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REVIEW ARTICLE

Beyond Diffusion Tensor MRI Methods for Improved
Characterization of the Brain after

Ischemic Stroke: A Review
E.V.R. DiBella, A. Sharma, L. Richards, V. Prabhakaran, J.J. Majersik, and S.K. HashemizadehKolowri

ABSTRACT

SUMMARY: Ischemic stroke is a worldwide problem, with 15 million people experiencing a stroke annually. MR imaging is a valuable
tool for understanding and assessing brain changes after stroke and predicting recovery. Of particular interest is the use of diffu-
sion MR imaging in the nonacute stage 1–30 days poststroke. Thousands of articles have been published on the use of diffusion MR
imaging in stroke, including several recent articles reviewing the use of DTI for stroke. The goal of this work was to survey and put
into context the recent use of diffusion MR imaging methods beyond DTI, including diffusional kurtosis, generalized fractional ani-
sotropy, spherical harmonics methods, and neurite orientation and dispersion models, in patients poststroke. Early studies report
that these types of beyond-DTI methods outperform DTI metrics either in being more sensitive to poststroke changes or by better
predicting outcome motor scores. More and larger studies are needed to confirm the improved prediction of stroke recovery with
the beyond-DTI methods.

ABBREVIATIONS: AD ¼ axial diffusivity; AK ¼ axial kurtosis; DKI ¼ diffusional kurtosis imaging; FA ¼ fractional anisotropy; FM ¼ Fugl-Meyer; GFA ¼ gener-
alized fractional anisotropy; MD ¼ mean diffusivity; MK ¼ mean kurtosis; NODDI ¼ neurite orientation dispersion and density imaging; PLIC ¼ posterior limb
of the internal capsule; RD ¼ radial diffusivity; SHORE ¼ simple harmonic oscillator-based reconstruction and estimation; vic ¼ neurite density; WMTI ¼ white
matter tract integrity

Stroke or a cerebrovascular accident is a problem worldwide,
with 15 million people having a stroke annually, and it is a

widespread cause of long-term disability and mortality.1 MR
imaging is a valuable tool for understanding and assessing brain
changes after stroke and predicting recovery. Of particular inter-
est is the use of diffusion MR imaging after the hyperacute stage,
at 1–30days poststroke. Thousands of articles have been pub-
lished on the use of diffusion MR imaging in stroke, including
several recent articles reviewing the use of DTI in stroke.2-4 The
goal of this work was to survey and put into context the recent
use of diffusion MR imaging methods beyond DTI, including dif-
fusional kurtosis imaging (DKI),5 generalized fractional anisot-
ropy (GFA),6 and neurite orientation dispersion and density
imaging (NODDI) models,7 in patients poststroke. These meth-
ods use functional representations that either better match wider

ranges of diffusion data or tie to biophysical models that may bet-
ter inform stroke studies. Early works report that these types of
methods outperform DTI metrics.

Time Course of Ischemic Stroke
Approximately 87% of strokes are ischemic, while 13% are hem-
orrhagic; this review focuses on ischemic stroke. Because more is-
chemic strokes occur in the territory of the MCA than in other
locations, most ischemic strokes affect the motor system. For
example, 80% of individuals with stroke have impaired upper ex-
tremity motor function acutely.8,9

The typical time course of ischemic stroke (Online
Supplemental Data) begins with an acute phase in which ische-
mia results from development of either an in situ or embolic
thrombus that lodges in a cerebral blood vessel, reducing or
stopping blood flow to neural tissue served by that vessel. Soon
after reduction of downstream blood flow, cytotoxic edema
develops in the ischemic area and the cells in both gray and
white matter swell, reducing the extracellular space from �20%
to 4%–10%.10 Such cell swelling is due to the lack of oxygen that
impedes adenosine triphosphate production needed for active
transport by Na1/K1 ATPase to keep Na ions in balance.10

Ischemic areas with blood flow of , 10mL/100g become dam-
aged in ,6 minutes,10 creating an ischemic core.11 Membrane
configurations also change and form blebs,10,12 also termed
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axonal beading.13 Acute treatments with tPA or catheter-based
clot removal can be very helpful in limiting or avoiding neural
damage if the patient presents early poststroke.

During the next weeks and months, the ischemic area turns
into a necrotic core and the whole brain changes in a variety of
ways. In the peri-ischemic area, Wallerian degeneration14 of the
myelinated tracts is generally detectable at a few days poststroke
and continues for months. Wallerian degeneration is the process
of demyelination and disintegration of the distal axons that
occurs after injury to a neuron. Axonal swelling is also character-
istic of the early stage of Wallerian degeneration. Wallerian
degeneration may occur both near and far from the ischemic bed.
For example, rats with MCA occlusion exhibited Wallerian
degeneration in the nonischemic corpus callosum.14

Lesions in one hemisphere also promote changes in the unle-
sioned (contralateral) hemisphere, depending on the amount of
damage to the ipsilesional motor system. Degeneration of trans-
callosal fibers, increased branching and pruning of dendrites, and
increased contralateral corticospinal tract sprouting have been
reported.15 Jones and Adkins16 suggest that overcompensation
with the nonparetic side promotes remodeling in the contrale-
sional hemisphere and may cause synaptic competition with the
lesioned hemisphere and reduce recovery in the paretic limb.

Neuroimaging with MR imaging plays several roles in stroke;
the focus of this review is the use of diffusion MR imaging in the
nonhyperacute-but-early stage 1–30days poststroke, sometimes
termed the subacute stage.

Diffusion MR imaging is widely used to assess and study
stroke. MR imaging diffusion-weighted images reflect how water
protons diffuse during short time spans. The water diffusivity
depends on the local environment of the water protons. For
example, in intact myelinated fibers, water protons diffuse with
little restriction along the axon or fiber. In CSF, diffusion is iso-
tropic and protons move relatively freely in all directions. While
MR imaging diffusion images are acquired on millimeter scales,
the diffusion reflects hindrances and restrictions to water mobil-
ity due to microstructures, with scales on the order of microns.
Thus, diffusion provides information about the integrity of neural
microstructures, but in a complicated way because the brain has a
variety of neuronal cell bodies, axons, dendrites, and glial cells in
each image voxel. The different compartments and the orienta-
tions of the fibers in the cell and the intra- and extracellular
spaces influence the diffusion signal.17

Standard diffusion MR imaging acquires unweighted (b ¼ 0)
and diffusion-weighted images with diffusion weighting in multi-
ple directions. Parameters such as ADC maps are calculated. The
diffusion tensor signal representation uses a low-order cumulant
expansion of diffusion18 and enables obtaining parameters such
as fractional anisotropy (FA), mean diffusivity (MD), axial diffu-
sivity (AD), and radial diffusivity (RD). Diffusion imaging and
DTI have been reviewed in many places.19 The Online
Supplemental Data show an example of some of these different
parameters from DTI.

There has also been a tremendous amount of work, which is
doubling every 2.9 years (see Fig 1 in Novikov et al20), on diffu-
sion MR imaging microstructural mapping techniques. These
methods use higher-order signal expansions (such as DKI) or

other signal representations21 or model-based approximations to
the biophysics. The motivation is that these models can be more
specific to particular structures in a voxel and thus give more in-
formation regarding health or disease. The different signal repre-
sentations and models are derived in different ways and require
different data acquisitions than DTI, in particular with regard to
q-space sampling and b-values (Online Supplemental Data).
However, many of the parameters can be derived from the same
acquisitions, and some of the studies listed in the Online
Supplemental Data give parameters from several different repre-
sentations or models, using the same data set. The Online
Supplemental Data also show an example of some of these differ-
ent parameters from most of the methods that are detailed later
in this review.

For stroke, most of the work has focused on the corticospi-
nal tract and white matter.22 Gray matter has been studied in
healthy individuals with a NODDI model23 and with a model
designed for gray matter 24 (which may require very high b-val-
ues). There are limited studies using beyond-DTI microstruc-
tural mapping methods to look at gray matter in human
subjects with stroke, though DKI5 and diffusion spectrum
imaging25 have been used.

Diffusion MR Imaging in Stroke
In regions of ischemic stroke, signal in diffusion-weighted images
is decreased acutely.26 The reason that diffusion decreases in
stroke is not completely understood, though a number of studies
give some insight into the process. For example, as described
above, ischemic neurons undergo axonal swelling. If axons swell
and intra-axon diffusion compared with extra-axonal diffusion is
quite different, then having more intra-axonal space, which is
more restricted to diffusion, could result in lower diffusion (and
higher signal) on the MR images. However, a study using fluoro-
deoxyglucose molecules found that the molecule diffuses equally
in both intra- and extracellular spaces and diffusion in both
spaces decreases (�40% ADC decrease) in ischemic conditions.27

More recent works have evolved estimates of intra-axonal diffu-
sion and its relation to extracellular diffusion.28-30 A likely partial
explanation for slower, more restricted diffusion in stroke regions
is that axons become “beaded,” more tortuous instead of purely
cylindric structures so that the total cell surface area is preserved
during the swelling.31 In this case, diffusion may become more
restricted, especially in the axonal direction. Simulations have
shown that water ADC decreases in beaded structures.13,31

Photomicrographs12 and confocal microscopy have shown such
structures.32

Other factors such as the multiexponential diffusion change
with b-value, water exchange, and the axonal g-ratio (outer-to-
inner axon diameter ratio),20 also play roles in imaging diffusion
after stroke. Water exchange between fast and slow diffusion
components has been studied,33 and the biophysics of white mat-
ter in the context of diffusion imaging was reviewed by Nilsson et
al.34 More recently, a beyond-DTI method sensitive to exchange
was proposed (Online Supplemental Data).35

We move now to consider some of the works that illustrate
how MR imaging has been used in the assessment of stroke and
for prediction of stroke recovery.
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Diffusion MR Imaging for Predicting Recovery from Stroke.
Diffusion MR imaging has many potential uses in subacute
stroke, including understanding the time course of brain changes,
predicting the response to specific therapeutic interventions, and
selecting and monitoring therapy. Predicting motor recovery has
been a highly studied objective.2

Why Predict Recovery? Stroke research includes both hyperacute
evaluation and treatment with thrombolysis or mechanical clot
removal and less acute evaluation. “Time is brain,” and as
described above, and for suitable patients presenting to the hospi-
tal within 24 hours, tPA and thrombectomy procedures often
help recovery by reducing the extent of neural damage. Yet, while
these procedures reduce damage from stroke, they usually do not
eliminate such damage. After hyperacute procedures and for the
�80% of subjects who do not receive such intervention, rehabili-
tation is commonly needed. How the brain recovers after stroke
and the best therapy and therapy timing for each stroke survivor
after the hyperacute phase are open questions. Therapy within
the first few weeks after stroke is likely to be more effective due to
the heightened neuroplasticity potential at that time.

Predicting recovery is, thus, a highly sought-after goal.36-38

Accurate prediction is needed to plan discharge, set patient goals,
choose therapy (therapies aimed at reducing impairment versus
therapies to train compensation strategies and assistive technolo-
gies), and offer the patient a prognosis.39 Recovery predictions
also allow better testing of newly developed recovery therapies
that hope to promote greater recovery than spontaneous recovery
or current therapies.

Nonimaging Methods for Stroke Recovery Prediction. A variety
of prediction methods have been used, such as those based on
changes in the NIHSS,40 but prediction methods that do not use
imaging typically have poor specificity (36% in Hemmen et al40)
or only estimate a binary outcome (favorable or not favorable),
which is not as useful clinically. Recovery depends, in part, on the
size and the location of the ischemic area and on a variety of
other factors such as demographics, systemic atherosclerosis, and
social support networks.

Strokes causing motor deficits are commonly said to display
proportional recovery—that is, in the first 3months following
stroke, 70% of the new impairment is recovered41-44 in most indi-
viduals, while the other individuals (“atypical responders”) have
much less recovery. This finding is based on function at baseline
measured with the Fugl-Meyer (FM) upper extremity assess-
ment,45 which has a range of 0–66. For example, DFM= 0.7 �
(66-FMinitial) 1 0.4 predicted recovery reasonably well in 160 of
211 subjects.43 However, it was recently shown by two separate
groups that mathematic coupling and ceiling effects incorrectly
biased the previous findings and that random recovery could give
results similar to proportional recovery when the previously pub-
lished analysis methods were used.46,47 Thus, we may understand
recovery less than we think we do, and there is additional motiva-
tion for methods such as MR imaging to bolster our ability to
characterize and predict recovery from stroke.

Imaging Methods for Prediction of Stroke Recovery. MR imag-
ing methods such as diffusion, perfusion, fMRI, spectroscopy,

and T1- and T2-weighted images give insight into the location
and severity of stroke.48,49 Perfusion imaging to delineate ische-
mic areas is typically used in concert with diffusion imaging at
the hyperacute stage of stroke to see if the ischemic area exceeds
(defining a larger area at risk) or matches the restricted diffusion
area. Match/mismatch criteria can inform the hyperacute use of
thrombectomy and tPA.50 These methods are applied at the
hyperacute stage and are typically less valuable for longer-term
recovery prediction. fMRI was shown to relate more weakly to
motor deficits than tract integrity based on diffusion imaging.51

Moreover, task fMRI relies on patient cooperation, effort, and
ability to perform motor tasks, which may be compromised on
the basis of the severity of stroke, though resting state functional
connectivity may be promising.52 T1 and T2 methods are often
used to size lesions but correlate relatively poorly with motor
function compared with also considering lesion location and load
on a fiber tract (gauged with diffusion imaging53,54). Lesion load
is also a relatively poor predictor of recovery. Adding DTI enables
better assessment of stroke and prediction of recovery.

DTI Methods for Predicting Stroke Recovery
DTI uses a signal representation that is limited to representing,
for example, a Gaussian distribution of diffusion displacement
and a single fiber direction in each voxel, which may not accu-
rately reflect the mixture of glia, myelin, neurons, extracellular
space, CSF, and microvasculature that can exist within a voxel.
Still, DTI metrics are sensitive to stroke-related changes, and
numerous studies have used DTI to better understand and char-
acterize changes after stroke48,54 and to gauge the effects of
therapies.55

While DTI and particularly FA are useful, histology studies
have shown that FA is not a specific biomarker because it con-
flates myelination, fiber dispersion, and intra-/extraneurite con-
tributions. FA is widely used despite its nonspecific nature. For
example, a recent review4 reported good correlation between a
DTI metric such as FA and a motor outcome metric such as FM
or NIHSS (which is not as useful a measure of motor capabilities
as FM) scores, though a few of the studies did not find significant
predictive correlations from the FA metrics at some stages.56-58

Kumar et al2 did a meta-analysis on 6 small studies with outcome
measures such as NIHSS and reported a pooled r=0.82. They
pointed out the need for larger, prospective studies to better
determine the utility of FA metrics for predicting outcomes. As
highlighted below, these retrospective studies report best-fit lin-
ear correlations for the data obtained and would not be expected
to perform as well when doing prospective predictions.

Tractography from DTI has also been useful for studying
stroke and predicting recovery. For example, tractography meth-
ods for defining tract-based ROIs4 and connectivity analysis
methods59,60 have been developed.

Diffusion methods stand to benefit from beyond-DTI meth-
ods that can in some ways consider crossing fibers, structural
compartments with hindered or restricted diffusion, and non-
Gaussian distributions of the diffusive motion of water in the
brain. Here, we seek to complement the recent DTI in stroke
reviews2-4 by focusing on works that used beyond-DTI methods
for obtaining microstructural parameter maps in stroke. Several
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studies have reported better correspondence of these microstruc-
tural mapping methods with motor outcomes, and others have
reported greater changes between ipsilesional and contralesional
regions in the microstructural parameters compared with DTI,
implying greater sensitivity to stroke effects.

Beyond-DTI Methods for Stroke
New diffusion methods have been developed that better separate
the diffusion signal contributions from fiber dispersion and
intra-/extraneurite compartments. More samples in q-space
(Online Supplemental Data) provide better angular resolution of
fibers,61-65 allow estimating the non-Gaussian portions of the sig-
nals (kurtosis), and enable estimating models of biophysical com-
partments along with fiber orientations and dispersions. Such
compartment models are well-described in multiple articles,
including the supplement in Lakhani et al.66 Because the adverse
impact of stroke is, in part, from disrupting white matter connec-
tivity, better measures of assessing fiber bundle integrity could
give better insight and predictive power over current techniques.
This white matter assessment is one way that beyond-DTI meth-
ods may provide significant additional information. Currently,
the only beyond-DTI methods used with stroke applications to
date include the following: DKI, white matter tract integrity
(WMTI), GFA, NODDI, simple harmonic oscillator-based recon-
struction and estimation (SHORE) parameters, and 1 article
using different diffusion times to estimate the rate of kurtosis.

DKI. The standard DTI representation is appropriate in freely dif-
fusing isotropic media such as CSF. For areas with restricted dif-
fusion such as within axons, Jensen et al67 proposed extending
the DTI signal representation to add a higher-order term:

lnðS bð Þ
S 0ð ÞÞ ¼ �bDþ 1

6
b2D2K;

where K is the kurtosis. To have sufficient data to fit these higher-
order terms uniquely, one must have data acquired at multiple
nonzero b-values. As with DTI, a kurtosis tensor can be defined
to take into account diffusion directions. When DKI is used to fit,
the DTI tensor portion has 6 unknowns and the DKI tensor val-
ues include 15 unknowns, so at least 21 q-space samples and a
b=0 image are typically needed. For typical brain microstructure
and diffusion acquisition parameters, the non-Gaussian portion
of the diffusion signal68 will not be prevalent if b#1000 mm2/s.
Acquisitions vary but may include, for example, 15 directions at
b=1000 and 15 directions at b=2000 (Online Supplemental Data).
The additional microenvironment complexity in stroke may
make DKI a better approach than DTI.

Most of the beyond-DTI research in stroke has been with
DKI, with 10 articles in rat stroke models,69-78 a recent review ar-
ticle,79 and 10 articles in humans (Online Supplemental Data).
The rat model studies found larger changes with mean kurtosis
(MK) and axial kurtosis (AK) compared with DTI metrics. Sizing
of lesions was also studied with ex vivo MR imaging, and the
studies found that DKI metrics such as MK were larger than
those in MD and histology.72,78 However, with in vivo MR imag-
ing and a different segmentation method, others reported that

the DKI metrics yielded lesion sizes smaller than MD volumes.77

In addition, sizing has not been shown to be very predictive of
motor recovery.80 Possibly more promising from the rat model
studies is that the DKI parameters changed more with time (or
compared with the contralateral hemisphere) than the DTI pa-
rameters due to stroke. This increased sensitivity to stroke was
also found in the studies with humans. The Online Supplemental
Data summarize the details of each of these DKI human imaging
poststroke articles.

The relatively widespread use of DKI compared with other
beyond-DTI methods is likely due to modest acquisition require-
ments, GE Healthcare’s early implementation of DKI in their
FuncTool software on the scanner, and early reports of potential.
For example, Hui et al,5 in 2012, reported that MK changed more
than FA in stroke regions relative to the nonstroke hemisphere
(ipsilesional and contralesional regions) in 44 subjects with
stroke, though there was no evaluation of the clinical importance
of such changes. Fast kurtosis methods using ,20 diffusion-
weighted images have also been developed81 and used in rat
studies.71,74

Ideally, FM scores at 6–12weeks poststroke serve to measure
motor outcomes, and such scores were measured in 2 DKI
articles. In Spampinato et al,82 the MK ipsilesional/contralesional
ratio gave the best correlation with FM scores (r=0.85). The AK
ratio also was predictive (r=0.78), while DTI MD (r=0.69), and
FA (r=0.4) ratios had lower associations with FM scores. Li et
al83 grouped patients into good responders (.10-point FM
change) or poor responders. Then a relative axial kurtosis AK
measure (ipsilesional–contralesional)/contralesional) gave the
best discrimination of the 2 groups and was superior to DTI
methods. The study in Yu et al84 used NIHSS scores rather than
FM and found lower correlations, but still the relative AK metric
gave the highest correlation (r=0.3) with NIHSS scores. DTI
methods in Yu et al showed no changes in the cortical spinal tract
on the stroke side relative to the contralateral side (and hence no
correlation with NIHSS).

The WMTI method was included in 2 of the DKI articles.5,82

WMTI assumes intra- and extra-axonal compartments and esti-
mates axonal water fraction, intra-axonal AD, extra-axonal axial
and radial diffusivities, and the tortuosity of the extra-axonal
space. WMTI assumes all parallel axons and so is only applied in
the corpus callosum, or where FA.0.3.5,82 WMTI parameters
were calculated along with DKI, and the axonal water fraction
correlated (r=0.63) with FM scores in Spampinato et al.82 More
recent nonstroke works relaxed the parallel axon requirement
using a WMTI-Watson model that includes fiber dispersion,
though the method assumes axially symmetric diffusion, so it was
only applied in the spinal cord.85

Besides DKI, other beyond-DTI methods have been explored
for use in patients with stroke. The Online Supplemental Data
summarize the 9 articles that have investigated other methods:
GFA, SHORE, NODDI, and rate of kurtosis methods have all
shown promising results in patients with stroke.

GFA. GFA is obtained from the orientation distribution function,
which can be calculated from the 3D ensemble average propaga-
tor.21 The 3D ensemble average propagator is obtained, for
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example, by 3D Fourier transform from Cartesian-sampled q-
space data.86 Then, similar to how FA is calculated from DTI
data as SD(l ) / RMS(l ), where l is the eigenvalue of the diffu-
sion tensor and RMS stands for root mean square, GFA ¼ SD
(w )/RMS(w ), where w represents the orientation distribution
function.21 GFA can be considered as an extension of FA in vox-
els that have crossing/touching fibers, so it may give a better mea-
sure of fiber disarray in stroke.

The GFA studies in the Online Supplemental Data came from
diffusion spectrum imaging, which acquires a Cartesian grid of q-
space samples with a relatively high bmaximum (4000–8000 s/mm2).
Most of these studies took the unusual approach of studying only
the contralesional side. GFA revealed microstructure changes in
the contralesional side during poststroke remodeling.6,25,87-89 Most
of these studies used the same data set of �10 patients with stroke
who had been imaged with a 26-minute diffusion acquisition.6,25,89

GFA in the contralesional side was highly predictive of the 6 -
month NIHSS score (r2 ¼ 0.84 adjusted).6 Combining GFA 1

NIHSS1 age had an even higher correlation (r2 ¼ 0.96 adjusted)
in this small study.6 Other parameters (SHORE) were also calcu-
lated from this data set, as described below.

SHORE. The SHORE method calculates propagator anisotropy,
along with measures of the ensemble average propagator variance
(mean square displacement), return-to-the-origin probability, the
return-to-the-axis probability, and the return-to-the-plane proba-
bility.90 These parameters when evaluated in a subcortical loop of
tracts gave high correlations with 6-month NIHSS scores.91

Galazzo et al25 added comparison with DTI and evaluated find-
ings in gray matter. Both articles used the 10-person diffusion
spectrum imaging data set from Granziera et al6 and evaluated
only the contralesional side.

Compartment Model Methods. Unlike the FA, GFA, and
SHORE parameters that arise from signal representations that do
not postulate a particular underlying biophysical model, a num-
ber of compartment-based models have been developed. These
models, of which NODDI is a good example, estimate micro-
structural multicompartment (intra-axon, extra-axon, CSF com-
partments for NODDI) and fiber-dispersion parameters. This
approach is thought to be useful for characterizing dispersed or
crossing fibers92 and for estimating white matter degeneration in
the subacute phase of stroke when Wallerian degeneration and
glial scarring processes are occurring.93 A few groups have
recently reported NODDI models to be useful in stroke imaging
in rats94 and humans.7,95-97 These findings are despite the fact
that NODDI fixes diffusivity parameters to 1.7 (and to 3.0 s/mm2

in spinal fluid), and these parameters are not uniformly correct in
healthy individuals and are less accurate in stroke regions. It is
also known that NODDI “neurite density” (also called vic) does
not reflect the density of neurites in tumor and in stroke (where
it has been called the “restricted diffusion index”). The only
NODDI study including outcome measures (FM scores) was
Hodgson et al,96 in which the best outcome predictor was found
to be the orientation dispersion index (optimism-adjusted r2 ¼
0.83), though vic (or the “restricted diffusion index”) also

correlated r2 ¼ 0.70, as did GFA (r2 ¼ 0.57). Other parameters
including DTI and stroke size and lesion load did not correlate as
well.

The two other NODDI stroke studies included DKI and also
studied changes in microstructure across time.7,97 The study of
Wang et al 97 was unpaired: The same subject was not imaged at
multiple time points. Still, the percentage difference of the orien-
tation dispersion index in the stroke area relative to the contrale-
sional side was larger than other NODDI parameters, MK, FA, or
MD. Correlation with time since stroke onset was also highest
with the orientation dispersion index. Mastropietro et al7 ana-
lyzed only the posterior limb of the internal capsule (PLIC) and
cerebral peduncle regions and reported significant differences
between their ipsilateral and contralateral sides for the orientation
dispersion index and other parameters including FA, AD, RD,
kurtosis anisotropy, and AK. Other parameters (MD, MK, vic,
isotropic volume fraction) did not show significant differences.

Other biophysical factors, such as different T2s in intra-axonal
and extracellular compartments, water exchange, and Gaussian
diffusion assumed in compartments, could all be of interest but
are not included in the compartment model methods. Using dif-
ferent diffusion times while maintaining the same b-value is also
of interest and was recently shown to help predict chronic stroke
areas in 5 subjects with stroke.35 That method estimated the
exchange rate (rate of kurtosis) using an equation based on a 2-
compartment model with exchange. Other models such as
NODDI assume no water exchange between the myelin and the
intracellular and extracellular compartments, though there is evi-
dence for a mixture of fast and slow exchange.34 Such exchange
causes signal changes due to different diffusivities and relaxivities
(possibly negligible) in the different compartments.98 A multi-
shell acquisition with 2 diffusion times was used in Lampinen et
al35 to obtain a parameter sensitive to the exchange rate. Results
showed faster exchange in the ischemic stroke areas.35

The Online Supplemental Data summarize the methods with
outcome measures (FM or NIHSS) graphically, with the graph
edges reflecting the number of subjects in each comparison.

Acquisition and Analysis Diversity in Beyond-DTI Methods
The beyond-DTI studies varied considerably in the acquisition.
Besides a range of angular q-space sampling and different shells or
b-values, there were wide differences in spatial resolution (0.94–
3mm in-plane, 1.5- to 4-mm section thickness), number of slices
(range, 9–64), acquisition time (range, 2–27minutes), and imaging
time poststroke (range, 6 hours to 4weeks). A large high-resolution
highly sampled q-space data set similar to that with connectome
imaging would be ideal to determine the value of higher resolution
and sampling for the use of beyond-DTI methods in stroke.

Different acquisition parameters may lead to different results.
This possibility is best known in DTI; for example, Table 1 in
Barrio-Arranz et al99 describes results from 14 studies of different
spatial resolutions, b-values, or diffusion directions and how FA
and MD changed. Less has been studied with beyond-DTI meth-
ods, but for example, NODDI results are a function of b-values
and gradient directions.100 This finding again is motivation for
large rigorous studies in stroke with overcomplete sampling and
outcome measures for validation.
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Analysis methods tended to be from either ROIs in parts or
all of the cortical spinal tract (PLIC, the cerebral peduncle, and
the corona radiata) and/or from manually identified ischemic
regions. Note that it has been shown in DTI that different fitting
methods (linear, nonlinear) give significantly different results.101

Beyond-DTI methods such as a more rapid NODDI fitting
method102 also are known to affect results compared with the
original slower NODDI fitting method. A few studies used tract-
based analyses and/or voxel-based analyses. Atlas-based regions
were often used, though it is not known how well the atlas
matches tracts in stroke regions with disrupted fiber tracts.
Trade-offs with SNR and with how different beyond-DTI param-
eters vary with voxel size are yet to be studied in subjects with
stroke. Even if ROI analysis methods are used, it could be that
imaging with smaller voxels could better inform microstructure
and tractography methods.

Note that for predicting stroke recovery and following stroke
recovery, we are interested not only in local stroke effects but also
global stroke effects. The best focus and most relevant informa-
tion to understand and predict adaptations are still not known.
For example, some have found the PLIC to be the most predictive
of future motor function, even if the stroke was not in the PLIC.
This finding may be because the PLIC is a hub with incoming
sensory neurons and outgoing motor control neurons and the
way that stroke, even in other regions, affects the PLIC is telling.
Alternatively, this may simply be from the small sample size and
limited comparisons with other fiber tracts; other regions or com-
posites of regions may provide improved predictive information.

The different acquisitions, nonstandard processing, and few
studies with relatively few subjects that include motor stroke out-
comes mean that larger studies with FM scores and current acqui-
sition techniques including simultaneous multislice methods103 are
needed to better understand the impact of beyond-DTI methods.
While the scan times vary widely, from 2 to 27minutes (Online
Supplemental Data), this variation is, in part, due to limited cover-
age, spatial resolution, and q-space sampling choices. Acquisition
requirements for optimal performance for the different methods
are not yet known in stroke. It is likely that all of the beyond-DTI
methods can be made clinically practical (,5 minutes) with
advanced acquisition (simultaneous multislice) and deep learning
techniques,104 though those techniques are still evolving and being
evaluated. Direct comparisons between the beyond-DTI methods
and investigation into combining parameters from different meth-
ods should also be performed in the context of stroke.

Other Considerations
As pointed out by Kim et al,38 90% of neurologic biomarker stud-
ies, including most DTI studies as well as most nonimaging
methods, did not use an independent set of stroke data to cross-
validate their prediction model. Thus, the results are a best case
of predicted correlation, retrospectively, with the given data set.
The beyond-DTI studies reported in the tables here did not per-
form cross-validation, though 1 small study used k-fold cross-val-
idation96 to have more confidence in the predictive value. The
studies also did not identify or discuss minimally clinically im-
portant differences,38 which will be essential to further develop
and translate these promising new methods to clinical use.

Another open question is how outcome predictions vary as a
function of therapy. This question includes acute treatments such
as tPA or thrombectomy and therapies such as brain-computer
interface methods. The brain-computer interface has shown
promising results in small studies of people with chronic stroke;
recovery may be enhanced, especially if such therapies are started
early after stroke. Indeed, advanced diffusion-based metrics may
be able to predict who would benefit the most from the brain-
computer interface or other types of therapies; plasticity or reor-
ganization changes may be measurable with beyond-DTI param-
eters while confounding the interpretation of FA. The ability of
diffusion methods to differentiate ipsilateral-versus-contralateral
contributions of motor tracts to upper extremity function may
also inform stroke rehabilitation approaches.105

The many exciting new advances in neuroimaging and partic-
ularly in beyond-DTI methods are likely to have a highly signifi-
cant impact in the context of predicting stroke recovery, for
improving our understanding of brain changes after stroke, and
for providing unique advantages when selecting personalized
stroke therapy. However, this review also makes clear that there
is a need for rigorous studies to better evaluate and translate these
microstructural mapping methods to clinical application.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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