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ORIGINAL RESEARCH
ADULT BRAIN

Spiral 2D T2-Weighted TSE Brain MR Imaging:
Initial Clinical Experience

E. Sartoretti, S. Sartoretti-Schefer, L. van Smoorenburg, C.A. Binkert, A. Gutzeit, M. Wyss, and T. Sartoretti

ABSTRACT

BACKGROUND AND PURPOSE: Spiral MR imaging may enable improved image quality and higher scan speeds than Cartesian trajec-
tories. We sought to compare a novel spiral 2D T2-weighted TSE sequence with a conventional Cartesian and an artifact-robust,
non-Cartesian sequence named MultiVane for routine clinical brain MR imaging.

MATERIALS AND METHODS: Thirty-one patients were scanned with all 3 sequences (Cartesian, 4 minutes 14 seconds; MultiVane, 2
minutes 49 seconds; spiral, 2 minutes 12 seconds) on a standard clinical 1.5T MR scanner. Three readers described the presence and
location of abnormalities and lesions and graded images qualitatively in terms of overall image quality, the presence of motion and
pulsation artifacts, gray-white matter differentiation, lesion conspicuity, and subjective preference. Image quality was objectivized
by measuring the SNR and the coefficients of variation for CSF, GM, and WM.

RESULTS: Spiral achieved a scan time reduction of 51.9% and 21.9% compared with Cartesian and MultiVane, respectively. The num-
ber and location of lesions were identical among all sequences. As for the qualitative analysis, interreader agreement was high
(Krippendorff a. .75). Spiral and MultiVane both outperformed the Cartesian sequence in terms of overall image quality, the pres-
ence of motion artifacts, and subjective preference (P, .001). In terms of the presence of pulsation artifacts, gray-white matter dif-
ferentiation, and lesion conspicuity, all 3 sequences performed similarly well (P. .15). Spiral and MultiVane outperformed the
Cartesian sequence in coefficient of variation WM and SNR (P, .01).

CONCLUSIONS: Spiral 2D T2WI TSE is feasible for routine structural brain MR imaging and offers high-quality, artifact-robust brain
imaging in short scan times.

ABBREVIATIONS: CV ¼ coefficient of variation; SENSE ¼ sensitivity encoding

T2WI sequences are essential components of every clinical
MR imaging protocol. Specifically, the T2 contrast is particu-

larly useful to analyze brain anatomy, CSF spaces, and parenchy-
mal lesions.

Currently, most clinical institutions rely on axially acquired car-
tesian 2D T2WI TSE sequences.1 These sequences offer a relatively
short scan time (especially when accelerated by means of parallel
imaging2 or compressed sensing3) and achieve a reliable and

accurate depiction of the brain. Alternatively, especially in pediatric
and elderly patients, certain institutions rely on sequences with a
non-Cartesian sampling scheme, such as PROPELLER.4,5 With
PROPELLER, multiple echo-trains of TSE are acquired in a rotat-
ing, partially overlapping fashion rather than in a rectilinear fash-
ion as in Cartesian imaging.5 While sequences with this sampling
scheme offer central k-space oversampling and thus increased
robustness toward artifacts, they require a considerable increase in
scan time compared with their Cartesian counterparts in case of
fully matching scan parameters.5 Thus, a sequence offering both
artifact robustness and an intrinsically short scan time is highly de-
sirable for clinical T2-weighted brain MR imaging.

Despite requiring high technological standards both in terms
of scanner hardware and software, spiral MR imaging sequences
have recently been implemented for clinical MR imaging.
Sequences with spiral k-space sampling have inherently reduced
gradient moments, central k-space oversampling, and a nondedi-
cated phase-encoding direction, thus rendering them less suscep-
tible to artifacts. Furthermore, the efficiency of k-space sampling
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is high in spiral MR imaging due to the longer acquisition dura-
tion per shot.6 Recent clinical feasibility studies have thus shown
the value of spiral MR imaging for T1-weighted spin-echo/gradi-
ent recalled-echo brain and spine imaging as well as for intracra-
nial vessel imaging.6-13

Here we expand on previous endeavors by presenting, for the
first time, initial clinical results of a spiral TSE technique for rou-
tine clinical 2D T2-weighted TSE brain MR imaging. We hypothe-
sized that this sequence would offer both short scan times and
artifact robustness, thus combining the best features of conven-
tional Cartesian imaging and non-Cartesian imaging. To this
extent, we prospectively compared the novel spiral 2D T2WI TSE
sequence with a conventional Cartesian 2D T2WI TSE sequence
and a (non-Cartesian) PROPELLER-like sampled 2D T2WI TSE
sequence in patients.

MATERIALS AND METHODS
Study Design and Subjects
This institutional review board-approved intraindividual compari-
son study was performed between January and May 2021. All par-
ticipants gave general written informed consent. We prospectively
acquired all 3 sequences in 31 consecutive patients (mean age,
57 years; age range, 18–85 years; 16 men, 15 woman) who were
referred to our department for brain MR imaging due to various
clinical indications. Exclusion criteria were as follows: general con-
traindication to MR imaging (ie, metallic implants and so forth),
younger than 18 years of age, and pregnancy. The final main diag-
noses were the following: chronic lacunar infarcts (n¼ 1), periven-
tricular heterotopia (n¼ 1), territorial infarcts (n¼ 6), metastases
(n¼ 1), microangiopathy (n¼ 9), multiple sclerosis demyelinating
lesions (n¼ 1), periventricular leukomalacia (n¼ 1), subdural he-
matoma (n¼ 1), dilated Virchow-Robin spaces (n¼ 7), and nor-
mal findings (n¼ 3).

MR Imaging
Imaging was performed on a standard clinical 1.5T scanner
(Ingenia; Philips Healthcare) with a 16-channel head coil.
The combination of spiral with TSE was enabled with the

Compressed SENSE 2.0 WIP software, Release 5.7 (Philips
Healthcare). As part of the routine clinical protocol, the fol-
lowing additional sequences were acquired besides the 2D
T2WI TSE scans: a sagittal 3D FLAIR sequence, a precon-
trast sagittal 3D T1WI turbo field echo sequence, a diffu-
sion-weighted transverse sequence, a susceptibility-weighted
transverse sequence, and, in selected cases, a sagittal post-
contrast 3D T1 black-blood TSE sequence or a postcontrast
sagittal 3D T1 m-Dixon turbo field echo sequence.

The 3 2D T2WI TSE sequences (Table 1) were acquired in ran-
dom order. The performance of the spiral sequence was bench-
marked against 2 commercially available sequences used
routinely at our institution: A conventional Cartesian 2D
T2WI TSE sequence and a MultiVane 2D T2WI TSE sequence
using PROPELLER-like, non-Cartesian k-space sampling.
Sequence parameters of the Cartesian and MultiVane sequen-
ces were chosen on the basis of long-standing and well-estab-
lished clinical protocols.10 The sequence parameters of the
spiral sequence were selected on the basis of the initial optimi-
zation of this sequence by the vendor and in-house by means
of volunteer tests. Most important, the sequence parameters
were kept as constant as possible among all 3 sequences.9-11

However, due to institutional scan time constraints, MultiVane
was accelerated with sensitivity encoding (SENSE), and the
number of signal averages was adapted to shorten the scan
time.

The spiral sequence uses an in-plane spiral in-out readout
scheme (spiral acquisition window, 11.4 ms; scan duration, 2
minutes 12 seconds). Blurring due to off-resonance was cor-
rected during reconstruction on the basis of a magnetic field
map acquired before the spiral scans.11 This study was per-
formed on the standard product configuration without addi-
tional enhancement. Eddy current calibration of B0 eddy
currents and linear and cross-term eddy currents was per-
formed as part of the standard system tuning procedure.
Compensation of those eddy current contributions was per-
formed in run-time as part of the vendor's product-acquisi-
tion software.14

Table 1: Sequence parameters
Parameter Cartesian T2WI TSE MultiVane T2WI TSE Spiral T2WI TSE

Technique 2D TSE 2D TSE 2D TSE
FOV AP/FH/RL (mm) 230 � 230 � 149 230 � 230 � 149 230 � 230 � 149
Acquired voxel size (mm3) 0.7 � 0.7 � 4.0 0.7 � 0.7 � 4.0 0.7 � 0.7 � 4.0
Reconstructed voxel size (mm3) 0.45 � 0.45 � 4.0 0.45 � 0.45 � 4.0 0.45 � 0.45 � 4.0
No. of slices 30 30 30
TR (ms) 5300 5300 5300
TE equivalent (ms) 90 90 90
Flip angle 90° 90° 90°
Refocusing flip angle 180° 180° 180°
TSE factor 28 30 8
Spiral acq window – – Spiral in-out, 11.4ms
Parallel imaging No SENSE 1.5 No
NSA 2 1 2
Receiver bandwidth (Hz/pixel) 560 290 114
SAR (W/kg) ,1.9 ,2.0 ,1.6
dB/dT (T/s) 52 33 72
Acquisition time (min:sec) 04:14 02:49 02:12

Note:—NSA indicates number of signal averages; acq, acquisition; SAR, specific absorption rate; dB/dT, ratio between the amount of change in amplitude of the magnetic field
(dB) and the time it takes to make that change (dt); T/s, Tesla/second; AP/FH/RL, anterior-posterior/foot-head/right-left; –, scan parameter does not exist for this sequence.

2 Sartoretti � 2021 www.ajnr.org



Qualitative Analysis
Image analysis was performed independently by 3 readers (a
board-certified neuroradiologist with 30 years of experience and
2 trainees, each with 3 years of experience in medical imaging) in
a blinded and randomized manner.

First, as outlined elsewhere,15 for each sequence and patient,
the readers recorded the presence, number, and localization of
abnormalities and lesions. In case of discrepancies among the 3
sequences or among the readers, the lesions were evaluated on all
available imaging sequences in consensus to detect potential
false-positive and false-negative findings.15

Second, as suggested elsewhere,16-19 all images were graded
one-by-one in the following categories using 4-point Likert scales:
overall image quality (1, nondiagnostic; 2, limited but interpretable;
3, minimally limited; and 4, optimal quality), the presence of
motion and pulsation artifacts (1, severe image artifacts; 2, moder-
ate artifacts; 3, mild artifacts; 4, no artifacts), gray-white matter dif-
ferentiation (1, indistinguishable gray-white sharpness; 2, very
blurry gray-white sharpness; 3, slightly blurry gray-white sharp-
ness; 4, well-defined gray-white sharpness), and lesion conspicuity
(1, a lesion whose borders are barely distinguishable from back-
ground brain; 2, a lesion with very blurry margins; 3, a lesion with
slightly blurry margins; 4, sharp lesion margins). Additionally,
readers were asked to record any other artifacts or anything un-
usual that appeared to them during the readout.

Last, for each patient, all 3 sequences were presented side-by-
side, and the readers were asked to order the sequences according
to their subjective preference. Specifically, a score of 3 was given
to the best sequence; a score of 2, to the second-best sequence;
and a score of 1, for the worst sequence. Scores could be used
more than once if sequences were judged equivalent.20

Quantitative Analysis
As secondary end points, we used ROI-based analyses to objectify
image quality and image appearance.9,16 For each patient, ROIs
were drawn on representative images from each sequence. ROIs
were positioned within the frontal WM, the GM of the caudate
head, and in the lateral ventricles (CSF) at the level of foramen of
Monro.17 All ROIs were the same size and had identical position-
ing between sequences.16 From each ROI, the mean signal inten-
sity and SD of the signal intensity were extracted. ROI placement
was performed twice, and the average values of both measure-
ments were considered representative for further analysis.9 As
suggested in the literature,9,17,21 we then computed the SNR and
the coefficient of variations (CVs) for WM, GM, and CSF as
follows:

SNR ¼ 1
2
½meanðSignalWMÞ
SDðSignalWMÞ þmeanðSignalGMÞ

SDðSignalGMÞ �;

CV for Tissue a ðCVaÞ ¼ SDðSignalaÞ
meanðSignalaÞ :

Statistical Analysis
Data distribution was initially checked with histograms, boxplots,
and quantile-quantile plots. Differences in qualitative metrics
were initially checked with Friedman tests followed by post hoc

Wilcoxon signed rank tests. Interreader agreement of qualitative
scores was quantified with Krippendorff a coefficients (0, no
agreement, 1, perfect agreement). Differences in quantitative
metrics were initially checked with 1-way repeated-measures
ANOVAs followed by post hoc paired t tests. P values were cor-
rected for multiple comparisons with the Holm method. P
values, .05 were considered significant. All statistical analyses
were performed in the R programming language (http://www.r-
project.org/).

RESULTS
Representative image examples are shown in the Figure and the
Online Supplemental Material. With a scan time of 02:12minutes,
spiral achieved a scan time reduction of 51.9% and 21.9% com-
pared with Cartesian andMultiVane, respectively.

In terms of the presence, number, and location of lesions,
there were no differences among the 3 sequences. All readers
recorded the same pathologic and abnormal findings on all 3
sequences. Besides motion and pulsation artifacts, no other types
of artifacts were recorded.

Concerning the qualitative metrics (Table 2 and Online
Supplemental Material), interreader agreement was high (a¼
.755 for presence of pulsation artifacts; a¼ .98 for presence of
motion artifacts). Spiral and MultiVane both outperformed the
Cartesian sequence in terms of overall image quality and the pres-
ence of motion artifacts (P, .001 for all readers and both met-
rics). Between spiral and MultiVane, there were no significant
differences in these 2 metrics (P. .4 for all readers and both

FIGURE. Representative images from 3 different patients (1 patient
per row). In patient 1, ghosting artifacts from bulk motion appear on
Cartesian images (orange arrows) but not on MultiVane or spiral
images. In patient 2, no artifacts were present and thus an excellent
visualization could be achieved for all 3 sequences. In patient 3, a
small focal multiple sclerosis lesion is visualized clearly on all 3
sequences (green arrow).
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metrics). In terms of the presence of pulsation artifacts and gray-
white matter differentiation, all 3 sequences performed similarly
well (P. .15 for each reader). Finally, for lesion conspicuity,
there were also no significant differences among the 3 sequences
(P. .45 for each reader). Readers indicated a higher subjective
preference for spiral and MultiVane compared with the Cartesian
sequence (P, .001 for all readers) without significant differences
between spiral and MultiVane (P. .5 for all readers).

Concerning the quantitative metrics (Table 2 and Online
Supplemental Material), there were no significant differences
among the 3 sequences for the metrics CVCSF and CVGM (P. .12
for both metrics). However, both spiral and MultiVane outper-
formed the Cartesian sequence in the metrics CVWM and SNR
(P, .01 for both sequences and metrics). Between spiral and
MultiVane, there were, however, no differences in terms of
CVWM and SNR (P. .5 for both metrics).

DISCUSSION
In this study, we compared a novel spiral 2D T2WI TSE sequence
with its conventional Cartesian counterpart and an artifact-robust,
PROPELLER-like sampled sequence named MultiVane. We
showed that the spiral sequence outperforms the Cartesian
sequence and performs equally as well as the MultiVane sequence
in terms of subjective and objective image quality. Concerning the
exact frequency and nature of artifacts, all 3 sequences exhibited
only motion and pulsation artifacts. However, the spiral and
MultiVane both had significantly fewer motion artifacts than the
Cartesian sequence, while all 3 sequences had only minor pulsation
artifacts in select cases. Thus, the spiral sequence enables high-
quality, artifact-robust imaging on a level with the MultiVane
sequence, yet at a shorter scan time.

Spiral MR imaging has several benefits over Cartesian k-space
sampling. Due to the longer acquisition duration per shot, scan
efficiency is high and the scan time can, thus, be very short.
Furthermore, spiral trajectories show inherently reduced gradient
moments, central k-space oversampling, and a nondedicated
phase-encoding direction. These traits render spiral sequences
more robust toward artifacts. Thus, with spiral MR imaging,
rapid and artifact-robust imaging can be achieved.6 Accordingly,

promising clinical results have been reported for anatomic spiral
T1WI spin-echo and gradient recalled-echo imaging. While the
technical details of spiral TSE and T2WI imaging have been
described previously,22,23 to the best of our knowledge, this is the
first study investigating the value of a spiral TSE technique as imple-
mented for 2D T2-weighted TSE brain MR imaging in patients on
a standard clinical MR imaging scanner and clinical routine.

Currently, most institutions rely on Cartesian or PROPELLER-
like sampled sequences (such as MultiVane) for clinical T2-weighted
brain MR imaging. While PROPELLER sequences have become a
popular choice for anatomic brain imaging due to their increased
robustness predominantly toward motion artifacts, scan time is gen-
erally increased compared with conventional Cartesian TSE
imaging.5,24,25

A standard rectilinear sequence requires (M/L) excitations to
fill a k-space of matrix size Mwith acquisitions of echo-train length
L. For PROPELLER imaging, at least ðp=2) � (M/L) excitations
are needed for an equivalent sequence, thus leading to approxi-
mately 60% increase in scan time compared with Cartesian imag-
ing.5 With parallel imaging or compressed sensing acceleration,
the increase in scan time can be reduced. Specifically, as in the clin-
ical routine at our institution, our MultiVane sequence also used
SENSE 1.5 and 1 signal average, explaining why MultiVane had a
shorter scan time than the Cartesian sequence. Hypothetically, if
the MultiVane sequence had been acquired without SENSE and
with 2 signal averages, as in the case of the Cartesian and spiral
sequences, scan time would have increased by a factor of 2.5, which
would have resulted in a 66% increase in scan time compared with
the Cartesian sequence.

With spiral MR imaging, however, the dilemma of artifact
robustness and scan speed can be resolved. Specifically, our spiral
sequence offers exceptionally short scan times as well as both
motion and pulsation artifact robustness, thus combining the best
features of conventional Cartesian imaging and non-Cartesian
(PROPELLER-like) imaging. In this context, the spiral sequence
achieved a scan time reduction of nearly 50% compared with the
Cartesian sequence. Most important, while not investigated in this
study, scan time for the spiral sequence may be shortened even fur-
ther with parallel imaging or compressed sensing techniques.

Table 2: Detailed overview of qualitative and quantitative data

Cartesian MultiVane Spiral
Overall image qualitya 3; (2,3)/3; (2.5,3)/3; (3,3) 4; (4,4)/4; (4,4)/4; (4,4) 4; (4,4)/4; (4,4)/4; (4,4)
Presence of motion artifactsa 3; (2,3)/3; (2,3)/3; (3,3) 4; (4,4)/4; (4,4)/4; (4,4) 4; (4,4)/4; (4,4)/4; (4,4)
Presence of pulsation artifactsa 4; (4,4)/4; (3.5,4)/4; (4,4) 4; (3,4)/4; (3,4)/4; (3,4) 4; (4,4)/4; (4,4)/4; (4,4)
GWM differentiationa 3; (3,4)/3; (3,4)/3; (3,4) 4; (3,4)/4; (3,4)/4; (3,4) 4; (3,4)/4; (3,4)/4; (3,4)
Lesion conspicuitya 4; (3.75,4)/4; (3.75,4)/4; (3.75,4) 4; (4,4)/4; (4,4)/4; (4,4) 4; (4,4)/4; (4,4)/4; (4,4)
Subjective preference
(No. of times score 1/No. of
times score 2/No. of times
score 3)

Reader 1: (6/22/3)
Reader 2: (7/21/3)
Reader 3: (8/20/3)

Reader 1: (0/5/25)
Reader 2: (0/6/25)
Reader 3: (0/6/25)

Reader 1: (0/5/26)
Reader 2: (0/5/26)
Reader 3: (0/5/26)

CVCSF
b 0.026 (0.02) 0.023 (0.019) 0.021 (0.014)

CVGM
b 0.109 (0.053) 0.096 (0.035) 0.087 (0.025)

CVWM
b 0.07 (0.027) 0.053 (0.019) 0.053 (0.02)

SNRb 13.36 (3.4) 16.1 (3.3) 16.6 (3.9)

Note:—GWM indicates gray-white matter; IQR, interquartile range.
a Qualitative data are shown as median; (IQR) for readers 1/2/3.
b Quantitative data are presented as mean (SD).
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A further important aspect of the current study concerns the
exact choice and configuration of the sequences. While 2D TSE
techniques are widely considered the reference standard for clini-
cal brain MRI,1 3D and multiband TSE techniques have also been
proposed for clinical T2-weighted brain imaging. While not
investigated in this study, our spiral TSE technique is highly
adaptable and may be combined with these approaches.22,26,27

Furthermore, with high-field imaging being popular for brain
MR imaging, our spiral sequence can also be acquired at 3T.
Thus, our spiral sequence had lower specific absorption rate val-
ues than its counterparts, an advantage at 3T. However, the spiral
sequence is more susceptible to off-resonance B0 effects, which
are more pronounced at 3T. Thus, a future study assessing the
clinical value of our spiral TSE technique at 3T would be of
interest.

One limitation of our study was the limited sample size:
Because the spiral sequence could not be run with standard clini-
cal software, the scanner console had to be rebooted before each
spiral acquisition (to load a patch). This step limited our ability to
acquire the sequence in further patients. Second, it may have not
been possible to fully blind readers toward sequence details
because the spiral sequence has a distinct appearance. Third, scan
parameters were not fully identical among all sequences, possibly
representing a source of bias, especially for the quantitative image
analysis. Last, we are aware that while formula-based approaches
for estimation of quantitative metrics are widely used, they are
inherently limited, and more sophisticated methods may yield
more accurate estimations.9

CONCLUSIONS
We show that a spiral 2D T2WI TSE sequence enables high-qual-
ity, artifact-robust brain MR imaging in clinical routine at short
scan times. This sequence may, thus, represent a promising
option for improved and rapid clinical T2-weighted brain MR
imaging.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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