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ORIGINAL RESEARCH
PEDIATRICS

Beyond Isolated and Associated: A Novel Fetal MR Imaging–
Based Scoring System Helps in the Prenatal Prognostication

of Callosal Agenesis
S. Glatter, G. Kasprian, D. Bettelheim, B. Ulm, M. Weber, R. Seidl, D. Prayer, and M.C. Diogo

ABSTRACT

BACKGROUND AND PURPOSE: Although “corpus callosum agenesis” is an umbrella term for multiple entities, prenatal counseling is
based reductively on the presence (associated) or absence (isolated) of additional abnormalities. Our aim was to test the applicabil-
ity of a fetal MR neuroimaging score in a cohort of fetuses with prenatally diagnosed isolated corpus callosum agenesis and associ-
ated corpus callosum agenesis and correlate it with neurodevelopmental outcomes.

MATERIALS AND METHODS: We performed a single-center retrospective analysis of a cohort of cases of consecutive corpus cal-
losum agenesis collected between January 2011 and July 2019. Cases were scored by 2 raters, and interater agreement was calcu-
lated. Outcome was assessed by standardized testing (Bayley Scales of Infant and Toddler Development, Kaufman Assessment
Battery for Children) or a structured telephone interview and correlated with scores using 2-way ANOVA.

RESULTS: We included 137 cases (74 cases of isolated corpus callosum agenesis), imaged at a mean of 27 gestational weeks.
Interrater agreement was excellent (0.98). Scores were higher in associated corpus callosum agenesis (P, .0001) without a significant
score difference between complete and partial corpus callosum agenesis (P ¼ .38). Outcome was assessed in 42 children with iso-
lated corpus callosum agenesis and 9 with associated corpus callosum agenesis (mean age, 3.1 years). MR imaging scores correctly
predicted developmental outcome in 90.7% of patients with isolated corpus callosum agenesis, improving neurodevelopmental risk
stratification in corpus callosum agenesis.

CONCLUSIONS: The scoring system is very reproducible and can differentiate isolated corpus callosum agenesis and associated iso-
lated corpus callosum agenesis (significantly higher scores) but not between partial and complete corpus callosum agenesis. Scores
correlated with outcome in isolated corpus callosum agenesis, but there were too few associated postnatal cases of isolated cor-
pus callosum agenesis to draw conclusions in this group.

ABBREVIATIONS: aCCA ¼ associated corpus callosum agenesis; CC ¼ corpus callosum; CCA ¼ corpus callosum agenesis; DCC ¼ deleted in colorectal can-
cer; iCCA ¼ isolated corpus callosum agenesis; MCD ¼ malformations of cortical development; TOP ¼ termination of pregnancy

Corpus callosum (CC) agenesis (CCA) is one of the most com-
mon malformations of the CNS.1 Rather than a single entity,

CCA is an umbrella term defined by anatomy, independent of
etiology or outcome. To further complicate matters, CCA
includes several subtypes, including complete (when the entire

CC is missing) and partial (when part but not all of the CC is
absent), but CCA often also includes several degrees of hypopla-
sia (CC present but of reduced dimensions) and dysgenesis (CC
present yet malformed). Each option may be seen in isolation (no
other fetal brain or body malformations) or in the context of a
polymalformative or genetic condition.1-3

In terms of outcome risk stratification, patients with associated
CCA (aCCA) are at a high risk of neurodevelopmental delay,4 while
isolated CCA (iCCA) is associated with development within the nor-
mal range in up to 88% of children.5-9 Other features, such as the
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presence of Probst bundles or sigmoid bundles, have been used
inconsistently in an attempt to predict outcome.10,11 In an attempt to
improve risk stratification in iCCA, we developed and tested a score
based on anatomic features evaluated on fetal brain MR imaging in
patients with detailed postnatal neuropsychological outcomes.12

This study aimed to test the validity of an MR imaging score
initially developed for isolated congenital CCA in a heterogene-
ous group of complete and partial CCA and to correlate it with
neurodevelopmental outcomes.

MATERIALS AND METHODS
Patients and Setting
A retrospective cohort of consecutive cases of prenatally diag-
nosed CCA with fetal MR imaging between January 2011 and
September 2019 was collected in a single tertiary care center
(Medical University of Vienna).

Fetuses were subdivided into 4 groups based on imaging charac-
teristics (determined on MR imaging by consensus of 2 experts):
complete isolated, complete associated, partial isolated, and partial
associated CCA. CCA was considered isolated when no other brain,
spine, or extra-CNS anomalies were detected on ultrasound or MR
imaging antenatally and no chromosomal anomalies were identi-
fied, in accordance with previous publications.4,6,13-16 In non-iso-
lated CCA, associated anomalies were recorded. Severe global brain
structural malformations that course without a CC (eg, holoprosen-
cephaly, anencephaly) and the absence of the CC secondary to de-
structive lesions (eg, porencephaly) were excluded.17,18

Imaging Analysis
Images were independently scored by 1 neuroradiologist with 7
years’ experience in fetal MR imaging and a pediatrics resident
with 1 year’s basic experience in fetal MR imaging, using a previ-
ously published anatomic fetal MR imaging score,12 consisting of
7 categories: gyration, opercularization, temporal lobe symmetry
or asymmetry, lamination, hippocampal abnormalities, basal gan-
glia, and ventricular enlargement in a 0- to 2-point score (Table 1
and Online Supplemental Data), with a maximum attainable
score of 11 points. Interrater agreement was calculated.

MR imaging examinations included a detailed evaluation of the
fetal CNS and body, following published guidelines.19 For the fetal
brain assessment, we obtained T2-weighted single-shot FSE imag-
ing in 3 orthogonal planes (section thickness ¼ 2–4 mm, section
gap ¼ 0–0.4mm, FOV ¼ 230–260 mm, matrix ¼ 256). Body MR
imaging evaluation comprised T2-weighted steady-state free

precession sequences in 3 orthogonal planes, and T2-weighted
spin-echo FSE, T1WI, EPI, and DWI in at least 1 plane. Further
sequences were acquired depending on examination findings and
fetal and maternal cooperation. No maternal or fetal sedation was
administered before the examination.

Neurodevelopmental Assessment
Patients who are followed in our center were evaluated by a neu-
ropediatrician (R.S.) and a psychologist (S.G.) as previously
described in detail in a previous publication.12 The Bayley Scales
of Infant and Toddler Development, Third Edition, was used for
neurodevelopmental assessment of motor control, cognitive func-
tioning, and language skills (1–42.5months of age). Normal de-
velopment was defined as a development quotient score of $85,
and moderate-to-severe developmental delay was defined as
a development quotient score of ,70. Children older than
42.5months were tested for cognitive and language skills using
the Kaufman Assessment Battery for Children, Second Edition,
complemented by the Peabody Developmental Motor Scales,
Second Edition or the Bruininks-Oseretsky Test of Motor
Proficiency, Second Edition to evaluate motor skills. Normal de-
velopment was defined as a Global Scale Index of$85.

For children not followed up in our center, a structured tele-
phone interview with 1 or both parents or legal guardians was
conducted by a trained psychologist (S.G.). Besides assessment of
developmental milestones, the need for further support, type of
therapy, and type of kindergarten/schooling were also collected.

Statistical Analysis
Metric data are described using mean [SD] and range if normally
distributed or median and maximum and minimum values for
skewed metric or ordinal data. Additionally, 95% confidence inter-
vals were calculated. Categoric data are presented as absolute fre-
quencies and percentages. One-way ANOVAs and Bonferroni-
corrected post hoc tests were used for differences in age among the
4 groups. Two-way ANOVAs were post hoc tests used to compare
the groups regarding MR imaging and neurodevelopmental out-
come scores to be able to model a moderation effect additionally.
The Spearman rank correlation coefficient (r ) was calculated to
describe the correlation between MR imaging and neurodevelop-
mental variables. Image ratings were summed, and the resulting
score was correlated with the neurodevelopmental outcome scores.
Crosstabs and x 2 tests were used to compare groups regarding
nominal data.

Summarized outcome by subgroup of corpus callosum agenesis

CCA Group

Neurodevelopment Therapy School

Normal
Delay

Phy Occ Spc Other Regular Assisted Not AgeMild Moderate Severe
I
C 15 5 1 1 9 2 1 12 9
P 16 2 1 1 11 11 7

A
C 2 2 2 1 2 1 2 1
P 2 2 1 3 1 2 1 1 3 1

Note:—I indicates isolated; A, associated; C, complete; P, partial; Phy, physiotherapy; Occ, occupational therapy; Spc, speech therapy; Not Age, children not attending
school, who were still under the local mandatory school age (5 years-old).
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A P value # 5% (P¼ .05) indicated significant results. To
avoid an increasing error of the second type, we did not perform
multiplicity corrections. All analyses were performed using SPSS
Statistics for Window, Version 26.0 (IBM).

RESULTS
A total of 137 cases of CCA were imaged in our center during the
study period (Fig 1), with a mean gestational age of 27 gestational
weeks (range, 191 4 to 371 1gestational weeks). Of these, 74
fetuses (complete: n¼ 45; partial n¼ 29) presented with iCCA,
while 63 fetuses (complete: n¼ 32; partial n¼ 31) had associated
conditions. The most common associated anomalies involved the
CNS (n¼ 58/64), mostly involving the supratentorial brain and
specifically malformations of cortical development (MCD) (MCD:
n¼ 34/64; only MCD: n¼ 16; MCD with other associated anoma-
lies: n¼ 18), followed by posterior fossa anomalies (n¼ 23/64).

There were extra-CNS anomalies in 31
fetuses, and these were the only find-
ings besides CCA in 6 cases (congenital
diaphragmatic hernia, n¼ 1; heart mal-
formation, n¼ 2; limb anomalies alone,
n¼ 1; and in association with head and
neck malformations, n¼ 2).

Interrater agreement was excellent
(0.98).

By means of the MR imaging
score, there was a statistically signifi-
cant difference between associated
and complete CCA (P, .0001), but
not between partial and complete
CCA within each group (mean iCCA:
partial ¼ 2.69 [SD, 0.31], 95% CI,
2.07–3.31; complete ¼ 2.04 [SD,
0.38], 95% CI, 1.28–2.80; aCCA:
partial ¼ 4.92 [SD, 0.37], 95% CI,
4.19–5.65; complete ¼ 4.96 [SD,
0.37], 95% CI, 4.23–5.69; P ¼ .38)
(Fig 2).

Forty-one cases were lost to follow-up, leaving 96 pregnancies
with known outcomes (Fig 1). Parents opted for termination of
pregnancy (TOP) more often in the aCCA subgroup (aCCA,
n¼ 24/43, [55.8%]; iCCA, n¼ 7/53, [13.2%]; P, .001). There
were also more cases of natural deaths in this group (aCCA n¼ 8),
4 cases in each complete and partial aCCA group; 3 children were
stillborn (gestational age unknown); and 5 died after birth. In
iCCA, all TOPs were in the complete iCCA group.

In 3 cases of iCCA and 2 of aCCA, children were alive, but no
detailed follow-up was available. In the 51 remaining cases, the
mean age at the time of evaluation or interview was 3.1 [SD,
2.08] years, and there was no significant difference in the mean
age of the 4 subgroups (iCCA: complete¼ 3.07 [SD, 2.36] years;
partial¼ 2.76 [SD, 1.36] years; aCCA: complete¼ 4.38 [SD, 2.69]
years; partial¼ 3.96 [SD, 2.46] years; P¼ .42).

Outcome was assessed in the remaining 42 cases of iCCA and
9 of aCCA. The neurodevelopmental outcome overall and di-
vided into domains (speech, cognition, and motor) and the need
for special schooling and therapy are summarized in the Table
and Online Supplemental Data. In the iCCA group, 31/42
patients (73.8%) had normal development, with all school-
age children attending regular school in the appropriate year,
without need for special education. By means of the estab-
lished cutoff of #3 for good neurodevelopmental outcome
and $4 for a high risk of neurodevelopmental delay, MR
imaging was correct in 90.7% of cases. In the normally devel-
oping group, there was 1 fetus with a high MR imaging score
of 4. In the remaining 96.8% (30/31) of cases, the score pre-
dicted the favorable outcome correctly. In the developmental
delay group, the MR imaging score was incorrect in 4/43
cases (9.3%). There were too few cases in the associated group
to evaluate the correlation of scoring and outcome (Fig 3).
Due to the small sample size for iCCA, it was not possible to
adequately compare the outcomes in the associated and iso-
lated groups further.

FIG 1. Flowchart detailing patient inclusion and exclusion criteria. ND indicates neurodevelopmental.

FIG 2. Comparison of mean MR imaging scores and 95% confidence
intervals among the 4 CCA groups: isolated (complete and partial)
and associated (complete and partial).
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DISCUSSION
This recently developed fetal MR neuroimaging score outper-
forms the current oversimplified categorization of isolated CCA
in terms of prognostication. When one exclusively uses the cur-
rent criterion standard of excluding associated disorders, 26.2%
of children had some degree of developmental delay in the iCCA
group, in accordance with most literature available on the sub-
ject.5,6,8,9,20 By applying this systematic evaluation of specific
brain regions, we improved the diagnostic power of MR imaging
by correctly stratifying high- and low-risk cases in 90.7%. The
score accuracy was higher in the normally developing group, in
which 96.8% (30/31) of prognostications were correct, with the
incorrect case with a borderline score of 4. In patients with some
degree of neurodevelopmental delay, there were 3 incorrect clas-
sifications, all of which presented with a mild delay and MR
imaging scores of 3, close to the threshold.

The MR imaging scoring system has been derived from a

variety of previous structural neuroimaging findings known

to be associated with CCA. Given the complexity of human

brain development, the score is based on the principle that

morphologic assessment of interhemispheric connectivity

alone is not sufficient to offer an appropriate prognostic

counseling in cases of CCA.
Despite the difference in experience in fetal MR imaging

interpretation, interrater agreement was 0.98. This is similar to
our previously published findings when comparing the ratings of
2 experienced raters.12

There was a significant difference
in the MR imaging scores between iso-
lated and associated CCA (P, .001),
detecting a higher degree of deviation
from normal brain development in
aCCA despite being primarily de-
signed for the specific assessment of
cases classified as iCCA.12 Application
of the MR imaging score did not, how-
ever, help stratify the risk in aCCA. It
does not account for severe or even
life-threatening extra-CNS malforma-
tions. There was also a low number of
surviving children in this group with
known outcomes, of which 4 patients
(4/9) are developing within normal
ranges, though we have a limited max-
imum follow-up period of 7.5 years. It
can be argued that these results are
skewed because minor associated
anomalies are more likely to be posi-
tively counseled and not terminated,
but the 4 children mentioned pre-
sented with associated CNS anomalies
(MCD in 3 cases and germinolytic cyst
in 1). In our opinion, this highlights
the need to better understand this en-
tity. The simplified categorization into
isolated and associated does not do
justice to the complex neurobiology

behind this malformation.21,22

As would be expected, parents opted for TOP more often when

fetuses presented with multiple malformations (aCCA: TOP,

n¼ 24/43 [55.8%]; iCCA: TOP, n¼ 7/63 [9.6%]), because neurode-

velopmental outcome is expected to be poor in most of these chil-

dren, particularly taking into consideration that most of our

associated findings were related to other CNS anomalies (90.6%).

An interesting finding in our cohort was that parents opted for TOP

more often when presented with a fetus with complete iCCA

(n¼ 7/32 [21.9%]) than in cases of partial iCCA (n¼ 0/21), despite

extensive literature proving the lack of difference in outcomes

between these groups.20,23 We could not determine whether this

choice related to the personal beliefs of the parents alone or to the

prenatal counseling received by a variety of medical professionals

(within and outside our center). In our cohort, we found no

statistical difference in the neurodevelopmental outcome

(P¼ .20), area of deficits (P¼ .89), need for therapy (physio-

therapy, P¼ .40; occupational, P¼ .55; speech, P¼ 1.0), or

schooling (P¼ .87) between partial and complete iCCA. This

finding is in accordance with previous literature,8,23,24 as is

the percentage of children with iCCA and some degree of de-

velopmental delay (26.2%).20,25 Furthermore, these data sup-

port the notion that counseling in cases of CCA requires

further refinement and updates concerning recent genetic,

morphologic, and functional neurobiologic insights into this

condition. Also, in the future, more complex imaging techniques

FIG 3. Example of associated partial CCA (white dashed arrow, D) in fetuses at 24 gestational
weeks (A and B), 26 gestational weeks (C, D, F), and 31 gestational weeks (E). T2-weighted single-shot
FSE images in the axial (A, B, E) and sagittal planes (C) and super-resolution 3D reconstruction of T2-
weighted spin-echo FSE images through the coronal plane (D) and cortical surface (F). There is a mal-
formation of cortical development with an abnormal “bump” in the insular region (dashed black
arrow, A, C, F) and abnormal gyration in the posterior frontal cortex (dashed black arrow, E). There
is a concurrent signal abnormality with low T2 signal intensity that follows the intermediate zone/
subplate limit on the left (white arrow, A–D), also reaching the ventricular lining (black arrowhead,
B), with slight ectasia of the homolateral posterior aspect of the lateral ventricle.
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such as diffusion tensor imaging may further optimize the assess-

ment of fetuses with CCA.
The retrospective nature of the data collection has inherent

limitations. Furthermore, a large group of patients was lost to fol-
low-up due to the tertiary referral nature of our center, with most
patients coming from outside clinics or hospitals and often from
foreign countries, making it challenging to obtain outcome data.
Furthermore, particularly in the associated group, more than half
of the pregnancies were terminated, leaving a small surviving
aCCA group and limiting the intergroup comparisons. However,
this information is still relevant in relation to the outcome of
these pregnancies. There was also a relatively inhomogeneous
assessment of outcome. Twenty-one of the iCCAs had detailed
in-person neurodevelopmental assessments, while the remaining
children were assessed via structured telephone interview, which
can be less precise. To further validate our data and indirectly
evaluate the neurodevelopmental status of the children, we also
collected data on schooling (level for age and need for special
schooling) as well as any specific therapy attended.

CONCLUSIONS
Despite increasing the ability to stratify the risk of neurodevelop-
mental delay of these patients, the MR imaging score does not sub-
stitute in any way for other investigations, namely genetic studies,
which were not uniformly available in our cohort and hence were
not discussed in detail. It is established that some genetic muta-
tions are associated with a poorer prognosis, while others, such as
deleted in colorectal cancer (DCC) gene, usually have a mild
course.26 However, we should aim to improve our diagnostic accu-
racy on fetal MR imaging, independent of other studies that may
or may not be available. It is the last imaging resource in prenatal
diagnosis, and it should add useful information for parents and
counseling whenever possible.
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