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ORIGINAL RESEARCH
ADULT BRAIN

Noninvasive Determination of IDH and 1p19q Status of
Lower-grade Gliomas Using MRI Radiomics:

A Systematic Review
A.P. Bhandari, R. Liong, J. Koppen, S.V. Murthy, and A. Lasocki

ABSTRACT

BACKGROUND: Determination of isocitrate dehydrogenase (IDH) status and, if IDH-mutant, assessing 1p19q codeletion are an im-
portant component of diagnosis of World Health Organization grades II/III or lower-grade gliomas. This has led to research into
noninvasively correlating imaging features (“radiomics”) with genetic status.

PURPOSE:Our aim was to perform a diagnostic test accuracy systematic review for classifying IDH and 1p19q status using MR imag-
ing radiomics, to provide future directions for integration into clinical radiology.

DATA SOURCES: Ovid (MEDLINE), Scopus, and the Web of Science were searched in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses for Diagnostic Test Accuracy guidelines.

STUDY SELECTION: Fourteen journal articles were selected that included 1655 lower-grade gliomas classified by their IDH and/or
1p19q status from MR imaging radiomic features.

DATA ANALYSIS: For each article, the classification of IDH and/or 1p19q status using MR imaging radiomics was evaluated using the
area under curve or descriptive statistics. Quality assessment was performed with the Quality Assessment of Diagnostic Accuracy
Studies 2 tool and the radiomics quality score.

DATA SYNTHESIS: The best classifier of IDH status was with conventional radiomics in combination with convolutional neural net-
work–derived features (area under the curve ¼ 0.95, 94.4% sensitivity, 86.7% specificity). Optimal classification of 1p19q status
occurred with texture-based radiomics (area under the curve ¼ 0.96, 90% sensitivity, 89% specificity).

LIMITATIONS: A meta-analysis showed high heterogeneity due to the uniqueness of radiomic pipelines.

CONCLUSIONS: Radiogenomics is a potential alternative to standard invasive biopsy techniques for determination of IDH and
1p19q status in lower-grade gliomas but requires translational research for clinical uptake.

ABBREVIATIONS: AI ¼ artificial intelligence; AUC ¼ area under the curve; CNN ¼ convolutional neural network; IDH ¼ isocitrate dehydrogenase; IDH-mut
¼ IDH-mutant; LGG ¼ lower-grade gliomas; ML ¼ machine learning; PRISMA-DTA ¼ Preferred Reporting Items for Systematic Reviews and Meta-Analyses for
Diagnostic Test Accuracy; QUADAS-2 ¼ Quality Assessment of Diagnostic Accuracy Studies 2; RQS ¼ radiomics quality score; SVM ¼ support vector machine;
VASARI ¼ Visually Accessible Rembrandt Images; WHO ¼ World Health Organization

Lower-grade gliomas (LGG), World Health Organization
(WHO) grades II/III, are diffusely infiltrative tumors of the

CNS. With time, these tumors typically progress to glioblastoma
(WHO grade IV), which has a median survival of only 12–
18months despite treatment.1 A growing understanding of the

prognostic and therapeutic importance of molecular markers has
led to their incorporation into the 2016 WHO classification, and
they now constitute a key component of the diagnosis of LGG.2

The 2 key markers of LGG are isocitrate dehydrogenase (IDH),
with tumors classified as either IDH-mutant (IDH-mut) or IDH-
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wild-type, and 1p19q, with 1p19q-codeletion representing a com-
bined loss of both the short arm of chromosome 1 and the long
arm of chromosome 19.

Determining IDH and 1p19q status is invasive, requiring a tis-
sue specimen via stereotactic biopsy or definitive resection, with
the associated operative risks3 and possibility of sampling error.
While the possibility of sampling error is perhaps of greatest rele-
vance to the determination of tumor grade,4 it is also relevant to
the determination of tumor genetic status.5,6 For example, IDH
sequencing may be falsely negative if there are few glioma cells
within the sample,5 and intratumoral genetic heterogeneity can
occur.6 These considerations have led to research into character-
izing IDH and 1p19q status by imaging, known as “radiogenom-
ics” or “imaging genomics.” The most specific visual MR imaging
feature is the “T2-FLAIR mismatch sign,” which has been shown
to predict an IDH-mut 1p19q-codeletion gliomas with 100%
specificity and high interobserver correlation (k ¼ 0.38–0.88).7-9

Other useful features include the presence of calcification (sug-
gestive of a 1p19q-codeletion glioma)8,9 and homogeneous signal
(likely 1p19q-intact).10 While some features such as .50% T2-
FLAIR mismatch and the presence of calcification have high
interobserver correlation, other features are limited by greater
variability in interpretation. Furthermore, a substantial propor-
tion (29%–37%) of gliomas do not exhibit these features, limiting
sensitivity.8

Artificial intelligence (AI) is emerging as a solution to the lim-
itations of conventional visual assessment. AI techniques may
identify features hidden to the naked eye by extracting data from
images and relating them to outcomes. Given the inherent signal
and volume heterogeneity of gliomas, a perceived signature or
pattern may be modelled to genetic, clinical, and biochemical
outcomes.11 Features can be learned from the image or prede-
fined. The field of radiomics involves the extraction of predefined
features such as shape, intensity, and texture from a segmented
(tumor) volume of interest.12 This is opposed to deep learning–
derived features, which are identified without human predefini-
tion. Radiomic features can be correlated with genetic status
through a subset of AI known as machine learning (ML). The
ML algorithm is trained to a clinical outcome via a training data-
set and validated using a testing/validation dataset. Extracted
radiomic features undergo selection and can then be related to
molecular markers such as IDH and 1p19q, providing a more
objective method of radiogenomic correlation.

Radiomic analysis has several advantages compared with
human observers, including the ability to rapidly assess multiple
imaging features, less interobserver variability,13 and potentially
higher sensitivity and specificity. The aim of this article was to
perform a systemic review of the use of MR imaging radiomics
for the classification of IDH and 1p19q status in LGG.

MATERIALS AND METHODS
Search methodology and study synthesis were performed in line
with the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses for Diagnostic Test Accuracy (PRISMA-DTA)
checklist.14 The search was performed on the Web of Science,
Ovid (MEDLINE), and Scopus on April 18, 2020. Online Table 1
summarizes the search strategy. Search terms were developed

from the PICO framework and Medical Subject Headings, which
included terms relating to radiomics or radiogenomics, gliomas,
and IDH/1p19q status. The PRISMA flowchart is available in
Online Fig 1.

Study Selection
Studies were included if they were original research articles relating
radiomic features to IDH and/or 1p19q status in LGG (WHO
grades II/III) with pathologic confirmation. Studies were excluded
under the following circumstances: 1) They investigated the effects
of radiogenomic pipelines on factors that affect imaging quality
rather than assessing diagnostic potential or 2) they included imag-
ing modalities other than MR imaging because recent literature
has not shown superior outcomes.15 There was no restriction on
study date.

The references were imported from the Web of Science, Ovid
(MEDLINE), and Scopus into EndNote (Version X9; https://
www.endnote.com/product-details/). Duplicates were removed
using the “Find Duplicates” function in EndNote and manual
review of the reference list. Two independent authors (A.P.B. and
J.K.) screened the titles and abstracts for eligibility. The full texts
were then screened. When questions arose regarding inclusion of
articles, these were resolved through discussion between both
authors responsible for data extraction (experience: A.P.B., medi-
cal doctor with a master’s degree in medical imaging analysis,
and J.K., medical doctor with 4 years’ clinical experience). Ties
were to be reviewed together with the senior author, but none
were encountered.

Data Collection and Analysis
The primary outcome was the classification of IDH and/or 1p19q
status by MR imaging radiomics. This was based on the receiver
operating or precision recall curve and associated sensitivity (%),
specificity (%), and area under the curve (AUC) if available. The
AUC is presented as a value between 0.5 and 1, with 1 represent-
ing perfect classification (and 100% sensitivity and specificity).
For studies that did not include ML in the pipeline, descriptive
statistics (for example, mean and SD with t testing) were also
included. Only significant findings for descriptive statistics were
reported or the highest AUC for ML classifiers, given that some
studies related numerous radiomic features to genetic status
(IDH and/or 1p19q) or reported a considerable number of ML
classifiers. If training and validation set data were reported, only
the validation set was used. Secondary outcome measures were
related to pipeline features and included the number of lesions,
imaging sequences and segmentation method, features and their
selection method, ML classifier, genetic status, and WHO tumor
grade. A meta-analysis using random effects16 was performed on
AUC values with 95% confidence intervals when available in
MedCalc (MedCalc Software). A Higgins I2 index of heterogene-
ity was reported, in which 0% represents no heterogeneity and
100% represents maximum heterogeneity.

Quality Assessment
Quality assessment was performed using the Quality Assessment
of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and the
radiomics quality score (RQS).12 The QUADAS-2 scoring system
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was developed to assess bias and the applicability of diagnostic-
accuracy studies.17 The RQS is specific to radiomics and is based
on the Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis initiative, which examines
domains of application for predictive models.18 Application of
RQS and QUADAS-2 was performed by discussion between
A.P.B. and J.K. A k statistic19 was considered for the RQS, similar
to that used in previous studies;20 however, for quantitatively-

defined criteria, it was determined that resolution by discussion
would be superior.21

RESULTS
The initial search obtained 610 articles; 431 articles were from
Ovid (MEDLINE); 111, from Scopus; and 68, from the Web of
Science. After duplicates were removed, a total of 532 articles

Table 1: Derived aims and key findings of studies comparing IDH-mut and IDH wild-type LGG
First Author and

Year Derived Aim Key Findings
Fukuma 201922 To integrate CNN deep learning features with

conventional radiomic features
Conventional radiomic features: accuracy (mean6 95%
CI)¼ 71.7% 6 8.3%; AUC (6 95% CI) = 0.718 6 0.139

CNN features: accuracy¼ 69.6% 6 5.6%; AUC¼ 0.619 6
0.132

CNN and conventional radiomic features: accuracy¼
73.1% 6 9.4%; AUC¼ 0.699 6 0.145

Gihr 202023 To determine if intensity features relate to IDH status Entropy, a second-order histogram parameter of the
ADC volume was significant: IDH-mut versus IDH wild-
type, mean 6 SD¼ 5.5 6 0.63 vs 4.75 6 0.69; P¼ .0144

Jakola 201824 To determine if texture features can predict IDH status
on FLAIR

Homogeneity and volume could classify IDH status with
an AUC¼ 0.940 (85% sensitivity, 100% specificity) using
the generalized linear model

Kim 202025 To determine if DWI- and DSC perfusion-based image
integration with standard imaging (T1WI postcontrast
and FLAIR) can improve classification

Integration increased the AUC (95% CI) ¼ 0.747 (0.663–
0.832); (53.6% sensitivity and 86.7% specificity) from
0.705 (0.613–0.796) (43.9% sensitivity and 88.8%
specificity) compared with conventional MR imaging
radiomics

Li 201727 To determine if integration of deep learning features
into the radiogenomic pipeline improves classification

Conventional radiomics produced an AUC¼ 0.85
(sensitivity of 82.9%, specificity of 73.5%)

CNN deep learning–derived features plus conventional
radiomic features with feature selection produced an
AUC¼ 0.95 (sensitivity of 94.4%; specificity of 86.7%)

Lu 201828 To determine the best ML classifier Linear SVM classified IDH status with an AUC¼ 0.936
(sensitivity of 85.7%, specificity of 93.0%)

Park 202029 To determine if DTI improves classification when added
to conventional radiomics

Addition of DTI radiomic features to conventional
imaging radiomics increased the AUC (95% CI) ¼ 0.900
(0.855–0.945) from 0.835 (0.773–0.896)

Ren 201930 To compare radiomic, VASARI, and radiomic plus VASARI
features derived from FLAIR, ADC, eADC, and CBF

Radiomics: AUC (95% CI)¼ 0.931 (0.842–1); sensitivity of
100%, specificity of 85.71%

VASARI: AUC¼ 0.843 (sensitivity of 91.67%; specificity of
61.90%)

Radiomics plus VASARI: AUC¼ 0.888 (0.786–0.989);
sensitivity of 94.44% and specificity of 71.43%

Yu 201732 To classify using the improved genetic algorithm for
feature selection and leave-one-out cross-validation
method in WHO grade II LGG

Using the proposed method and the SVM ML classifier,
an AUC¼ 0.71 (sensitivity¼ 56% and specificity¼ 74%)
was achieved

Zhou 201734 To determine if VASARI annotations were superior to
standard radiomic classification analysis

IDH classification through texture features found an AUC
(6 95% CI) ¼ 0.79 6 0.02; sensitivity 90%, specificity
of 89%

IDH classification through VASARI features, AUC¼
0.73 6 0.02; sensitivity of 69%, specificity of 69%

Zhang 201833 To classify by conventional radiomics AUC¼ 0.830 (sensitivity¼ 82%, specificity¼ 92%) using
SVM

Note:—eADC indicates exponential ADC.
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remained. The articles were screened by title and abstract, and 18
remained. Full texts were reviewed, and 14 articles22-35 fit the
review question and inclusion criteria. The publication dates of
the 14 included studies22-35 ranged from 2017 to 2020. A total of
1655 LGG were analyzed. Online Table 2 summarizes the pipe-
line features for each study.

All segmentations incorporated manual components except for
2 studies, both of which used convolutional neural network
(CNN)-based segmentation.28,32 Standard imaging sequences
included pre- and postcontrast T1WI, T2WI, and FLAIR.
ADC,23,25,30 cerebral blood flow/volume,28,30 DTI,29 and exponen-
tial ADC30 were used as adjuncts in some studies. Radiomic fea-
tures were extracted most commonly by programs developed in-
house on the Matlab software platform (MathWorks).23,25,27

AlexNet (https://www.mygreatlearning.com/blog/alexnet-the-first-
cnn-to-win-image-net/) was used in 1 study for deep learning–
derived features in the highest discriminating pipeline.27 The most
common method of feature selection was support vector machine
(SVM)–recursive feature elimination,25,30,33,34 followed by a
Student t test.27-29 All categories of radiomic features were used.
Two studies did not use ML.23,24 Most studies assessed WHO
grade II and III LGG,22-30,32-34 apart from one that assessed only
WHO grade II LGG.31 Table 1 demonstrates the derived aims and
key findings of studies that examined the IDH status of LGG, while
Table 2 summarizes studies examining the 1p19q status of IDH-
mut LGG. Figures 1 and 2 provide the associated forest plots for
studies assessing IDH and 1p19q, respectively. Further details are
provided in the online material. A meta-analysis on IDH status
was performed on 5 studies22,26,29,30,34 that had sufficient data with
a pooled value of 0.827 (95% CI , 0.760–0.894; I2 ¼ 88.55%). For
1p19q status, a meta-analysis was performed on 4 studies22,26,34,35

that had sufficient data with a pooled value of 0.872 (95% CI,
0.789–0.954; I2¼ 86.19%).

The QUADAS-2 score showed low bias and high applicability
(see Online Fig 2 for individual studies). The radiomic-specific
RQS average score was low, with a mean of 10 (range, 2–14). On
average, the RQS was 29% (range, 6%–39%) of the highest possi-
ble score. There were no studies that reported on cost-effective-
ness, imaging used on phantom models, a prospectively validated
radiomic signature in an appropriate clinical trial or performed
clinical utility statistics (beyond just discussion of uses).21 Further
details are provided in Online Table 3.

DISCUSSION
The systemic literature review found that the highest classifier for
IDH status was conventional radiomics with CNN deep learning–
derived features, which achieved an AUC¼ 0.95 (sensitivity of
94.4%, specificity of 86.7%).27 For classification of 1p19q status,
conventional texture-based radiomics was optimal, with an
AUC¼ 0.96 (sensitivity of 90%, specificity of 89%).34

Segmentation had manual components in both studies28,32

and was generally performed by trained personnel and approved
by neuroradiologists or neurosurgeons. Manual segmentation is
time-consuming, resource-intensive and introduces interobserver
variability. Automation of segmentation is being actively pro-
gressed by the Brain Tumour Segmentation Challenge, and
ongoing improvements have the potential to address the limita-
tions of manual segmentation and thus improve the accuracy and
efficiency of radiomic methods.36-38 For the whole tumor, the
2018 winning team achieved a Sørensen–Dice coefficient of 0.88,
in which a value of 1 represents perfect consistency between man-
ual (ground truth) and automated segmentation.39

For IDH status, the literature indicates that a standard
sequence image acquisition, use of texture-based features (most
common being gray-level co-occurrence matrix,23-25,27-29,34,40

Table 2: Derived aims and key findings of studies examining 1p19q status of IDH-mut LGG
First Author and

Year Derived Aim Key Findings
Han 202035 To determine if clinical and standard imaging

factors improve classification
The AUC (95% CI) ¼ 0.753 (0.654–0.852) for clinical plus radiomic
features versus AUC¼ 0.760 (0.663-0.857) for just radiomic
features; radiomic features were superior to clinical features
alone, AUC¼ 0.627 (0.551–0.703)

Kocak 202026 To determine the best ML classifier The neural network produced the highest AUC (95% CI) ¼ 0.869
(0.751–0.981); sensitivity of 87.5%, specificity of 75.8%

Lu 201828 To determine the best ML classifier Classification occurred with an AUC¼ 0.92 (sensitivity of 88.5%,
specificity of 86.2%) using quadratic SVM

Shofty 201831 To determine the best ML classifier Classification occurred with an AUC¼ 0.87 (sensitivity of 92%,
specificity of 83%) using ensemble bagged trees classifier

Zhou 201734 To determine if VASARI annotations were
superior to standard radiomic analysis for
classification

Texture features classified with an AUC (6 95% CI) ¼ 0.96 6 0.01;
sensitivity of 90% 6 2%, specificity of 89% 6 2%

VASARI features classified with an AUC¼ 0.78 6 0.02; sensitivity
of 72% 6 3%, specificity of 67% 63%

Fukuma 201922 To determine if integration of CNN deep
learning with radiomic features improved
classification

Conventional radiomic features (6 95% CI): accuracy¼ 59.0 6
9.0%; AUC¼ 0.656 6 0.113

CNN features: accuracy¼ 84.0 6 9.3%; AUC¼ 0.868 6 0.099
CNN and conventional radiomic features: accuracy¼ 79.8 6 11.0%;
AUC¼ 0.861 6 0.116
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followed by the gray-level run-length matrix25,27-30,34,40) with
deep learning–derived features, and an SVM machine learning
model may result in an optimal radiomic pipeline. One study
classified solely using texture-based radiomic features and
achieved an AUC¼ 0.79.34 Integration of deep learning with
radiomic features did not increase the AUC in 1 study22 but pro-
duced the highest AUC ¼ 0.95 in another study.27 Features
derived from qualitative visual inspection (Visually Accessible
Rembrandt Images; VASARI) did not increase the AUC com-
pared with just radiomic features.34 Four studies examined multi-
parametric imaging.23,25,29,30 The entropy (randomness of voxel
intensities) feature derived from ADC images was significantly
different between IDH-mut and IDH wild-type LGG,23 suggest-
ing that heterogeneity of ADC values may be helpful in predicting

IDH status. Nevertheless, while inte-
gration of diffusion/perfusion imaging
showed improved classification in 3
studies,25,29,30 ultimately it was not
superior to using standard sequences
with a different radiogenomic
pipeline.28

For 1p19q status, the literature
indicates that standard image sequen-
ces, use of texture-based features (the
most common being grey-level
run length matrix26,28,34,35 followed
by gray-level co-occurrence ma-
trix26,28,34), and a linear SVM
machine learning model may result
in an optimal radiomic pipeline. The
highest AUC= 0.96 was achieved
solely using texture-based radiomic
features.34 Clinical and imaging-fea-
ture (such as age, sex, and the pres-
ence of bleeding or enhancement)
integration did not improve the clas-
sification performance,38 nor did
solely examining visually-created fea-
tures.34 Deep learning feature inte-
gration with radiomic features
increased classification performance;
however, solely examining deep fea-
tures was superior.22 The best-per-
forming ML model classifier was
achieved by a linear SVM.28

For studies included in the meta-
analysis, there was high heterogeneity,
given the variation in the unique ele-
ments of each radiomic pipeline.
Heterogeneity is inevitable with any
meta-analysis; however, acceptable lev-
els may be a Higgins I2 of 0%–40%.41

The meta-analysis found 88.55% and
86.19% heterogeneity for IDH and
1p19q status, respectively. Although the
QUADAS-2 showed low bias and high
applicability, the radiomic-specific RQS

assessment showed an overall inadequate clinical applicability of
studies, identifying issues, including a lack of cost-effectiveness anal-
ysis, clinical utility statistics, or prospective validation. This is con-
sistent with other neuro-oncologic radiomic studies in the
literature.21 The RQS has some limitations, however. For example,
greater emphasis is placed on the image-acquisition parameters12

than on the image-normalization process (making the voxel, section
thickness, and matrix size similar among MR imaging scans), de-
spite the latter being important for optimal translation into multi-
institutional contexts. Of note, a perceived advantage of the AI algo-
rithms is greater objectivity and thus a more consistent diagnosis,
but this has yet to be convincingly proved in the literature.42

Classification of LGG for IDH status followed by further classi-
fication of 1p19q status (when IDH-mut) will have multiplicative

FIG 1. IDH status forest plot of included studies with an AUC.

FIG 2. 1p19q status forest plot of included studies with an AUC.

AJNR Am J Neuroradiol �:� � 2021 www.ajnr.org 5



effects. There was a sensitivity of 94.4% and specificity of 86.7%27

for IDH status, with a sensitivity of 90% and specificity of 89%34

for 1p19q. Thus, by using multiplication, we can find the maxi-
mum literature prediction of 1p19q status in an IDH-mut LGG to
have a sensitivity of 85.0% (94.4% � 90%) and a specificity of
77.2% (86.7% � 89%). The conventional radiogenomic pipe-
lines assume that the features assessed are independent,
though they are not. For example, to take an example from the
visual-feature literature, ill-defined tumor margins have been
correlated with IDH wild-type LGG,43 but if the tumor is IDH-
mut, it is more likely 1p19q-codeletion.10 There is also uncer-
tainty regarding the interaction between radiomic and conven-
tional visual MR imaging features. For example, if the T2-
FLAIR mismatch sign is present, the literature would suggest
that this can predict an IDH-mut 1p19q-intact glioma with
greater confidence than radiomics.8,44 Yet, when these conven-
tional features with the greatest predictive value are absent,
one could expect that radiomics would predict the genotype
better than other conventional MR imaging features. Thus,
optimal classification may be achieved using a combination of
conventional and radiomic features.

Acceptance of AI into clinical practice remains an issue. Much
of the literature on integration is opinion-based,45-48 and research
related to understanding challenges is in its early stages.49-51

Acceptance by patients also remains an issue; a recent study by
Palmisciano et al52 found that only 66.3% of patients found it ac-
ceptable for AI to be used during imaging interpration.53 Issues
raised by patients include distrust, lack of knowledge, a lack of per-
sonal interaction, questions about the efficacy of the AI algorithm,
and the importance of being properly informed of its uses.54

Similar relevant issues were identified by a computer science litera-
ture review55 on human-AI interaction, such as task allocation,
lack of knowledge and/or trust, incorrect use due to confusion, and
integration issues due to a potentially radically different work
practice.

Future directions for integration into the clinical sphere
may come in the form of examining the nonmedical sphere,55

given successful implementation in other fields such as failure
detection in truck engines and welding robots.56 One specific
issue is that some AI programs used were developed in-house
and may not be readily available to other institutions; impor-
tant next steps include comparisons between programs and
subsequent validation on larger external cohorts. There is
also a lack of clinical trials assessing the integration of radio-
mic analysis into clinical practice,44 which was confirmed on
our RQS assessment. Guidelines have recently been developed
to address these issues, which may provide a framework for
integration. For example, Microsoft has recently released a set
of 18 general principles for integration into systems, such as
explaining to the user (clinician) what the AI algorithm can
do, how well it can be done and making it clear how it is per-
formed.57 A thinking paradigm that may solve this is treating
radiomic analysis as a new intervention or drug and applying
ideas from existing protocols such as Phase I–IV clinical tri-
als.58 The Food and Drug Administration has also recently
released guidelines for AI integration into health care sys-
tems.59 Given that radiomic analysis is rapidly progressing

and combining AI with standard radiologist assessment may
show superior outcomes, there needs to be greater effort to
translate findings into an interpretable format for clinical
radiology.

CONCLUSIONS
The greatest classifier of IDH status in LGG was achieved with
conventional radiomics in combination with convolutional neu-
ral network–derived features, providing a sensitivity of 94.4% and
specificity of 86.7% (AUC¼ 0.95). Optimal classification of
1p19q status occurred using texture-based radiomics, with a sen-
sitivity of 90% and a specificity of 89% (AUC¼ 0.96). The litera-
ture is limited by the use of manual segmentation, suboptimal
study design, and the lack of translational work to integrate
radiogenomic analysis into clinical practice.
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