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ORIGINAL RESEARCH
FUNCTIONAL

Different Features of a Metabolic Connectivity Map and the
Granger Causality Method in Revealing Directed Dopamine
Pathways: A Study Based on Integrated PET/MR Imaging

L. Wang, L. Wei, L. Jin, Y. Li, Y. Wei, W. He, L. Shi, Q. Sun, W. Li, Q. Li, Y. Li, Y. Wu, Y. Wang, and
M. Yuan

ABSTRACT

BACKGROUND AND PURPOSE: Exploring the directionality of neural information in the brain is important for understanding brain mech-
anisms and neurodisease development. Granger causality analysis and the metabolic connectivity map can be used to investigate direc-
tional transmission of information between brain regions, but their differences in depicting functional effective connectivity are not clear.

MATERIALS AND METHODS: Using the Monash rs-PET/MR imaging data set, we conducted Granger causality and metabolic con-
nectivity map analyses of the dopamine reward circuit in the brain. The dopamine reward circuit is a well-known system consisting
primarily of the bilateral orbital frontal cortex, caudate, nucleus accumbens, thalamus, and substantia nigra. We validated these cir-
cuit pathways using Granger causality and the metabolic connectivity map for identifying effective connectivities against a priori
knowledge by testing the significance of directed pathways (P, .05, false discovery rate–corrected).

RESULTS: We found 3 types of effective connectivities in the dopamine reward circuit: long-range, neighborhood, and symmetric.
Granger causality analysis revealed long-range connections in the orbital frontal cortex–caudate and orbital frontal cortex–nucleus
accumbens regions. Metabolic connectivity map analysis revealed neighborhood connections in the nucleus accumbens–caudate,
substantia nigra–thalamus, and thalamus-caudate regions. Metabolic connectivity map analysis also found symmetric connections in
each of the bilateral nucleus accumbens, caudate, thalamus, and orbital frontal cortex–caudate regions. Different patterns in direc-
tional networks of the dopamine reward circuit were revealed by Granger causality and metabolic connectivity map analyses.

CONCLUSIONS: Granger causality analysis primarily identified bidirectional cortico-nucleus connections, while the metabolic connec-
tivity map primarily identified direct connections among neighborhood and symmetric regions. The results of this study indicated that
investigations of effective connectivities should use an appropriate analysis method depending on the purpose of the study.

ABBREVIATIONS: BOLD ¼ blood oxygen level–dependent; BG ¼ basal ganglia; CAU ¼ caudate; DA ¼ dopamine; EC ¼ effective connectivity; FC ¼ func-
tional connectivity; FDR ¼ false discovery rate; GC ¼ Granger causality; GCI ¼ Granger causality index; MCM ¼ metabolic connectivity map; NAc ¼ nucleus
accumbens; OFC ¼ orbital frontal cortex; SN ¼ substantia nigra; THA ¼ thalamus

The human brain has been recognized as a continuously com-
municating dynamic network.1 Intrinsic activities in structures

as small as neurons can be analyzed with functional connectivity
(FC) to identify functional brain networks. However, the direction-
ality of the interactions within the brain networks built from these
correlations cannot be determined. Effective connectivity (EC) pro-
vides the directional or causal relationships among brain region
transmissions and can be used to explore these communications.2

Understanding the directionality of brain networks provides insight
into the diagnosis and treatment of neurologic or mental diseases,
such as Alzheimer disease,3 schizophrenia,4 and addiction.5

Granger causality (GC) analysis is a statistical method that
adopts a linear vector autoregressive model of stochastic time-
series data. GC was proposed for use in economics, but its use in
fMRI studies of brain disorders has revealed the directionality of
transmissions among brain regions.5-8

In studying the metabolic directionality among brain regions,
Riedl et al9 proposed an approach called the metabolic connectivity
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map (MCM). The MCM is based on collecting energy consump-
tion data in neuronal communications while simultaneously col-
lecting PET and fMRI data. Most energy metabolism is dedicated
to signaling and is consumed postsynaptically, in other words, at
the target neurons.9-13 Riedl et al scaled this to the system level
with the assumption that an increase in local metabolism reflects
an increase in afferent EC from source regions. They further
hypothesized that the spatial correlations between metabolic activ-
ity and FC represent this EC spatial profile. In other words, the
MCM reflects the correlation between the pattern of improved glu-
tamate consumption and the pattern of improved blood oxygen
level–dependent (BOLD) signals in the target region. The MCM
has been used to identify altered EC within the default mode net-
work for Alzheimer disease,3 reveal the stable bidirectional connec-
tion among early/higher visual regions of healthy cohorts,9 and
study the cognition task-induced reconfiguration of whole-brain
networks.14

BOLD signals measure indirect neuronal activities and are
influenced by intermediate physiologic responses, including the
cerebral metabolism rate of glucose/oxygen and the CBF/CBV.
[18F] FDG-PET signals measure glucose metabolism in the brain,
which is also influenced by the CBF/CBV. When PET and fMRI
data are collected simultaneously, both the levels of glucose me-
tabolism and BOLD signals are influenced by the simultaneous
CBF and share a common basis in central neurophysiology.
Human brain metabolic connectivity derived from [18F] FDG-
PET is comparable with that derived from resting-state fMRI
analyses.15,16 While these studies confirmed the comparability of
nondirectional metabolism connectivity and BOLD connectivity,
little was revealed about the relationship between glucose meta-
bolic EC and fMRI EC. This issue has not been studied due to the
lack of simultaneously acquired and aligned fMRI and PET data.

The novel advantages of integrated PET/MR imaging provide a
new insight into understanding the dopamine (DA) reward circuit.
The DA reward circuit consists of 3 pathways: the nigrostriatal
pathway, along which the substantia nigra (SN) sends a dopami-
nergic projection to the dorsal striatum; the mesolimbic pathway,
where the ventral tegmental area (VTA) sends a similar type of
dopaminergic projection to the nucleus accumbens (NAc); and the
mesocortical pathway, where dopaminergic projections are sent
from the SN/VTA through the thalamus (THA) and the prefrontal
cortex.17,18 There are rich bidirectional projection pathways among
these brain regions19-21 involved in the DA reward circuit. We
chose brain areas involved in the DA reward system to validate the
sensitivity and consistency of MCM and GC analyses and to iden-
tify the directed pathways among brain regions by ROI analysis.

MATERIALS AND METHODS
Data Sets
The data for this study were obtained from the Monash rsPET-
MR data set22-25 in the OpenNeuro database (https://doi.org/
10.18112/openneuro.ds002898.v1.1.1). It is a simultaneous fMRI-
functional PET data set acquired from young, healthy individuals
at rest. Participants (n ¼ 27, 21 women) were all right-handed,
18–23 years in age (mean age, 19 years), with 13–18 years of edu-
cation (mean, 14 years) and no history of diabetes, diagnosed
Axis-I mental illness, or cardiovascular illness.22 Participants

underwent a 95-minute simultaneous MR imaging–PET scan in
a 3T Biograph molecular MR imaging scanner (syngo VB20P;
Siemens) as described previously.22,24 Briefly, [18F] FDG (average
dose, 233 MBq) was infused over the course of the scan.22 During
the first 30minutes of the FDG infusion, T1 3D MPRAGE was
acquired (Acquisition Time [TA]¼ 7 minutes 0.6 seconds, TR¼
1640ms, TE ¼ 2.34ms, flip angle ¼ 8°, FOV ¼ 256� 256 mm2,
voxel size ¼ 1� 1 � 1 mm3, 176 slices, sagittal acquisition). For
the remainder of the scan, 6 consecutive 10-minute blocks of
T2*-weighted echo-planar images were acquired (TR ¼ 2.45 sec-
onds, TE ¼ 30ms, FOV ¼ 190 mm2, 3� 3 � 3 mm3 voxels, 44
slices, ascending axial acquisition).

Image Preprocessing
The first 10-minute block of BOLD data, the corresponding 10-
minute FDG-PET data, and the T1 3D MPRAGE data were used
for structural segmentation and registration. Volumes from the
PET data were reconstructed every 16 seconds, and the corre-
sponding 10-minute data volume indexes were 129–165 for each
participant. PET volumes were extracted and averaged to acquire
static FDG-PET images.

The CONN toolbox (Version 20.b; https://web.conn-toolbox.
org/)26 was used for BOLD data preprocessing. It is a functional
connectivity toolbox based on the Statistical Parameter Mapping
12 toolbox (SPM; http://www.fil.ion.ucl.ac.uk/spm). The default
preprocessing pipeline for volume-based analyses (“direct normal-
ization to Montreal Neurological Institute space” pipeline in
CONN) was used, including the following steps: 1) realignment
and unwarping; 2) section-timing correction for interslice differen-
ces in acquisition time; 3) Artifact Detection Tools–based outlier
detection (https://www.nitrc.org/projects/artifact_detect) to iden-
tify outlier scans for scrubbing; 4) segmentation of functional and
anatomic images to gray and white matter and CSF tissue classes
using SPM-unified segmentation and normalization procedures;
and 5) normalization to 2-mm (functional) or 1-mm (anatomic)
isotropic voxel size in Montreal Neurological Institute space. The
functional images were smoothed using spatial convolution with a
Gaussian kernel of 4mm at full width at half maximum values.
After preprocessing, functional data were further denoised, remov-
ing potential confounding effects in the BOLD signal, such as noise
components fromWM and CSF areas,27 estimated subject-motion
parameters, scrubbing, and session effects.28 Temporal frequencies
,0.008Hz or .0.09Hz were removed from the BOLD signal to
focus on slow-frequency fluctuations while minimizing the influ-
ence of physiologic, head-motion, and other noise sources.29

ROI Definition and FC Analysis
FSL30 (http://www.fmrib.ox.ac.uk/fsl) built-in atlases were used
to generate 10 ROIs in the DA reward system.31,32 Eight bilateral
ROIs were extracted from the Harvard-Oxford probability atlas
with a threshold set to 50% probability, then binarized into
masks. The 8 bilateral ROIs were the thalamus (THA, left: 1139,
right: 1129 voxels), (NAc, left: 70, right: 56 voxels), caudate
(CAU, left: 444, right: 457 voxels), and orbital frontal cortex
(OFC, left: 905, right: 790 voxels). The Talairach Daemon atlas
(included with FSL) was used to generate bilateral SN (left: 37,
right: 43 voxels) ROI masks directly. Before ROI generation, the
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atlas was registered and resampled to the same Montreal
Neurological Institute 2-mm template in CONN, verifying that
ROIs, preprocessed fMRI, and FDG-PET data were in the
same space (Fig 1).

For each participant, we calculated the ROI and the voxelwise
functional connectivity of every ROI, forming 1 FC matrix and
10 FC maps per participant. The element values in the FC matri-
ces and voxel values in the FC maps were further transformed to
z-values using the Fisher r-to-z transformation equation, ensur-
ing that the distribution of z-values would be approximately
normal.

Granger Causality Analysis
The Granger causality index (GCI) of each ROI pair was calcu-
lated along each group-wise statistically significant FC pathway.
This GCI was calculated using an autoregressive model:

Yt ¼
Xp

k¼1
bkYðt�kÞ þ cZt þ « t:1)

The joint regressive representation was determined by

Yt ¼
Xp

k¼1
akXðt�kÞ þ

Xp

k¼1
bkYðt�kÞ þ cZt þmt;2)

Fx!y ¼ ln
varð« tÞ
varðmtÞ

;3)

where Yðt�kÞ and Xðt�kÞ are the preprocessed ROI signals, « t and
mt are the residuals of autoregression and joint regression,

respectively, and p is the lag in the
autoregression model. Fx!y is the GCI
value defined as the GC effect from
ROIX to ROIY so that each ROI pair
has 2 GCI values representing the GC
effects in 2 directions. The lag in the
vector autoregression model was deter-
mined to be 2.5

For the distribution of the GCI, we
randomly switched ROI signals among
participants’ preprocessed BOLD data
and calculated the GCI values of each
ROI pair. We repeated this procedure
100,000 times. This process generated a
simulated GCI null distribution for real
data sets.

MCM Analysis
Static FDG-PET images were prepro-
cessed using FSL (including registration
and normalization to 2-mm voxel size
standard space) with the same Montreal
Neurological Institute template to ensure
the accuracy of the cross-technique regis-
tration. Standard uptake value ratio
maps were converted by dividing the
mean value of the reference region. The
cerebellum GM was chosen as the refer-
ence region.33,34 The normalized stand-
ard uptake value ratio maps and BOLD

data of each participant were used to calculate the MCM values.9

The MCM value of seed ROI X to target ROI Y was calculated
according to Riedl et al9 as follows:

MCMX!Y ¼ CorrelationðFCYjX; FDGYÞ;4)

where FDGY is the voxelwise profile in ROIY , representing the
neuronal activity in ROIY ; FCYjX is the voxelwise FC in ROIY ,
while ROIX is the seed ROI representing the correlation between
each voxel time-series in ROIY and the cluster time-series of
ROIX . The spatial correlation between FDG and FC voxelwise
profiles is the MCM value, which represents the metabolic EC
from ROIX (seed) to ROIY (target).

On the basis of a cellular model of neuroenergetics, a positive
MCMX!Y value identifies the signaling input along the FC path-
way from ROIX to ROIY .

Statistical Analysis
After the calculation of all the required values of the brain DA
reward network connections, a 1-sample t test was used to acquire
group-wise statistics including the t value and P value for FC and
the MCM, separately. Because GC distribution was not normal, the
nonparametric 1-sample Wilcoxon signed-rank test was used to
determine group-wise significant connections. Also because of the
skewed distribution of the GCI, if the GCI value of 1 directional
connection was significantly higher than the median value of the
GCI null distribution, this directional connection was considered

FIG 1. 3D display of 10 generated ROIs, rendered using ITK-SNAP 3.8.0 (www.itksnap.org).
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significant. The method to identify the group-wise significance of
GC pathway was slightly different from FC and the MCM, which
were considered following a normal distribution.

All the P values were corrected for multiple comparison using
the false discovery rate (FDR) method to control the false-positive
rate, and the significance level was set to corrected P, .05. The
statistical analysis was performed using R software (Version 4.0.3;
https://www.r-project.org/).

RESULTS
FC Analysis
FCs existed between most of the ROI pairs. The FC pathways con-
necting bilateral CAU, bilateral NAc, bilateral OFC, bilateral THA,
and bilateral SN were significant for all ROIs. The FC pathways

between the left SN and bilateral CAU, bilateral NAc, bilateral OFC;
the FC between the right SN and left CAU, bilateral NAc, left OFC;
and between the right THA and bilateral OFC were not significant.
All other FC pathways were significant except in the above-men-
tioned pathways (Fig 2, 1-sample t test, P, .05, FDR-corrected).
The detailed statistical results of the 45 different FC pathways for
the 10 ROIs can be found in the Online Supplemental Data.

GC Analysis
The distribution of the GCI after 100,000 simulations is shown in
Fig 3. The GCI density curve was skewed with a median value at
0.0163. The mu parameter in the Wilcoxon signed-rank test thus
was set to 0.0163. If the GCI was significantly higher than mu, the
corresponding GC connection was considered significant.

After multiple comparison correction, significant GC connec-
tions were as follows: a bidirectional connection between the left
NAc and the right OFC and 8 significant unidirectional connec-
tions, respectively, from the right THA to the left CAU, from the
left CAU to the right CAU, from the left CAU to the left OFC,
from the left NAc to the left CAU, from the right OFC to the left
CAU, from the left OFC to the right CAU, from the right NAc to
the left OFC, and from the left OFC to the right OFC (Fig 4, 1-
sample Wilcoxon signed-rank test, P, .05, FDR-corrected). The
detailed data can be found in the Online Supplemental Data.

MCM Analysis
The significant MCM connection of the significant group-wise
FC pathways were as follows: 3 bidirectional connections, respec-
tively, between the bilateral THA, between the left CAU and the
left NAc, and between the right CAU and the right NAc, and 7
unidirectional connections, respectively, from the left SN to the
right THA, from the right OFC to the right CAU, from the left
OFC to the bilateral CAU, from the right NAc to the bilateral
CAU, and from the left CAU to the right CAU (Fig 5, 1-sample t
test, P, .05, FDR-corrected). The detailed data can be found in
the Online Supplemental Data.

DISCUSSION
The GC and MCM methods were used to show differences in
identifying directional connectivities of the DA brain reward sys-
tem based on the Monash rsPET-MR data set. Our findings dem-
onstrated that in the DA reward system, GC identified more
cortico-nucleus bidirected connections and the MCM identified
more directed connections among neighboring and symmetric
regions. Each of the 2 methods has its own features, and research-
ers should carefully choose them before starting an analysis.

Both the GC and MCM identified modulation pathways in
DA systems, but with different patterns. There are 3 major cir-
cuits in the DA reward system in the human brain: the basal gan-
glia (BG)–thalamocortical loop, the BG-thalamic loop, and the
BG-habenulo-mesencephalic loop.18,31,35

GC revealed that the THA!CAU pathway belonged to the
BG-thalamic loop and the OFC!NAc and CAU pathways
belonged to the BG-thalamocortical loop. MCM revealed that the
SN-to-THA pathway belonged to the BG-thalamic loop and the
OFC!CAU pathways and the rich connections between CAU
and NAc belonged to the BG-thalamocortical loop. These results

FIG 2. The group-level FC matrix shows that the bilateral CAU, NAc,
OFC, and THA ROIs are significantly connected to each other. The SN is
significantly connected to the THA. Color represents the z-transformed
FC strength between ROI pairs. White means statistically not significant
(1-sample t test, P, .05, FDR-corrected). Note that if a connection was
not significant, its representing FC was set to zero, to focus on the sig-
nificant connections.

FIG 3. The GCI density curve. This curve comes from permutation-
based technology to simulate the real-data GCI distribution with
100,000 times permutation. The distribution is a skewed curve, with
0.0163 as the median value, which is more appropriate than the mean
value for the 1-sample test in this situation.
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are consistent with results from prior studies.18,31 The GC and
MCM analytic approaches demonstrated the reliability of the 2
methods in revealing DA reward pathways. Neither GC or MCM
analyses revealed the SN!limbic striatum pathway, implying that
the sensitivities of the methods need to be improved. There were
striatum!cortical pathways found by GC but not MCM, possibly
caused by our omission of the existence of the THA mediation
effect in our analysis.1 This result indicates that in the absence of a
proper model, the GC analysis does not always identify specific
pathways, while the MCM is not influenced.

GC analysis identified long-range connections (cortico-nucleus).
The bidirected connections between the striatum and the OFC

were identified by GC, consistent
with the mesocortical pathway in the
reward circuits.35 The MCM did well
in identifying directed connections
among neighboring brain areas (nu-
cleus-nucleus) and among symmetric
brain areas. These connections imply
frequent communications between the
dorsal and ventral striatum and the close
communications between the bilateral
subcortical brain areas in the resting-
state brain.

The possible reason for the differen-
ces between GC and MCM may come
from the different approaches of the 2
methods. The algorithm of the GC is
based on a future temporal predictabil-
ity from a knowledge of past activity.36

GC analytic results should be inter-
preted as predictions between time-
series.2 If time-series X and Z have a
high positive correlation, a high FC
would result in a lower GC between X
and Z because GC includes lags in its
predictions between time-series and not
correlations. For example, if X and Z
are the same, there is no GC effect at all.
In our results, the FC between the bilat-
eral THA received the highest value, but
there was no significant GC pathway
between the bilateral THA. However, a
high FC effect does not affect the ability
of the MCM to identify this pathway
because the algorithm of the MCM uses
a voxelwise spatial pattern similarity
between FDG and FC to generate the
ROI-wise causality effect.3,9 The neigh-
boring and symmetric brain regions of-
ten have higher FCs than long-distance
brain regions. This inference is sug-
gested by both observed phenomeno-
logic and algorithmic differences.

Both the GC and MCM methods
reported poor results for the subtento-
rial areas. The MCM identified the im-

portant projections from the SN to the THA and the interaction
pathways between the bilateral THA. Our results showed that the
SN and THA were isolated from the cortical areas and the stria-
tum. However, it is known that the SN and THA have interac-
tions with cortical areas and the striatum. The failure of the
approaches to identify these interactions may be due to several
factors: First, GC analysis does not work well in the midbrain/
brainstem areas due to signal loss and image distortion of BOLD
signals.37 GC analysis relies heavily on BOLD signal quality.
High-resolution PET provided more benefit to MCM than GC.
Second, the accuracy of the SN ROI template is limited because
the SN is located in the midbrain and is more likely to have poor

FIG 5. The group-wise directional pathways identified by the MCM method. Arrows represent
the direction of the pathways. The line thickness represents the relative strength of the MCM.
There are more bidirectional interactions between the NAc and CAU, and the unidirectional
pathway from the OFC to the CAU reveals the regulation in the frontostriatal DA pathway (1-
sample t test, P, .05, FDR-corrected). L/R indicates left/right.

FIG 4. The group-wise directional network identified by GC. Arrows represent the direction of
the pathways. The line thickness represents the relative strength of the GCI of that pathway. A
bidirectional connection was identified between the right OFC and the left NAc (1-sample
Wilcoxon signed-rank test, P, .05, FDR-corrected). L/R indicates left/right.
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registration results than the cortex area using regular normaliza-
tion procedures.37 Third, the correction method might be too
stringent in 1-sample statistics compared with other studies that
focused only on group differences in EC. For example, most of
our GC studies calculated the between-group GC differences
rather than within-group patterns, so we could test whether the
group differences were significantly not equal to zero. When we
focused on within-group patterns of GC, we had to choose a
more stringent value to test. This strategy may have caused fewer
identified results. The MCM, on the other hand, was less affected
than GC when performing within-group analyses, resulting in a
greater number of identified subtentorial areas than were identi-
fied by GC.

Considering the above methodological issues, MCM gener-
ally outperforms than GC in revealing reasonable directed con-
nection in subcortical nucleus and cerebellum network. Thus, it
is recommended that when the study aim at diseases involves
mostly the subtentorial areas (e.g. cerebellum and subcortical
nucleus), both FDG-PET and simultaneous BOLD data should
be acquired and do MCM analysis.

This study has some limitations. First, the DA reward circuits
involved ROIs that were arbitrarily selected and may have pro-
vided less comprehensive results. Second, the Monash rs-PET/MR
data set acquired fMRI data using a TR ¼ 2.45-second parame-
ter, which may have limited the ability to identify DA pathways
for GC. Third, the scan protocol of the Riedl et al9 study
acquired 10-minute BOLD sequences immediately following
the FDG injection, while the PET data used in our MCM analy-
sis was collected 30minutes after the FDG injection. In our
study, the PET data represented the cumulated regional energy
demands before the fMRI acquisition window, while the fMRI
data reflected the neuronal dynamics during the acquisition
phase. We assumed that the resting-state brain would have sim-
ilar activities across sessions and that the FC would not change
substantially, ensuring MCM stability. The stability of the
MCM during the resting state in different sessions was not clear.
Fourth, possible improvements to the original GC method,1,6,38

which may be more reliable, were not included in this study.
Last, the present study comprised a small number of healthy
participants (n ¼ 27) only and was performed in a unique cen-
ter; further studies could confirm the results with a larger sam-
ple size from multiple centers and validate the features in this
study using patient data.

CONCLUSIONS
Our results showed that GC and MCM revealed different pat-
terns in directional networks in the DA reward circuit. Our
study demonstrated that both GC and the MCM could correctly
identify some of the directed pathways among the DA reward
circuits. GC identified long-range bidirected connections, and
the MCM identified directed connections among neighboring
and symmetric regions. Poor connections in subtentorial areas
were identified by both methods, but MCM benefited from
compensation of the high-resolution PET data. These results
imply that future research on ECs requires an appropriate selec-
tion of methods according to the different objectives of the
research.
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