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BRIEF/TECHNICAL REPORT
ADULT BRAIN

A Novel Method to Measure Venular Perivascular Spaces in
Patients with MS on 7T MRI

I.C. George, A. Arrighi-Allisan, B.N. Delman, P. Balchandani, S. Horng, and R. Feldman

ABSTRACT

SUMMARY: In MS, inflammatory cells accumulate within the perivascular spaces of acute and chronic lesions. Reliance on perivas-
cular spaces as biomarkers for MS remains uncertain because various studies have reported inconsistencies in perivascular space
anatomy. Distinguishing between venular and arteriolar perivascular spaces is pathophysiologically relevant in MS. In this pilot study,
we leverage susceptibility-weighted imaging at 7T to better identify perivascular spaces of venular distribution on corresponding
high-resolution T2 images.

ABBREVIATIONS: HC ¼ healthy controls; PVS ¼ perivascular space

In MS, immune cells, immunoglobulins, and proinflammatory
factors cross 2 barriers to enter the CNS: the vascular endothe-

lium, or blood-brain barrier, and the glia limitans.1 Between these
is the perivascular space (PVS), where immune cells may accu-
mulate in both active and chronic MS lesions.2

The localization of immune cells and inflammatory markers
in relation to perivascular spaces, along with formation of MS
lesions around central veins, suggests that changes in PVS anat-
omy may reflect disease severity.3 Previous work reported differ-
ences in the PVS anatomy between patients with MS and healthy
controls (HC), though results have conflicted.4-6 In addition to
the heterogeneities of the study design, including differences in
field strengths and MS phenotypes, discrepancies may relate to
inadequate differentiation between venular and arteriolar PVSs,
which are differentially affected in MS.7 We hypothesized that

selective analysis of venular PVSs may more accurately reflect
pathophysiologic changes in MS.

We developed a novel technique coregistering T2-TSE images
with SWI to identify venular PVSs (with central susceptibility
suggesting deoxygenated blood) or nonvenular PVSs (lacking
susceptibility). We present the pilot results at 7T on 3 persons
with relapsing-remitting MS and 3 HC.

MATERIALS AND METHODS
Three persons with MS (1 woman/2 men; Expanded Disability
Status Scale scores, 2.0, 3.0, and 0; 32, 33, and 35 years of age) and
3 age-matched HC (32, 33, and 35 years of age) were recruited
through Mount Sinai Hospital. All persons with MS met the
2017 McDonald criteria8 and received disease-modifying therapy.
Informed consent was obtained from all participants.

Subjects were scanned on a 7T scanner (Magnetom 7T;
Siemens) using an SC72CD gradient coil (maximum slew rate ¼
200 T/m/s, Gmax ¼ 70 mT/m) with single-channel transmit and
32-channel receive head coils (Nova Medical). Sequences included
T2-TSE, SWI, and MP2RAGE with a uniform denoised recon-
struction. Details are listed in the protocol.9

To detect vessels, we developed a vessel-segmentation
tool in Matlab (MathWorks).10 Minimum-intensity-projection
images were obtained from SWI. Vessel edge enhancement was
performed by finding the eigenvalues of the Hessian matrix.11,12

Uniform denoised images were used to create GM and WM
volumetric segmentations of the brain using FreeSurfer, Version
6.0. (http://surfer.nmr.mgh.harvard.edu). Segmentations were used
to calculate total WM volume and create GM and WM masks.
Lesions were segmented by the lesion growth algorithm (https://
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www.applied-statistics.de/lst.html).13 The uniform denoised, T2-
TSE, and susceptibility-weighted images were coregistered using
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12), and the
FreeSurfer-derived masks were used to isolate WM of the cerebral
hemispheres.

The resulting 3D datasets were connected along an 18-con-

nected network through the nearest neighbors. Individual objects
were characterized using the “bwlabel” function in Matlab, and

principal axes were extracted. Networks were filtered to exclude

objects with a major-/minor-axis length ratio of ,4, to eliminate

nonvessel punctate foci of susceptibility.
For all subjects, WM PVSs were manually marked on coregis-

tered T2-TSE images by 2 raters (I.C.G. and A.A.-A.) on OsiriX

Imaging Software, Version 9.0.2 (http:// www.osirix-viewer.com).

An individual ROI was identified for each marked PVS. PVSs were
marked on the diameter through the short axis of the ROI (exclud-

ing diameters of ,0.5mm). Gray matter and posterior fossa PVSs

were excluded because these areas are prone to artifacts at 7T.

Interrater reliability was assessed comparing total PVSs marked

per section by each reviewer.
Vessel and PVS masks were overlaid to quantify the coinci-

dence of PVSs and segmented veins relative to the total number
of detected PVSs. Total numbers of PVSs and venular PVSs were
averaged across raters for persons with MS and HC.

A percentage perivenular space quotient was calculated for
each subject by dividing the number of venular spaces detected
by the total number of perivascular spaces. A nonparametric

Moods median test was performed to compare this percentage in
HC versus persons with MS. A x 2 test of independence was per-
formed to assess the relationship between the number of venular
PVSs and total PVSs in HC and persons with MS.

RESULTS
Alignment of PVSs manually marked on T2-TSE sequences with
corresponding SWI demonstrated the feasibility of this approach
(Fig 1).

Interrater reliability was high between reviewers, demonstrat-
ing correlation coefficients of r¼ 0.95 and r¼ 0.85 on 2 scans.

The total PVS number and percentage of venular PVSs were
quantified for 3 persons with MS and 3 HC. The mean total PVSs
were 4976 (SD, 282.6) in persons with MS versus 8487 (SD, 2645.1)
in HC (P¼ .15). Of these, 15.19% were venular in the persons with
MS group versus 10.26% venular in HC (P¼ .014) (Fig 2). In this
sample, even though persons with MS had fewer detectable perivas-
cular spaces than HC, a larger proportion of spaces in persons with
MS were venular. Total brain volumes andWM volumes were sim-
ilar between the persons with MS and HC, with a mean total vol-
ume of 1162mL (range, 968–1319 mL) in persons with MS and
1042mL (range, 996–1101 mL) in HC (t test, P¼ .46). Mean WM
volume was 470 mL (range, 374–557 mL) in patients with MS and
444 mL (range, 441–449 mL) in HC (t test, P¼ .68). Mean lesion
volume was 1.3mL (range, 0.45–1.45mL).

In HC, the number of venular PVSs was highly related to the
number of PVSs (x 2 ¼ 0.26, 2 df), while in the persons with MS

FIG 1. Overlay of pre- and postprocessed images of T2-TSE with manual PVS markings and SWI at 7T in a healthy control (A–D 1) and a person with
MS (A–D 2) allows identification of venular and nonvenular PVSs. T2-TSE (A), SWI (B), T2-TSE with PVSs highlighted in yellow (C), and T2-TSE with SWI
overlay in red (D) are depicted, with magnification of 1 sample area in the thick white square demonstrated in the thinnerwhite square inset.
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group, the number of venular and total PVSs was independent of
it (x 2 ¼ 99, 2 df).

DISCUSSION
We developed a method to identify venular PVSs using coregis-
tered SWI-mapping deoxygenated blood signal and demonstrate
the feasibility and reproducibility of this approach in the hemi-
spheric white matter at 7T.

While our cohort is too small to draw definitive conclusions
comparing persons with MS with HC, preliminary results suggest
an increased proportion of venular PVSs in persons with MS.
Furthermore, in HC, the venular PVS number was highly depend-
ent on the total number of PVSs, while in persons with MS, these
were independent (P, .001), implying that these differences are
specific to this compartment and would not have been detected by
analyzing total numbers or total volume of PVSs. We found lower
numbers of total PVSs in persons with MS compared with HC;
however, the difference was not statistically significant. The larger
total PVS number found in our study suggests that previous find-
ings at 1.5T may not extend to higher field strengths, which
improve PVS detection. We plan to further explore these results in
a larger cohort.

A recent meta-analysis demonstrated that enlarged PVSs are
more prevalent in persons with MS versus HC, though study
designs varied widely. No study differentiated venular and arteriolar
PVSs.4-6,14,15 The total number of PVSs detected in our study is
greater than those previously reported at 7T,12 likely due to differen-
ces in measurement algorithms. A larger study using our approach
would clarify how the venular PVS number and size differ in MS
and whether treatment modulates these changes.

Limitations of the current study include the small number of
subjects and raters. We are refining a semi-automated method
to measure PVSs at 7T to improve feasibility and interrater reli-
ability. Additionally, PVSs within gray matter, the posterior
fossa, and T2-hyperintense lesions were not included in
the analysis due to difficulty of detection on TSE images.

Controlling for nonlesional brain vol-
ume normalizes the dataset to nor-
mal-appearing white matter and may
mitigate the exclusion of PVSs from
within lesions, though our method
may be limited in subjects with large,
confluent white matter lesions.

Future steps include the validation
of preliminary findings from this study
in a larger cohort and developing an
automated tool to identify PVSs in a
shorter timeframe than manual detec-
tion. Critical questions remain as to
whether PVS anatomy corresponds to
disease activity, active relapse, response
to treatment, brain atrophy, neurode-
generation, and disability progression.

CONCLUSIONS
We present a semi-automated method
of differentiating venular and nonve-

nular PVSs. The algorithm is reproducible and feasible in a group
of persons with MS and HC and has the potential to identify an
important biomarker in MS.
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