nal and external sets, we applied it to the multi-institutional
BraTS-PEDs 2023 data set (Table 3). This model indicates a high
degree of generalizability in segmenting both the WT and the tu-
mor core region mean Dice scores of 0.87 (SD, 0.13) (median,
0.91) and 0.83 (SD, 0.18) (median, 0.89), respectively. However, a
comparatively lower performance in segmenting the ET region
was a mean Dice score of 0.48 (SD, 0.38) (median, 0.58).

DISCUSSION
DeepMedic22 has been effective in pediatric tumor subregion seg-
mentation12 and has outperformed technicians in brain tumor
segmentation on a multi-institutional MR imaging database, as
validated by neuroradiologists.29 Its multiscale, parallel-processing
approach captures comprehensive contextual information. Using
feature maps from its final convolutional layer, DeepMedic effi-
ciently predicts voxel labels in input patches.30 However, its focus
on high-level semantic information may limit its performance.30

nnU-NET23,31 has also been successfully applied in automated
segmentation of brain metastases and specific tumors such as cra-
niopharyngiomas32 or meningiomas.33 On the basis of the U-Net

FIG 1. Violin plots demonstrating the distribution of Dice scores for nnU-Net and DeepMedic segmentation compared with ground truth for
both internal and external test sets. A, WT. B, ET. C, NET. D, CC. E, ED. F, All NETs (NET1 CC1 ED).

AJNR Am J Neuroradiol �:� � 2024 www.ajnr.org 5



structure, it combines encoding with downsampling and decod-
ing with upsampling. U-Net introduces multilevel information
gradually, from encoding to decoding, to optimize prediction
accuracy.

Leveraging accurate automated methods can greatly facilitate
the rapid delineation of structures and potentially decrease vari-
ability. To this end, we leveraged a carefully curated manual seg-
mentation data set of pediatric brain tumors and trained nnU-
Net and DeepMedic models. nnU-Net showed high Dice scores,
sensitivity, and 95% Hausdorff distance metrics compared with
DeepMedic. The distribution scale of Dice scores was also tighter
with less variability across subjects for WT and all tumor subre-
gions, resulting in statistically significant higher Dice scores for
nnU-Net. Additionally, for a more practical evaluation, volume
percentages (proportions) of tumor subregions with respect to
the WT were also evaluated using core relational analysis and
Bland-Altman plots, which again showed higher correlation and
agreement of nnU-Net with the manual ground truth. nnU-Net
achieved high Dice scores of 0.90 and 0.77 for WT and ET

regions, respectively, though the Dice scores for NET (0.66), CC
(0.71), and ED (0.71) were lower. The Dice score (0.82) on a com-
bination of all the nonenhancing areas (NET 1 CC 1 ED) was
higher than in these individual subregions. Our model demon-
strates better performance in segmenting all subregions com-
pared with existing studies in the literature. Other research using
deep learning for the segmentation of the WT region in pediatric
brain tumors has documented Dice scores from 0.72 to 0.86
across studies.12,20,21,34-36 Only a limited number of studies focus
on the segmentation of ET, with Dice scores of 0.68,12 0.72,20 and
0.83.35 The highest Dice score of 0.83 in one of these studies35

was achieved through cross-validation instead of evaluation on
an independent test set. Only 1 study has reported the segmenta-
tion of NET, CC, and ED subregions, with Dice scores ranging
between 0.35 and 0.51 and a Dice score of 0.73 for a combination
of all nonenhancing regions.12

Our results of Dice score values for both models performed
worse in delineation of ED, and this outcome was particularly
problematic for DeepMedic. Even though a smaller proportion of

FIG 2. Scatterplots of the correlations between ground truth and automated tumor subregion volume percentages from nnU-Net and
DeepMedic for internal and external test sets. A and C, Proportion of tumor that is labeled enhancing, B and D, Proportion of tumor that is la-
beled NET.
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pediatric brain tumors are infiltrative compared with adult brain
tumors, nevertheless, the ever-present challenge of separating ED
from NET persists to some degree. Overall, both models per-
formed slightly worse on the external test cohort than on the in-
ternal test set. This result was expected to some degree because
the external test set was from multiple institutions with a wider
variability of MR imaging acquisition protocols.

This study demonstrates the feasibility of achieving accurate
pediatric brain tumor subregion segmentation results on the basis
of multiparametric, multiscanner, multihistology, and multi-
institutional clinical standard-of care MR imaging scans. In some
cases, manual evaluation and revision may still be required to
refine the segmentations, but nevertheless, the time and effort
burden will be substantially less using an accurate, automated,
segmentation software.

Our study has several advantages. The MR imaging examina-
tions were performed as clinical standard-of-care scans without a
predetermined universal research imaging protocol. The imaging
was performed using various vendors and models of MR imaging
scanners as well as on different field-strength magnets. These

features help with increasing the generalizability of the segmenta-
tion model results. The ground truth manual segmentations were
also performed in a rigorous fashion through multiple iterations
to ensure high-quality ground truth labeling. As evident from the
results of our study, segmentation evaluation studies generally
benefit from training with larger data sets, and this benefit is true
for our study as well. Increasing the sample size may be particu-
larly helpful in improving segmentation performance for external
multi-institutional data in which there is wider variability and
scan protocols that can contribute to suboptimal performance
for some tumor subregions.

The effectiveness of our approach is evidenced by the high
Dice scores obtained for segmenting both the WT and tumor
core components using the multi-institutional BraTS-PEDs 2023
data set. However, the lower performance in segmenting the ET
region with the mean Dice score¼ 0.48 (SD, 0.38) (median, 0.58)
can be attributed to the low prevalence of this subregion in sub-
jects with DMG/DIPG tumors in the BraTS-PEDs data set.
Additionally, our original training cohort included a limited
number of high-grade gliomas (including DMG/DIPG histology),

FIG 3. Bland-Altman analysis plots demonstrating the agreement between ground truth and automated tumor subregion volumes/percentages
from nnU-Net and DeepMedic for internal and external test sets. A and C, Proportion of tumor that is labeled enhancing. B and D, Proportion
of tumor that is labeled NET.
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which may have contributed to this reduced performance in the
ET region. Incorporating the additional BraTS-PEDs 2023 data
set into the training data for our future autosegmentation models
is a logical step to address this issue. This would likely enhance
the generalizability of the model, particularly for the tumors with
rare histology in multi-institutional cohorts.

No segmentation performance metric is optimal, exemplified
by the limitations of the Dice score, as demonstrated in this study.
Specifically, if a model fails to segment a certain label, the Dice
score for that label will be equal to 0. This zero score considerably
influences the aggregate Dice score for that label across all sam-
ples. Furthermore, if the data set contains a limited number of
samples with that particular label, the aggregate score may not
accurately reflect the overall performance trend of the model. As
a result, we used multiple performance metrics and included tu-
mor subregion proportion comparisons as well for a more practi-
cal and comprehensive evaluation of the segmentation results.

CONCLUSIONS
We present the results from automated deep learning–based pe-
diatric brain tumor subregion segmentation models from 2 dif-
ferent segmentation models, nnU-Net and DeepMedic. nnU-Net
achieved excellent results for WT and ET segmentation and
decent results for the nonenhancing components including ET,
CC, and peritumoral edema.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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