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ORIGINAL RESEARCH
NEUROVASCULAR/STROKE IMAGING

A Clinical and Imaging Fused Deep Learning Model Matches
Expert Clinician Prediction of 90-Day Stroke Outcomes

Yongkai Liu, Preya Shah, Yannan Yu, Jai Horsey, Jiahong Ouyang, Bin Jiang, Guang Yang, Jeremy J. Heit,
Margy E. McCullough-Hicks, Stephen M. Hugdal, Max Wintermark, Patrik Michel, David S. Liebeskind,

Maarten G. Lansberg, Gregory W. Albers, and Greg Zaharchuk

ABSTRACT

BACKGROUND AND PURPOSE: Predicting long-term clinical outcome in acute ischemic stroke is beneficial for prognosis, clinical
trial design, resource management, and patient expectations. This study used a deep learning–based predictive model (DLPD) to
predict 90-day mRS outcomes and compared its predictions with those made by physicians.

MATERIALS AND METHODS: A previously developed DLPD that incorporated DWI and clinical data from the acute period was
used to predict 90-day mRS outcomes in 80 consecutive patients with acute ischemic stroke from a single-center registry. We
assessed the predictions of the model alongside those of 5 physicians (2 stroke neurologists and 3 neuroradiologists provided with
the same imaging and clinical information). The primary analysis was the agreement between the ordinal mRS predictions of the
model or physician and the ground truth using the Gwet Agreement Coefficient. We also evaluated the ability to identify unfavor-
able outcomes (mRS.2) using the area under the curve, sensitivity, and specificity. Noninferiority analyses were undertaken using
limits of 0.1 for the Gwet Agreement Coefficient and 0.05 for the area under the curve analysis. The accuracy of prediction was
also assessed using the mean absolute error for prediction, percentage of predictions 61 categories away from the ground truth
(61 accuracy [ACC]), and percentage of exact predictions (ACC).

RESULTS: To predict the specific mRS score, the DLPD yielded a Gwet Agreement Coefficient score of 0.79 (95% CI, 0.71–0.86), sur-
passing the physicians’ score of 0.76 (95% CI, 0.67–0.84), and was noninferior to the readers (P, .001). For identifying unfavorable
outcome, the model achieved an area under the curve of 0.81 (95% CI, 0.72–0.89), again noninferior to the readers’ area under the
curve of 0.79 (95% CI, 0.69–0.87) (P, .005). The mean absolute error, 61ACC, and ACC were 0.89, 81%, and 36% for the DLPD.

CONCLUSIONS: A deep learning method using acute clinical and imaging data for long-term functional outcome prediction in
patients with acute ischemic stroke, the DLPD, was noninferior to that of clinical readers.

ABBREVIATIONS: AC ¼ Agreement Coefficient; ACC ¼ accuracy; 61ACC ¼ mRS accuracy within 61 score; AIS ¼ acute ischemic stroke; AUC ¼ area under
the curve; DL ¼ deep learning; DLPD ¼ deep learning–based predictive model; IQR ¼ interquartile range; MAE ¼ mean absolute error; ROC ¼ receiver operat-
ing characteristic

Stroke affects nearly 800,000 people annually in the United
States and is a major global cause of disability and mortal-

ity.1 Survivors often face significant functional impairment that
impacts their quality of life.2 Predicting long-term clinical
impairment from early-stage information in acute ischemic
strokes (AIS) is crucial for enhancing rehabilitation strategies

and informing clinical trial designs, resource allocation, and
patient expectations.1-3 However, prediction is complex due to
the many factors influencing a patient’s eventual disability level
and the known weak correlation between initial infarct size and
outcome.4-7

Although some studies1,4,8 have attempted to predict long-
term functional outcomes, these traditional methodologies have
suboptimal performance due to 2 primary factors: their reliance
on manually crafted imaging features, which may not be optimal
predictors, and the subjective inclusion of clinical measurements,
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some of which may not be available in nonspecialist centers.
Selecting and extracting imaging features further compounds
these issues, adding yet more subjectivity and often requiring
resource-intensive manual postprocessing. In recent years, deep
learning (DL), particularly convolutional neural networks, has
shown promise in enhancing medical imaging diagnostics and
prognostics by adaptively learning from raw images.9,10 Few
existing studies have used DL to discern optimal features from
medical imaging for the prediction of long-term disability, espe-
cially for the task of predicting the patient’s exact score on the 90-
day mRS.

The alternative to automated systems might be the predictions
of expert physicians, who have significant real-world experience
correlating imaging and clinical results with eventual outcomes
and may be required to make judgments that can impact individ-
ual patients. However, there are few systematic evaluations of
prediction of stroke outcome by humans.11 Benchmarking
against clinical readers provides a meaningful context for meas-
uring improvement and may serve as a reference for future
research and clinical evaluations. This study aimed to evaluate a
previously developed deep learning–based predictive model
(DLPD), which uses DWI and clinical variables to predict 90-day
clinical outcomes in patients with AIS, using a prospective regis-
try from a comprehensive stroke center. We compared its per-
formance with that of clinical readers, including neurologists and
neuroradiologists.

MATERIALS AND METHODS
Patients and MR Imaging Data Sets
This study adhered to the guidelines set forth by the US Health
Insurance Portability and Accountability Act of 1996 and
received approval from the institutional review board (Stanford
University). Under the institutional review board guidelines, we
either obtained written informed consent from all subjects or the
requirement for consent was waived. The initial study population
included 158 patients with AIS from a single registry who were
randomly selected from a database of large-vessel occlusion

candidates undergoing triage for possible thrombectomy between
2010 and 2019. To assess long-term clinical outcomes, we used
the mRS,12,13 a grading system for measuring disability levels
ranging from 0 (no disability) to 6 (death). Inclusion criteria were
the acquisition of MR images with DWI acquired between days 1
and 7 after the index event and after all acute therapies were com-
plete and the 90-day mRS evaluation. Routinely collected clinical
parameters included the following: age, sex, premorbid mRS, pre-
senting and 24-hour NIHSS, and a history of hypertension or dia-
betes. Figure 1 provides a detailed flow chart outlining the study
subjects.

DLPD
The DLPD model uses DWI and the previously mentioned clini-
cal variables as input to predict 90-day mRS outcome. It was based
on a previously developed and validated model that was trained
using data from 861 patients across multiple institutions.14 In
brief, it is a fused model that takes DWI and B0 images as input to
define deep features relevant to mRS prediction and then fuses
these with a separate predictive support-vector machine model
using the clinical variables. Part of the nonsensitive code is avail-
able at outcome prediction.

Physician mRS Prediction
Outcome prediction using the mRS scale was independently per-
formed by 5 physicians who were given the same information as
in the DLPD model. These included 2 neuroradiologists (one
being a neurointerventional radiologist) with 13 and 22 years of
experience, respectively; 2 stroke neurologists with 8 and 38 years
of experience, respectively; and a neuroradiology fellow with
5 years of experience. To compare against the DLPD, we used the
consensus mRS prediction using the median score from all the
physicians, given the high agreement between them. The consen-
sus mRS score for the physicians was created using a majority
score when present (ie, the same score in$3 readers); otherwise,
the median score was used.

Statistical Analysis
The performance in predicting ordinal mRS outcomes was eval-
uated using several metrics: the Gwet Agreement Coefficient
(AC),15 mean absolute error (MAE), mRS accuracy within 61
score (61ACC), and accuracy (ACC). The Gwet AC, applied
with ordinal weighting, quantifies the level of agreement of pre-
dictions of both the DLPD and clinicians with the ground truth.
The MAE assesses the average absolute difference between the
predicted scores and the actual 90-day mRS scores, with a smaller
MAE indicating superior performance. 61ACC evaluates the
proportion of predictions that fall within 1 mRS category of the
actual score. ACC measures the proportion of predictions that
precisely match the actual score. For each of these metrics, the
noninferiority of the DLPD compared with the consensus of clin-
ical readers was determined using a predefined margin of 0.1
(MAE) or 10% (61ACC, ACC). Additionally, the area under the
curve (AUC), sensitivity, and specificity were measured to evalu-
ate the predictive accuracy of the model for unfavorable outcome
(mRS.2), with a predefined noninferiority margin of 0.05.
Analyses for ordinal outcome prediction were performed using

FIG 1. Flow chart for patients in the current study.
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Stata 17.0 (StataCorp),16 while analyses for unfavorable outcome
prediction were performed using Python 3.9.12.

RESULTS
Patient Characteristics
From an initial pool of 158 patients sourced from the stroke
registry, a total of 80 patients, median age of 62 years (interquar-
tile range [IQR]: 51–75 years), including 44 men (55%), met the
inclusion criteria of the study and were subsequently included in
its testing set. Details about the included cohort can be found in
Tables 1 and 2.

Performance of Ordinal mRS Prediction
Table 3 compares the DLPD model and the consensus of clinical
readers across multiple metrics. The DLPD model had improved

values in all evaluated metrics, achieving a Gwet AC of 0.79 (95%
CI, 0.71–0.86), an MAE of 0.89 (95% CI, 0.70–1.11), 61ACC of
81% (95% CI, 73%–90%), and an ACC of 36% (95% CI, 26%–
46%). The level of agreement among the 5 clinical readers, as
gauged by a strong Gwet AC of 0.83 (95% CI, 0.80–0.86), affirms
the consistency in their judgments and justifies the use of a clini-
cal consensus score to compare with the DLPD. The clinical con-
sensus score achieved a Gwet AC of 0.76 (95% CI, 0.67–0.84),
MAE of 0.95 (95% CI, 0.75–1.17), 61ACC of 79% (95% CI,
70%–88%), and ACC of 36% (95% CI, 25%–46%). Noninferiority
tests confirmed that the performance of the DLPD model was
noninferior to that of the clinicians across all evaluated metrics,
except for ACC. The significant P values were P, .001 for the
Gwet AC, P¼ .02 for MAE, and P, .001 for 61ACC, while the
P value for ACC was not significant (P¼ .07). Figure 2 presents 3
illustrative examples of outcome predictions made by the DLPD
and physicians.

Predicting Unfavorable Outcome
Table 4 compares the performance of the DLPD and physicians
to predict unfavorable outcome (mRS.2). The DLPD model
surpassed the readers by achieving an AUC of 0.81 (95% CI,
0.72–0.89), compared with the physicians’ AUC of 0.79 (95% CI,
0.69–0.87). The model was again noninferior to the physicians
for this task (P¼ .005). The DLPD model had a higher specificity
of 0.81 (95% CI, 0.67–0.92), which was noninferior to the clinical
consensus specificity of 0.75 (95% CI, 0.60–0.88) (P¼ .03). The
sensitivity of the DLPD model (0.68 [95% CI, 0.54–0.81]) was
lower and did not satisfy the noninferiority margin compared
with the clinical consensus (0.70 [95% CI, 0.56–0.83]). Figure 3
shows the receiver operating characteristic (ROC) of the DLPD
together with the data points representing the individual and
consensus physicians. The physicians’ operating points are
located just beneath the ROC curve of the DLPD, suggesting
that for the same level of specificity or sensitivity, the DL model
generally achieves slightly better performance.

DISCUSSION
This study demonstrates that a clinical and imaging fused DL
model is noninferior to expert physicians in predicting specific
mRS outcomes and unfavorable prognoses. Building on our prior

work—which established a robust meth-
odology across multiple institutions and
demonstrated consistent performance
in 2 distinct cohorts—this work not
only further enhances the generaliz-
ability of the model but also provides
critical benchmarks against human
expert performance for the task at
hand. By evaluating our methodology
alongside clinical expert judgments
within a unique patient cohort, we
investigated the practical implications
of our approach in a real-world clinical
setting, an element not addressed in
our prior work. Slightly better per-
formance was observed in this cohort

Table 2: MRS scorea

Scale Pre morbid mRS 90-Day mRS
0 67 (83.8) 6 (7.5)
1 6 (7.5) 17 (21.3)
2 3 (3.8) 13 (16.3)
3 4 (5.0) 19 (23.8)
4 0 (0.0) 12 (15.0)
5 0 (0.0) 10 (12.5)
6 0 (0.0) 3 (3.8)

a Data are expressed as number (percentage) of patients.

Table 1: Summary of the characteristics of patients with AIS
included in the Stanford University Hospital cohort (n= 80)a

Summary
Characteristics
Male 44 (55.0)

Age (yr) (median) (IQR) 62 (51–75)
History of hypertension 53 (66.3)
History of diabetes 20 (25.0)

Baseline NIHSS (median) (IQR) 12 (7–17)
24-Hour NIHSS 9 (4–17)

3.8%b

Days after stroke for MR imaging (median) (IQR) 1 (1–3)
90-Day outcome
Favorable outcome (90-Day mRS#2) 36 (45.0)
Unfavorable outcome (90-Day mRS.2) 44 (55.0)

a Unless otherwise mentioned, data are expressed as number (percentage) of patients.
b Percentage of variables missing. If no data are missing, then there will be no per-
centage reported.

Table 3: Performance comparisons for ordinal mRS prediction between the DLPD and
the clinical readersa

Gwet AC MAE 61ACC (%) ACC (%)
Model/readers
Neuroradiologist I 0.70 (0.60–0.80) 1.15 (0.94–1.38) 71 (60–81) 26 (18–36)
Neuroradiologist II 0.69 (0.59–0.79) 1.14 (0.93–1.38) 70 (60–80) 29 (19–39)
Neuroradiology fellow 0.73 (0.65–0.81) 1.04 (0.85–1.24) 74 (6–84) 31 (21–41)

Clinical readers
Neurologist I 0.75 (0.66–0.84) 1.03 (0.83–1.25) 75 (65–84) 32 (22–44)
Neurologist II 0.77 (0.67–0.86) 0.91 (0.70–1.15) 79 (69–88) 41 (30–51)

Consensus read 0.76 (0.67–0.84) 0.95 (0.75–1.17) 79 (70–88) 36 (25–46)
DLPD 0.79 (0.71–0.86) 0.89 (0.70–1.11) 81 (73–90) 36 (26–46)
P value P, .001 P¼ .02 P, .001 P¼ .07

a The data in the parentheses represent the 95% confidence interval. The P value is for the noninferiority test
between the consensus clinical reads and the DLPD with the predefined margin of 0.1 (MAE)/10% (61ACC, ACC).
The Gwet AC for agreement among 5 clinical readers is 0.83 (95% CI, 0.80–0.86), justifying the comparison with a
consensus.
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compared with the prior work, which
may be attributed to several factors.
These include the following: 1) natural
variations in patient demographics and
disease presentations across cohorts;
and 2) the single-institution cohort of
the current study likely offering more
uniform treatment protocols, imaging
techniques, and patient management
strategies, unlike the multi-institution
data sets of our prior work, which pre-
sented greater variability. Additionally,
this work uniquely applies DL to predict
stroke outcomes, achieving an ordinal
mRS accuracy rate of 36%, nearly triple
the rate of random guessing. Prior stud-
ies tackling this task typically had lower
accuracy using methods such as linear
regression and random forest machine
learning with hand-crafted features.1,8

The DLPD also provides practical
advantages. By eliminating the need for
specialized neurologic expertise, it may
be useful for facilities that lack immedi-
ate access to neurologists or neuroradi-
ologists. Consequently, it broadens the
scope of quality care by making sophis-
ticated prognostic information more
accessible across diverse health care
environments. The DLPD model uses
readily accessible imaging and clinical
variables and can be easily integrated
into the current clinical workflow for
predicting 90-day mRS. This model
requires minimal preprocessing steps,
with the primary requirement being
the normalization of DWI and B0
images to a standard template. Unlike
approaches that depend on existing
radiologic features—potentially intro-
ducing added complexity, human effort,
and subjectivity—our method auto-
matically uses information from imag-
ing, thereby lending greater objectivity
to our outcome-prediction model. For
example, a recent multivariate ordinal
mRS regression model required inclu-
sion of 19 separate variables, including
some derived from imaging, for which
interobserver reproducibility has not
been reported.17 In contrast, the current
model relies heavily on objective, data-
derived imaging features, with only 7
standard clinical measurements.

This study represents the first report
of clinical expert performance for 90-
day mRS prediction and allows us to

FIG 2. MR images (the first and second columns represent DWI and B0 images, respectively)
for 3 patients with diverse clinical histories and 90-day mRS scores. Patient A is a 48-year-old
man with a baseline NIHSS of 11, 24-hour NIHSS of 5, and a 90-day mRS of 1. He has no medical
history of either diabetes or hypertension. The DL model accurately predicted his score.
However, the readers overestimated his score by 1 point. Patient B, a 75-year-old woman, has
a medical history that includes diabetes and hypertension and a 90-day mRS of 5. Both the
DL model and the readers accurately predicted her 90-day mRS score of 5. Patient C, a 41-
year-old man with no history of diabetes or hypertension, has a 90-day mRS score of 6.
However, both the DL model and the readers incorrectly predicted his 90-day mRS score as 1.
HTN indicates hypertension; DM. diabetes mellitus.

Table 4: Performance comparisons for unfavorable-outcome prediction (mRS>2)
between the DLPD and the clinical readersa

AUC Sensitivity Specificity
Model/readers
Neuroradiologist I 0.76 (0.64–0.85) 0.68 (0.53–0.81) 0.69 (0.54–0.83)
Neuroradiologist II 0.81 (0.71–0.89) 0.61 (0.47–0.77) 0.86 (0.73–0.97)
Neuroradiology fellow 0.82 (0.72–0.89) 0.75 (0.62–0.87) 0.69 (0.53–0.83)

Clinical readers
Neurologist I 0.79 (0.69–0.88) 0.82 (0.7–0.93) 0.53 (0.36–0.68)
Neurologist II 0.77 (0.67–0.86) 0.64 (0.49–0.78) 0.83 (0.7–0.95)

Consensus read 0.79 (0.68–0.87) 0.70 (0.56–0.83) 0.75 (0.60–0.88)
DLPD 0.81 (0.72–0.89) 0.68 (0.54–0.81) 0.81 (0.67–0.92)
P value P¼ .005 P¼ .25 P¼ .03

a The data in the parentheses represent the 95% confidence interval. The P value is for the noninferiority test
between the consensus clinical read and the DLPD (predefined margin, .05).
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conduct a comparative analysis with the automated model. Thus,

the results can act as a benchmark for future studies and further

contextualize the results of the DLPD. One prior study11 collected

outcome-prediction data from treating providers before endovas-

cular therapy and showed relatively poor performance (44% ac-

curacy to predict into mRS bins of 0–2, 3–4, and 5–6). The

performance of the readers in the current study was better, prob-

ably because they made their assessments after treatment was

provided. Also, these authors stressed that the premorbid mRS

was an important predictive feature, but it was often unavailable

or inaccurately estimated compared with later retrospective

assessment. This issue emphasizes the value of using the entire

image, which can incorporate both acute and pre-existing lesions

to improve prediction.
Potential reasons behind the noninferior performance of the

DLPD in outcome prediction are manifold. First, the DLPD

may identify and learn from patterns within complex, multimo-

dal data, similar to or better than how physicians apply their

medical knowledge and experience.18,19 It emulates or improves

on human readers by evaluating imaging and clinical data in a

data-driven manner, considering all available information, from

obvious clinical signs to subtle imaging hints. Additionally,

these models can discern and understand nonlinear relation-

ships and interactions among numerous variables, mirroring

physicians’ multidimensional thinking when assessing patient

conditions and outcomes. Furthermore, DLPD models may

bring additional advantages. Their inherent ability to process

and learn from vast amounts of data offers unprecedented scal-

ability. With the growth in available data, the performance of

the model can potentially increase, indicating a cycle of

continuous advancement that may be

challenging to match solely with

human expertise.
Our study has the following limita-

tions. First, our patient testing cohort
was sourced from a single registry.
While this feature mimics how the tool
might be used in real practice, perform-
ance in other cohorts with different
characteristics of severity and age is dif-
ficult to assess. However, the model has
been previously applied to 2 other clini-
cal cohorts with diverse levels of severity
and demonstrated similar perform-
ance.14 Second, the mRS served as our
primary outcome measure. While the
90-day mRS is widely used to assess
chronic disability severity, its subjective
determination of categories and variabil-
ity in reproducibility among different
examiners presents notable challenges.
Third, the imaging data used in our
study were obtained at least 24 hours af-
ter the initial baseline imaging; this
timeframe was chosen to minimize the
effects of any acute interventions, which

were completed at the time of imaging. Future studies could con-
sider using initial, pretreatment imaging combined with different
therapies to predict outcomes, potentially informing treatment de-
cision-making. Fourth, including imaging sequences beyond DWI
and B0 could yield more detailed insight, though this would
require more resources and image postprocessing. Fifth, despite
the small number of patients in our study, we want to emphasize
several factors: Our evaluation was conducted by 5 clinical readers,
ensuring a thorough and nuanced assessment, being particularly
noteworthy given the complex nature of the reader study and the
demanding schedules of the clinicians.

Reader studies are inherently time-intensive, and coordinating
such effort among 5 busy clinicians poses substantial challenges.
Nonetheless, our findings demonstrate that the performance of
the DL model aligns with that of their clinical evaluations, under-
scoring its potential for clinical application even within a limited
patient cohort. This agreement reinforces our hypothesis that the
model can operate at a level comparable with that of humans.
Last, it is critical to recognize that outcomes may diverge signifi-
cantly from predictions due to the multifaceted interplay of medi-
cal conditions, social determinants, and systemic health care
factors that are not entirely predictable by our algorithms. While
our model demonstrates robustness, it is not configured to antici-
pate every acute medical event or the full range of sociodemo-
graphic variables that may substantially affect the clinical course.
Therefore, there is a clear need to continuously refine predictive
methodologies, possibly incorporating a wider set of variables
that capture the complexities of patient trajectories; although
again, this suggestion comes with drawbacks related to the com-
plexity of the models and the need to collect information that
may be difficult to obtain.

FIG 3. The AUC of the DL-based predictive model for predicting unfavorable outcomes
(mRS.2) is shown alongside data points representing the performance of individual clinicians
and the consensus of clinicians. The translucent blue region denotes the 95% confidence interval
for the ROC curve, constructed using bootstrapping.
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CONCLUSIONS
We demonstrated that a DLPD model that leverages brain MR
imaging and routinely obtained clinical information to predict
long-term outcomes in patients with AIS generalizes well to
another clinical cohort. We have further provided a benchmark
of human expert performance on this task and show that the
DLPDmodel is noninferior to predictions made by neuroradiolo-
gists and stroke neurologists.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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