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ORIGINAL RESEARCH
ADULT BRAIN

MRI Features May Predict Molecular Features of
Glioblastoma in Isocitrate DehydrogenaseWild-Type Lower-

Grade Gliomas
C.J. Park, K. Han, H. Kim, S.S. Ahn, D. Choi, Y.W. Park, J.H. Chang, S.H. Kim, S. Cha, and S.-K. Lee

ABSTRACT

BACKGROUND AND PURPOSE: Isocitrate dehydrogenase (IDH) wild-type lower-grade gliomas (histologic grades II and III) with epi-
dermal growth factor receptor (EGFR) amplification or telomerase reverse transcriptase (TERT) promoter mutation are reported to
behave similar to glioblastoma. We aimed to evaluate whether MR imaging features could identify a subset of IDH wild-type
lower-grade gliomas that carry molecular features of glioblastoma.

MATERIALS ANDMETHODS: In this multi-institutional retrospective study, pathologically confirmed IDH wild-type lower-grade glio-
mas from 2 tertiary institutions and The Cancer Genome Atlas constituted the training set (institution 1 and The Cancer Genome
Atlas, 64 patients) and the independent test set (institution 2, 57 patients). Preoperative MRIs were analyzed using the Visually
AcceSAble Rembrandt Images and radiomics. The molecular glioblastoma status was determined on the basis of the presence of
EGFR amplification and TERT promoter mutation. Molecular glioblastoma was present in 73.4% and 56.1% in the training and test
sets, respectively. Models using clinical, Visually AcceSAble Rembrandt Images, and radiomic features were built to predict the mo-
lecular glioblastoma status in the training set; then they were validated in the test set.

RESULTS: In the test set, a model using both Visually AcceSAble Rembrandt Images and radiomic features showed superior predic-
tive performance (area under the curve ¼ 0.854) than that with only clinical features or Visually AcceSAble Rembrandt Images
(areas under the curve ¼ 0.514 and 0.648, respectively; P, . 001, both). When both Visually AcceSAble Rembrandt Images and radio-
mics were added to clinical features, the predictive performance significantly increased (areas under the curve ¼ 0.514 versus 0.863,
P, .001).

CONCLUSIONS: MR imaging features integrated with machine learning classifiers may predict a subset of IDH wild-type lower-
grade gliomas that carry molecular features of glioblastoma.

ABBREVIATIONS: AUC ¼ area under the receiver operating characteristic curve; cIMPACT-NOW ¼ Consortium to Inform Molecular and Practical
Approaches to CNS Tumor Taxonomy; GBM ¼ glioblastoma; LASSO ¼ least absolute shrinkage and selection operator; RFE ¼ recursive feature elimination;
SVM ¼ support vector machine; TCGA ¼ The Cancer Genome Atlas; VASARI ¼ Visually AcceSAble Rembrandt Images; WHO ¼ World Health Organization

Amutation in the isocitrate dehydrogenase (IDH) gene is a
major classifier that leads to the stratification of gliomas

with significantly different survival rates among the lower-grade
gliomas (World Health Organization [WHO] grades II and III)
as well as glioblastomas (GBMs).1-4 IDH wild-type tumors, which

account for ,30% of the histologic grade II and III gliomas,
show worse prognoses than those with the IDHmutation.1,5,6

Previous studies have reported heterogeneous clinical out-
comes among the IDH wild-type lower-grade gliomas according
to a variable combination of genetic profiles.7-9 Recently, the
Consortium to Inform Molecular and Practical Approaches to
CNS Tumor Taxonomy (cIMPACT-NOW) provided a new des-
ignation for gliomas, namely, “diffuse astrocytic glioma, IDH-
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wildtype, with molecular features of GBM, WHO grade IV,”
which corresponds to histologic grades II and III IDH wild-type
gliomas showing high-level epidermal growth factor receptor
(EGFR) amplification, the combination of a whole chromosome
7 gain and a whole chromosome 10 loss (17/�10), or telomerase
reverse transcriptase (TERT) promotor mutations.10 These speci-
fications emphasize that the IDH wild-type lower-grade gliomas
that fulfill these molecular criteria will follow an aggressive clini-
cal course closely resembling that of an IDH wild-type GBM.
Therefore, it is highly desirable that MR imaging predict the
tumors with specific molecular features that would have a worse
prognosis than the others. Especially, this characteristic will be
clinically relevant in cases in which detailed genetic profiling can-
not be performed.

The Visually AcceSAble Rembrandt Images (VASARI; https://
wiki.nci.nih.gov/display/CIP/VASARI) are a standardized feature
set that was developed to describe MR imaging features of gliomas
using a standardized vocabulary. It provides 26 distinct imaging
lexicons that allow accurate, reproducible, and comprehensive
assessment of the gliomas. Previous studies have reported that the
VASARI assessment was highly reproducible, clinically meaning-
ful, and biologically relevant in glioblastomas.11-13

Radiomics extracts high-dimensional quantitative imaging fea-
tures, such as intensity distributions, spatial relationships, textural
heterogeneity, and shape descriptors;14 hidden information can be
revealed using radiomics.15 In particular, a strength of radiomics is
that it reflects intratumoral heterogeneity by a variety of mathe-
matic methods used to quantify the gray-level spatial variations
within an image to derive textural features.16 Several previous stud-
ies have applied radiomics to predict specific genetic mutations in
patients with lower-grade gliomas, including EGFR expression.17-19

The predictive role of radiomics for EGFR amplification or TERT
promotor mutation in patients with IDH wild-type lower-grade
gliomas is clinically relevant in the light of cIMPACT-NOW rec-
ommendations; however, it has not been studied to date.

Our study aimed to evaluate whether comprehensive analysis
of MR imaging features using the VASARI set and radiomics can
identify a subset of IDH wild-type lower-grade gliomas with mo-
lecular features that may also follow a clinical course similar to
that of GBM.

MATERIALS AND METHODS
This retrospective study was approved by the institutional review
boards of the 2 academic institutions, Yonsei University Health
System (Seoul, Korea) (institution 1) and University of California,
San Francisco Medical Center (California, United States) (institu-
tion 2). The requirement for obtaining informed patient consent
was waived. For another dataset, the publicly available National
Institutes of Health/National Cancer Institute–approved Cancer
Genome Atlas (TCGA) and The Cancer Imaging Archive data
bases in which all data are anonymized were used.20 Thus, individ-
ual institutional approval was not required for using the TCGA
dataset.

Patients
Patients with pathologically confirmed lower-grade gliomas were
identified in each institution and in the TCGA dataset. The

inclusion criteria were as follows: 1) IDH wild-type; 2) with pre-
operative MR imaging; 3) with known specific molecular features
of GBM. According to cIMPACT-NOW, EGFR amplification,
chromosome 17/–10, and TERT promotor mutation determine
whether IDH wild-type lower-grade gliomas have the molecular
features of GBM. However, because the chromosome17/–10 sta-
tus was not available in the test set, this feature was excluded
from our analysis.

The patients were divided into 2 subsets according to their
EGFR amplification and TERT promotor mutation status: If ei-
ther the EGFR amplification or the TERT promotor mutation sta-
tus was positive, the tumor was considered an IDH wild-type
lower-grade glioma with the molecular features of GBM. If both
the EGFR amplification and TERT promotor mutation status
were negative, the tumor was considered an IDH wild-type
lower-grade glioma without the molecular features of GBM. The
primary outcome was the status of molecular features of GBM.
The patients’ ages and WHO grades were retrieved from the elec-
tronic medical records.

Training Set: Institution 11 TCGA
Institution 1 and TCGA data constituted the training set. We
identified 166 patients with pathologically confirmed lower-grade
gliomas from January 2012 to December 2018 at the University
of California, San Francisco. The exclusion criteria were as fol-
lows: 1) IDH-mutant tumors (n ¼ 47); 2) unknown IDH muta-
tion status (n ¼ 3); 3) history of brain surgery (n ¼ 59); 4)
younger than 18 years of age (n¼ 7); 5) without preoperative MR
imaging (n ¼ 3); and 6) unknown status of molecular features of
GBM (n ¼ 15). Thirty-two patients with IDH wild-type lower-
grade gliomas were enrolled (Fig 1). Among the 32 patients, 21
patients (65.6%) had IDH wild-type lower-grade gliomas with
molecular features of GBM.

The TCGA (http://cancergenome.nih.gov) provided the clini-
cal and MR imaging data of 199 lower-grade gliomas in patients
older than 18 years of age. The exclusion criteria were as follows:
1) IDH-mutant tumors (n ¼ 151); 2) unknown IDH mutation
status (n ¼ 2); and 3) unknown status of molecular features of
GBM (n ¼ 14). Thirty-two patients with IDH wild-type lower-
grade gliomas were enrolled (Fig 1). Among 32 patients, 26
patients (81.3%) had IDH wild-type lower-grade gliomas with
molecular features of GBM.

In the training set, 25 and 39 patients had WHO grade II and
III gliomas, respectively. Among 47 patients with molecular fea-
tures of GBM, 32 patients had WHO grade III gliomas (32/47,
68.1%) and 15 patients had WHO grade II gliomas (15/47,
31.9%).

Test Set: Institution 2
From January 2007 to October 2018, four hundred eighty-six
patients with pathologically confirmed lower-grade gliomas were
identified. The exclusion criteria were as follows: 1) IDH-mutant
tumors (n ¼ 210); 2) unknown IDH mutation status (n ¼ 85); 3)
history of brain surgery (n ¼ 10); 4) younger than 18 years of age
(n ¼ 13); 5) without preoperative MR imaging (n ¼ 11); and 6)
unknown status of molecular features of GBM (n ¼ 100). Finally,
57 patients constituted an independent test set (Fig 1). Among
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the 57 patients, 32 patients (56.1%) had IDH wild-type lower-
grade gliomas with molecular features of GBM.

In the test set, 23 and 34 patients had WHO grade II and III
gliomas, respectively. Among 32 patients with molecular features
of GBM, 15 patients had WHO grade III gliomas (15/32, 46.9%)
and 17 patients hadWHO grade II gliomas (17/32, 53.1%).

MR Image Acquisition
Patients from institutions 1 and 2 both underwent brain MRI
with a 3T system (institution 1, Discovery, GE Healthcare; insti-
tution 2, Achieva or Ingenia, Philips Healthcare). The detailed pa-
rameters of MR imaging sequences from each institution are
illustrated in the Online Supplement Data.

Image Analysis
Two board-certified neuroradiologists (12 and 3 years’ experi-
ence, respectively) independently reviewed the MR images of all
patients according to the VASARI feature set, blinded to
patients’ clinical information. Discrepancies between them were
settled by consensus. The VASARI lexicon provides 26 imaging
descriptors based on T1, T2, FLAIR, and DWI. Diffusion fea-
tures were not evaluated because many patients lacked preoper-
ative DWI in TCGA cohorts. We analyzed the following MR

imaging features: location (lobar/nonlobar), side of lesion center
(midline or not), eloquent brain involvement, presence of
enhancement, proportion of enhancing tumor, nonenhancing
tumor, edema and necrosis, presence of cysts, multifocality,
expansile or infiltrative growth, margin of nonenhancing tumor
(well-defined or poorly-defined), hemorrhage, pial invasion, ep-
endymal extension, cortical involvement, deep white matter
involvement, midline cross, and satellites. Detailed descriptions
of all features are available at the National Cancer Institute’s
Cancer Imaging Archive (https://wiki.cancerimagingarchive.
net/display/Public/VASARI+Research+Project).21

Image Preprocessing and Radiomic Feature Extraction
First, T2WI and postcontrast T1 images were resampled to an
identical spatial resolution of 1� 1�1mm using Nilearn (https://
nilearn.github.io). These images were subjected to N4 bias cor-
rection to remove low-frequency intensity and nonuniform-
ity.22,23 After resampling and N4 bias correction, postcontrast T1
images were registered to identical spatial coordinates using
T2WI as a template with SimpleITK (http://www.simpleitk.org).
Signal intensity was normalized using the WhiteStripe R pack-
age,24 which is implemented in R software (Version 3.5.1; www.
R-project.org). The ROI was drawn by a neuroradiologist and

FIG 1. Flow chart showing the distribution of the patient population in the training (A) and the test (B) sets. IDHwt indicates isocitrate dehydro-
genase wild-type.
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confirmed by another neuroradiologist (3 and 12 years’ experi-
ence, respectively) to segment the infiltrative tumor and edema—
defined with high signal intensity on T2WI—using a semiauto-
matic method of signal intensity threshold with the Medical
Image Processing, Analysis, and Visualization software, Version
7.0 (National Institutes of Health; mipav.cit.nih.gov). The radio-
mic features were extracted from the ROIs on T2WI and post-
contrast T1 images using PY RADIOMICS 1.2.0 (http://www.
radiomics.io/pyradiomics.html).25

Twelve shapes, 18 first-orders, 23 gray-level co-occurrence
matrices, gray-level run length matrices, 16 gray-level size zone
matrices, and 5 neighborhood gray tone difference matrices were
extracted from the ROIs on T2WI and postcontrast T1 images,
constituting a total of 180 radiomic features.

Pathologic Evaluation and Molecular Subtyping
In the 2 academic institutions (institution 1 and 2), all surgical
specimens were histopathologically diagnosed according to the
2016 WHO classification. Both peptide nucleic acid–mediated
clamping polymerase chain reaction and immunohistochemical
analysis were performed to detect the IDH1-R132H mutation.1

Monoclonal antibody H09 was used for immunohistochemical
analysis. The degree of IDH1-R132H staining was considered
positive if stained cells were observed, while specimens without
stained cells were deemed negative.26,27 In IDH1-negative cases,
the IDH1/2 status was confirmed by the peptide nucleic acid–
mediated clamping polymerase chain reaction. Targeted next-
generation sequencing was performed using the TruSight
Tumor 170 panel (Illumina; https://www.illumina.com/products/
by-type/clinical-research-products/trusight-tumor-170.html).28,29

For copy number analysis, EGFR genes with greater than a 2-fold
change relative to the average level were considered to have
undergone amplification. The TERT promotor mutation was
determined using a pyrosequencing assay, and the C228T and
C250T mutations were analyzed, as described previously.29

In the TCGA dataset, the detailed information of molecular
subtyping is provided in the Genomic Data Commons Data Portal
of The Cancer Genome Atlas Low Grade Glioma (TCGA-LGG)
data collection (https://www.cancer.gov/about-nci/organization/
ccg/research/structural-genomics/tcga/studied-cancers/glioma).20

Feature Selection and Classification Methods
Feature selection and classification methods were performed
using R software (Version 3.5.1). To avoid collinearity and

minimize the potential risk of overfitting while handling high-
dimensional radiomic features,30,31 we used the least absolute
shrinkage and selection operator (LASSO) and recursive feature
elimination (RFE) to select the important features using the caret R
package.32 Feature selection was performed before model construc-
tion using either LASSO, RFE, or RFE 1 LASSO, when LASSO
was performed after RFE to further minimize the redundant fea-
tures. Three subsets of selected features were combined with 4 dif-
ferent machine learning classifiers: XGboost (https://xgboost.ai),
support vector machine (SVM), linear discriminant analysis, and
adaptive boosting. The performance of the feature-selection meth-
ods 1 classifiers was tested using 5-fold cross-validation with 3
repetitions to enhance the generalizability of our results.

Statistical Analysis
Statistical analysis was performed using R software (Version
3.5.1).

Interobserver agreement for assessing VASARI features was
expressed with the weighted k coefficients as follows: , 0.20,
poor; 0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, good; 0.81–
1.00, excellent.33

In the training set, there were 4 different models: model 1,
clinical features, only age and WHO grade; model 2, VASARI
features only; model 3, VASARI1 radiomic features; and model
4, clinical1 VASARI1 radiomic features. Multivariable logistic
regression was used to develop models 1 and 2: model 1 with 2
clinical features, patient age and WHO grade; model 2 with
VASARI features. In models 3 and 4, twelve combinations of
the aforementioned feature-selection methods and machine
learning classifiers were used. These 4 models were validated in
the test set. Receiver operating characteristic curves were
obtained, and the area under the curve (AUC) was calculated to
measure the predictive performance. The AUCs from different
models were compared by mean of the Delong method, and
multiple comparisons were corrected using the Benjamini-
Hochberg procedure.34

RESULTS
The characteristics of enrolled patients from all 3 datasets are
summarized in Table 1. The proportions of IDH wild-type lower-
grade gliomas with molecular features of GBM were 73.4% (47/
64) and 56.1% (32/57) in the training and test sets, respectively.

Table 1: Patient clinical characteristicsa

Clinical Characteristics
Training Set

Test Set, Institution 2 P ValuebInstitution 1 TCGA
No. of patients 32 32 57
Age (yr) 49.0 [SD, 19.1] 51.1 [SD, 14.7] 53.4 [SD, 16.2] .291
Sex (male/female) 19:13 17:15 27:30 .901
WHO grade .800
Grade II 16 (50.0%) 9 (28.1%) 23 (40.4%)
Grade III 16 (50.0%) 23 (71.9%) 34 (59.6%)

Molecular GBM status .053
With molecular features of GBM 21 (65.6%) 26 (81.3%) 32 (56.1%)
Without molecular features of GBM 11 (34.4%) 6 (18.7%) 25 (43.9%)

a Data are expressed as a mean [SD] or as a number with percentage in parentheses.
b Comparisons between the training and the test sets using the Student t test for continuous variables and the x 2 test for categoric variables.
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Interobserver agreement for VASARI features was good-to-
excellent (range, 0.774–1.000) (Online Supplemental Data). The
imaging features with the highest interobserver agreement were
tumor location, side of lesion center, presence of enhancement,
and multifocality (k ¼ 1); the lowest interobserver agreement
was found in the proportion of necrosis (k ¼ 0.774).

The differences of VASARI features between the IDH wild-
type lower-grade gliomas with and without molecular features of
GBM in the training and the test sets are provided in the Online
Supplemental Data. In both the training and test sets, cortical
involvement was the only feature that was significantly different
between the 2 groups.

In the training set, a total of 5, 174, and 9 features were selected
through LASSO, RFE, and RFE1 LASSO, respectively. Five con-
sistently selected features among all 3 methods were 2 texture fea-
tures, 1 first-order feature, and 2 VASARI features: short run
emphasis (T2), gray-level nonuniformity normalized (postcontrast
T1), minimum (T2), infiltrative tumor growth, and cortical
involvement.

Representative figures of IDH
wild-type diffuse gliomas with and
without molecular features of GBM
are presented in Fig 2.

Model 1 (Clinical Features Only)
The predictive performances of model
1 were 0.863 (95% confidence interval,
0.753–0.972) and 0.514 (95% CI,
0.356–0.672) in the training and the
test sets, respectively.

Model 2 (VASARI Features Only)
The predictive performances of model
2 with only VASARI features were
0.988 (95% CI, 0.969–1) and 0.648
(95% CI, 0.511–0.784) in the training
and the test sets, respectively.

Model 3 (VASARI1 Radiomic
Features)
In the training set, model 3 accurately
predicted the status of molecular fea-
tures of GBM in IDH wild-type lower-
grade gliomas with high AUCs, rang-
ing from 0.872 to 1. In the test set,
all the AUCs of models 3 with differ-
ent combinations of feature-selection
methods and classifiers are presented
in Fig 3. Model 3 predicted the status
of molecular GBM with AUCs ranging
from 0.567 to 0.854. The combination
of SVM and RFE showed the highest
predictive performance with an AUC
of 0.854 (95% CI, 0.766–0.941), with a
sensitivity and specificity of 71.9% and
88.0%, respectively.

Model 4 (Clinical1 VASARI1 Radiomic Features)
In the training set, model 4 accurately predicted the status of mo-
lecular features of GBM in IDH wild-type lower-grade gliomas
with high AUCs, ranging from 0.943 to 1. In the test set, model 4
predicted the status of molecular GBMs with AUCs ranging from
0.524 to 0.863. The combination of SVM and RFE provided the
highest predictive performance with an AUC of 0.863 (95% CI,
0.778–0.947), with a sensitivity and specificity of 81.3% and
88.0%, respectively.

Model Comparisons
The best-performing models in the test set from models 3 and 4
were compared with each other and with models 1 and 2 (Table 2
and Fig 4). Model 3 (AUC ¼ 0.854) and model 4 (AUC ¼ 0.863)
yielded significantly superior performances for molecular GBM-
status prediction compared with model 1 (AUC ¼ 0.514; P ,

.001, both) and model 2 (AUC¼ 0.648; P ¼ .023 and .02, respec-
tively). There was no significant difference between models 3 and
4 (P¼ .476).

FIG 2. Representative cases of IDH wild-type lower-grade gliomas with (A) and without (B)
molecular features of GBM. A, Initial MR imaging of a 49-year-old man with IDH wild-type lower-
grade glioma with molecular features of GBM, WHO grade III. MRIs reveal infiltrative T2-hyperin-
tense tumor in the right frontal and parietal lobes extending into the corpus callosum with
cortical involvement (left). Focal contrast enhancement is noted in the right frontal lobe (right). B,
Initial MRIs of a 26-year-old woman without molecular features of GBM, WHO grade III. MRIs
reveal a relatively well-defined enhancing mass with peritumoral edema in the right temporo-
occipital lobe without cortical involvement.
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DISCUSSION
In this study, we integrated MR imaging features with machine
learning techniques to establish accurate models to identify the
specific subset of IDH wild-type lower-grade gliomas that had
molecular features of GBM. Our models were subsequently tested
using an independent test set, which proved their generalizability
and robustness (AUC= 0.854).

Several studies have reported that EGFR amplification and
TERT promotor mutations are significantly associated with
aggressive tumor behavior and worse prognosis in patients
with lower-grade gliomas35-38 and GBMs.39-41 Particularly,
because the alterations in the EGFR gene are the potential
therapeutic targets, several previous studies attempted to cap-
ture the imaging signature of EGFR mutations and to detect
them noninvasively in an in vivo setting using complex multi-
parametric MR imaging or perfusion MR imaging in patients
with GBM.42,43 Also in IDH wild-type lower-grade gliomas,
tumors having EGFR amplification or TERT promotor muta-
tions can be classified into “molecularly” high-grade tumors
with a significantly shorter survival rate than gliomas with
no mutations.7 Subsequently, the recent cIMPACT-NOW
defined IDH wild-type lower-grade gliomas with 1 of 3
characteristics (EGFR amplification, 17/–10 loss, or TERT
promotor mutations) as “diffuse astrocytic glioma, IDH-wild-
type, with molecular features of GBM, WHO grade IV.”10

Therefore, in our study, we investigated whether the subset of
IDH wild-type lower-grade gliomas with molecular features of
GBM could be predicted noninvasively using comprehensive MR
imaging analysis. Rather than considering individual EGFR
amplification or TERT promotor mutation, we focused on pre-
dicting the molecular features of GBM. This focus was because
the molecular features of GBM incorporate both of these genetic
mutations, which enable the identification of more patients with
unfavorable prognoses who might need more aggressive treat-
ment. In addition, we included only the IDH wild-type subgroup
of lower-grade gliomas in our study because predicting the mo-
lecular GBM status in this subgroup might be more clinically rel-
evant according to the cIMPACT-NOW recommendations.

The patients’ age and WHO grades served as our clinical pa-
rameters, according to previous studies that reported that IDH
wild-type grade II and III gliomas with genetic alterations charac-
teristic of GBM were diagnosed at a significantly older age.35,38

WHO grade III, together with high-risk genetic alterations, was
also a significant prognostic factor in patients with IDH wild-type
lower-grade gliomas.7,38 However, our model with only clinical
features showed a poor predictive performance (AUC= 0.514).
Furthermore, comprehensive MR imaging analysis using
VASARI allowed slightly better prediction for the molecular
GBM status than the clinical features; however, it still showed
unsatisfactory performance (AUC= 0.648). A recent study

revealed that radiomics allowed the
prediction of EGFR expression in
patients with diffuse lower-grade glio-
mas.17 Our study results proved that
radiomics functions equally well in the
IDH wild-type subgroup of lower-
grade gliomas because it can accu-
rately stratify patients according to the
molecular GBM status when added to
the VASARI features (AUC= 0.854).
It is important to identify the molecu-
lar features of GBM beyond IDH
mutation status noninvasively because
they convey prognostic information
that could help clinicians decide dif-
ferent treatment schemes for their
patients.

Among 5 consistently selected fea-
tures, 2 features were texture-based.
Texture analysis refers to a variety of

FIG 3. Heat maps illustrating the predictive performance (AUCs) of the different combinations
of feature selection methods (rows) and classifiers (columns) from models 3 and 4 in the test set.
LDA indicates linear discriminant analysis; AdaBoost, adaptive boosting.

Table 2: Highest predictive performances of different models in identifying the molecular features of glioblastomas in IDH wild-
type lower-grade gliomas in the test set

Model
Feature Selection +

Classifier AUC P Values for Model Comparisons
Model 1 (clinical features) NA 0.514 (0.356–0.672)
Model 2 (VASARI features) NA 0.648 (0.511–0.784)
Model 3 (VASARI 1 radiomics features) RFE 1 SVM 0.854 (0.766–0.941) ,.001a .023b

Model 4 (clinical 1 VASARI 1 radiomics features) RFE 1 SVM 0.863 (0.778–0.947) ,.001a .02b .476c

Note:—NA indicates not applicable.
a Compared with model 1.
b Compared with model 2.
c Compared with model 3.
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mathematic methods used to quantify the gray-level spatial varia-
tions within an image to derive textural features, which reflect
intratumoral heterogeneity.16 These textural features reflecting
intratumoral heterogeneity have shown potential in predicting
specific genetic mutations17-19 and survival rates44 in patients
with lower-grade gliomas. Specifically, one of the gray-level run
length matrix features called short run emphasis derived from
T2WI was significantly associated with EGFR expression in
patients with lower-grade gliomas in a recent study,17 which was
also selected as a potential predictor in our study. Another
selected gray-level run length matrix feature called gray-level
nonuniformity normalized derived from postcontrast T1 has also
been reported to have a significant association with TERT pro-
motor mutation status in lower-grade gliomas.45 Because the
gray-level run length matrix is a measurement of regional hetero-
geneity,16 tumors with higher values of those features are more
likely to carry molecular features of GBM.

The proportions of tumors with molecular features of GBM
were different across the 3 datasets. In the TCGA dataset, tumors
with molecular features of GBM were approximately 80%, which
was the highest. In the test set, approximately half of the tumors
had molecular features of GBM. We believe that these differences
reflect the differences in patient characteristics at each institution.
The innate heterogeneity within the TCGA dataset might have
also contributed to the differences. However, MR imaging fea-
tures showed superior predictive performances when tested in
the new external validation set, regardless of the difference in
proportions of the tumors with features of molecular GBM,
which proved their robustness.

There are several limitations of this study. First, this was a ret-
rospective study with a small number of patients available from
each dataset. Information on EGFR amplification or TERT

promotor mutation was not available in many cases, and only a
small number of tumors with known genetic alterations were
studied. It would be highly desirable if we could compare the per-
formances of different combinations of feature-selection methods
and classifiers on a separate validation set and then test the final
model on a test set, to obtain more reliable results. However,
because the number of enrolled patients was low, we were not
able to have another separate validation set. Instead, we per-
formed 5-fold cross-validation with 3 repetitions in the training
set. Future studies with larger numbers of patients are required to
validate our study results.

Second, the combination of whole chromosome 7 gain and 10
loss is also one of the key genetic alterations that determine the
status of molecular GBM; however, this could not be evaluated
because the relevant information was not available in the test set.
Further studies using a larger number of patients with available
17/–10 information are required to validate our study results.
Third, although there have been some issues of interobserver var-
iability in the grading of gliomas,46-48 we could not calculate the
interrater reliability of the WHO grade in this study because 1
senior neuropathologist reviewed the pathologic reports of en-
rolled subjects. In addition, the molecular subtyping of gliomas
was performed by senior pathologists in each academic institu-
tion according to 2016 WHO classification; however, whether
there were any discrepancies between the pathologists was not
evaluated. Fourth, we did not perform the skull-stripping before
the signal intensity normalization in the preprocessing for the
radiomics feature extraction. However, because all patients’ MR
images were processed without skull-stripping uniformly, the
final results of our study might not have been affected pro-
foundly. Furthermore, we believe that it is noteworthy to investi-
gate the predictive potential of radiomics in future studies with
various research topics: whether radiomics could accurately clas-
sify IDH wild-type lower-grade gliomas with molecular features
of GBM and grade IV GBM or could predict the WHO grade in
gliomas with specific genetic mutations such as EGFR amplifica-
tion or TERT promotor mutation.

CONCLUSIONS
MR imaging features combined with machine learning classifiers
can noninvasively predict the molecular features of GBM in IDH
wild-type lower-grade gliomas with high accuracy.
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