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ORIGINAL RESEARCH
ADULT BRAIN

Brain Metastases: Insights from Statistical Modeling of
Size Distribution

M. Buller, K.M. Chapple, and C.R. Bird

ABSTRACT

BACKGROUND AND PURPOSE: Brain metastases are a common finding on brain MRI. However, the factors that dictate their size
and distribution are incompletely understood. Our aim was to discover a statistical model that can account for the size distribution
of parenchymal metastases in the brain as measured on contrast-enhanced MR imaging.

MATERIALS AND METHODS: Tumor volumes were calculated on the basis of measured tumor diameters from contrast-enhanced
T1-weighted spoiled gradient-echo images in 68 patients with untreated parenchymal metastatic disease. Tumor volumes were then
placed in rank-order distributions and compared with 11 different statistical curve types. The resultant R2 values to assess goodness
of fit were calculated. The top 2 distributions were then compared using the likelihood ratio test, with resultant R values demon-
strating the relative likelihood of these distributions accounting for the observed data.

RESULTS: Thirty-nine of 68 cases best fit a power distribution (mean R2 ¼ 0.938 6 0.050), 20 cases best fit an exponential distribu-
tion (mean R2 ¼ 0.957 6 0.050), and the remaining cases were scattered among the remaining distributions. Likelihood ratio analysis
revealed that 66 of 68 cases had a positive mean R value (1.596 6 1.316), skewing toward a power law distribution.

CONCLUSIONS: The size distributions of untreated brain metastases favor a power law distribution. This finding suggests that me-
tastases do not exist in isolation, but rather as part of a complex system. Furthermore, these results suggest that there may be a
relatively small number of underlying variables that substantially influence the behavior of these systems. The identification of
these variables could have a profound effect on our understanding of these lesions and our ability to treat them.

In patients with cancer, brain metastases are a common finding
on MR imaging, and their presence has important implications

for staging and treatment. Metastases to the brain are a well-
established but incompletely understood process. Although the
hematogeneous spread of tumors to the brain is widely accepted,
the mechanisms responsible for malignant cell clusters establish-
ing themselves and becoming detectable masses remain unclear.
A multitude of factors may potentially play a role, including fac-
tors specific to the metastatic tumor cluster cells, those specific to
the local tissues at the deposition site, and systemic factors affect-
ing the entire patient. An increased understanding of which vari-
ables dictate the behavior of this complex system would be
invaluable in advancing our knowledge of brain metastases, as

well as in advancing our ability to detect, make prognoses for,
and treat metastatic lesions.

We have anecdotally noted that intracranial metastases seem
to present with a limited array of size distributions across all
patients, regardless of age or primary tumor type. In patients with
multiple intracranial metastases, there is often 1 relatively large
metastasis and a number of smaller metastases. This pattern
seems to be independent of the number of metastatic lesions
within the brain. These findings appear to be inconsistent with a
typical Gaussian distribution of lesion sizes, in which tumor sizes
are evenly distributed about a mean. In this study, we attempted
to elucidate the specific distribution that would best explain this
observation.

MATERIALS AND METHODS
We searched all patient records between February 1, 2016, and July
1, 2017, for MR imaging reports of intracranial metastases. We then
excluded patients who had previously treated metastases or metasta-
ses based in the dura. This search revealed 105 patients with
untreated, parenchymal metastases. Subsequently, patients with
fewer than 3metastases were omitted because these metastases could
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not be accurately plotted for nonlinear distributions. This criterion
reduced our study population to a total of 68 eligible patients.

For each patient, axial T1-weighted, contrast-enhanced
spoiled gradient-echo sequences were examined, and a diameter
was recorded for each metastatic lesion. Each lesion was meas-
ured manually by an experienced subspecialty board-certified
neuroradiologist. Diameter measurements were acquired at the
midpoint of each lesion in the craniocaudal plane, and the long
and short axis measurements were averaged in cases of nonspher-
ical lesions to obtain a diameter. These measurements were then
used to calculate a volume for each tumor by the equa-
tion V ¼ 4

3pr3; for these purposes, a spherical shape was
assumed.

The Shapiro-Wilk test for normality was performed for each
patient. The null hypothesis tested that the data were normally
distributed, and significant P values reflected non-normality.
Each volume measurement was then placed in a rank-order dis-
tribution and plotted for each individual patient (Fig 1). The
resulting curves were then compared with 11 possible distribu-
tions using regression curve-fit analysis. The possible distribu-
tions included linear, logarithmic, inverse, quadratic, cubic,
compound, power, “S,” growth, exponential, and logistic plots.
Coefficient of determination values, designated by R2, were gen-
erated for each patient and curve type using SPSS software (IBM,
Armonk, New York). The R2 value is a measure of the goodness-
of-fit of data to a particular model and ranges from 0 to 1. This
value indicates what portion of the variability seen within a given
dataset can be explained using the chosen model. The curves with
the highest R2 value for each patient were then collected and
grouped on the basis of curve type, with power law and exponen-
tial curve types being the most common.

A logistic regression was used to determine whether the num-
ber of lesions was independent of the distribution “power” versus
others. We also ran this model with power and exponential
dichotomized against all other distributions.

Given that power law and exponential curve types best accounted
for the tumor distribution in most patients, we then sought to deter-
mine whether the power law distribution or the exponential distribu-
tion was a better fit for our observed data. We calculated likelihood
ratios for each patient’s lesions comparing the power law and expo-
nential curves. The likelihood ratio test is used to compare 2 statistical
models on the basis of the ratio of the probabilities of each model
accounting for the observed data. The probability that a given model
accounts for the observed data is called the “likelihood” for that
model. Initially, the goodness-of-fit of observed data is compared with
2 models, in this case power and exponential distributions. The loga-
rithm of the ratio of the 2 likelihoods—the R value—is then calculated.
In our study, positive R values are consistent with the power distribu-
tion providing a better fit than the exponential distribution, with
more extreme values suggesting a stronger likelihood than values close
to zero. Conversely, negative values confer similar implications in
favor of the exponential distribution over the power distribution.

Finally, each distribution was treated as a power law type
[Y xð Þ ¼ Cxa], and a values were calculated for each curve. The a
value represents the slope of the linear distribution obtained by
plotting a power distribution logarithmically.

RESULTS
The total number of metastases per patient (n¼ 68) ranged from
3 to 84, with a mean of approximately 11 metastases per patient.

The tumor distribution in 39 patients best fit a power distri-
bution, with a mean R2 value of 0.938 6 0.050. The next most
prevalent curve type was exponential, accounting for 20
patients (mean R2 ¼ 0.957 6 0.050). The remaining 9 cases
were composed of 5 cubic distributions (mean R2 ¼ 0.985 6

0.006), 1 logarithmic distribution (R2 ¼ 0.972), 2 S distributions
(R2 ¼ 0.972, 0.998), and 1 inverse distribution (R2 ¼ 0.962).

Results from the Shapiro-Wilk test suggest that tumor distribu-
tions were normal for 17 patients. Nine of these cases also fit power
(n¼ 2), exponential (n¼ 4), cubic (n¼ 1), log (n¼ 1), and S (n¼
1) distributions as demonstrated by P values , .05. The remaining
8 cases had R2 values for non-normal distributions that ranged
from 0.762 to 0.993; however, associated P values exceeded .05.

The tumor distributions in 66 of 68 patients had likelihood ratios
skewed toward a power law distribution, with R values ranging from
0.020 to 6.049 (Fig 2). Themean R value was 1.5966 1.316.

Results from the logistic regression analysis regarding tumor
number and distribution suggested that the number of lesions
did not predict a power distribution (P¼ .246) or combined
power and exponential distributions (P¼ .198).

Calculated a values ranged from 0.494 to 9.29. Data are sum-
marized in the On-line Table.

DISCUSSION
Our results indicate that metastases within the brain largely fol-
low a non-normal distribution, particularly in cases with .7
metastases.

FIG 1. Example of a rank-order distribution of the volumes of intra-
cranial metastases in 1 patient (patient 37). Used with permission from
Barrow Neurologic Institute, Phoenix, Arizona.
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These results also suggest that it is statistically reasonable to
posit that brain metastases likely follow a size distribution best
described by a power law. On the basis of our data, this relation-
ship is independent of the number of metastases present.

Power law relationships exist within multiple areas of scien-
tific inquiry, including biology, ecology, and economics. Some of
the earliest work with such distributions in biology was per-
formed by Rubner,1 in 1883, in which he found a relationship
between the size and basal metabolic rate of various organisms.
Nearly 50 years later, Swiss biologist Kleiber2 used a power law to
relate oxygen consumption and body mass across multiple spe-
cies of mammals (later dubbed the Kleiber law). Since that time,
there have been many other applications of power laws. Some of
the more well-known applications include the Pareto principle
(regarding the distribution of wealth in a population), the Zipf
law (describing the frequency of words in written language), and
the Richter scale (measuring the strength of earthquakes). More
recently, power laws have been used to elicit differences between
“traditional” wars and modern insurgency conflicts and to assess
the stability of such conflicts.3

Power law relationships can be expressed as follows:

1)
Y xð Þ ¼ Cxa:

When these equations are plotted on a log-log curve, they
yield a linear relationship:

2)
log Y xð Þ½ � ¼ logC þ alog x:

In Equation 2, the term a dictates the slope of the linear
relationship.

Power law relationships fall broadly
into 3 categories.4 The first category
involves relationships that demonstrate
self-symmetry. In these relationships,
the a value is constrained to multi-
ples of a single value. Examples of this
type of power law relationship include
Euclidian geometry (multiples of 1/3)
and biologic allometries related to mass
(multiples of 1/4). The second type of
power law relationship is one in which
the a values occur over a small range of
values. Population densities of certain
species of insects and birds are examples
of this type of power law relationship.4

These 2 types of power laws are united
in that they evidence self-similarity,
which implies the presence of a small
set of underlying variables accounting
for the behavior of the system. The third
type of power law involves those cases
in which other distributions fit the data
just as well as the power distribution,
and although these relationships dem-
onstrate apparent self-similarity across
multiple values, this effect does not hold

across multiple orders of magnitude.4

Our data suggest that the size distribution of intracranial me-
tastases follows a power law distribution of the second type. To
our knowledge, this has not yet been explained in the literature.
Several previous works that have modeled tumor growth have
suggested that tumor growth is more appropriately modeled
using power laws, as opposed to the more commonly accepted
Gompertz model.5-7 Additional work with cellular automata also
supports a power law model for tumor growth in 1, 2, and 3
dimensions.8 This work was later supported with both in vivo
and in vitro results, suggesting that tumor growth as a power law
distribution should not be excluded.9 In addition to evidence of
power law tumor growth, there is also evidence that the meta-
static cell clusters released from primary tumors can also be mod-
eled with a decaying power law.10

Our data suggest that intracranial metastases are not simply
individual tumors growing in isolation but instead form part of a
complex system in which these tumors are interdependent.
Additionally, we suggest the possibility that a small number of
variables may substantially influence the behavior of metastatic
lesions within the brain. Although our study did not attempt to
elucidate these factors, other work in this area has suggested mul-
tiple possibilities, including competition for local resources, host
immune response, anti-angiogenic factors, or anti-cell cycle fac-
tors.11-17 Recent work using mathematical modeling within this
area supports a systemic effect over local factors and suggests that
while the model best supports anti-cell cycle factors, a combina-
tion of anti-cell, anti-angiogenesis, and immune factors would
also be a reasonable conclusion.18

This research, in combination with mathematic modeling
based on these findings, could expand our understanding of the

FIG 2. Likelihood ratio analysis with R value distributions for all 68 patients. Values to the right of
zero indicate that the distribution is more likely to fit a power law, with higher numbers indicating
a stronger fit. Values to the left of zero indicate that the distribution is more likely to fit an expo-
nential distribution. Used with permission from Barrow Neurologic Institute, Phoenix, Arizona.
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factors that influence the growth of metastases in the brain.
Although work is already ongoing to identify factors that regulate
metastatic growth within the brain, the addition of the insights
detailed in this article may allow more focused mathematic mod-
eling and an increased understanding of these processes. These,
in turn, could have ramifications on new treatment for brain me-
tastases or increasingly sensitive tests for the early detection of
systemic metastatic disease. Furthermore, the nature of power
laws may allow us to determine the stability of the system at a
given point in time, thus allowing clinicians to be more selective
with regard to the prognosis and efficacy of treatment.

Our methods were based on the work of Clauset et al,19 which
describes a well-established and state-of-the-art method for eluci-
dating power law relationships. However, there are limitations to
the statistical methods for determining power law relationships
that are particularly problematic in small datasets, which Clauset
defines as n, 100. Clauset et al noted in their article: “In prac-
tice, we can rarely, if ever, be certain that an observed quantity
is drawn from a power law distribution. The most we can say
is that x is drawn from a distribution in the form of Eq. 1
[sic].”19

In our study, both the number of patients and the maximum
number of tumors per patient are below this dataset threshold.
However, single patients presenting with .100 metastases are
rare, and we deemed it statistically incorrect to lump all tumors
from multiple patients into a single dataset. In addition, given the
limitations in orders of magnitude imposed by the fixed volume
of the intracranial compartment and the minimum spatial resolu-
tion of current MR imaging technology, there is debate within
the scientific community as to whether one can distinguish
between the type 2 and 3 power law distributions described
above.4 Within the bounds of these fundamental limitations, we
believe that our findings represent a best possible scenario using
current imaging techniques.

We are currently working to expand our dataset. We plan to
assess whether primary tumor type has any effect on the power
law relationship to determine whether size distribution could be
useful in typing intracranial metastases. Data on patient out-
comes could also help determine whether the magnitude of the a
value could indicate the stability of the system and may help to
predict the rapidity of disease progression in a manner similar to
the conclusions of Bohorquez et al3 regarding the stability of in-
surgency conflicts. Furthermore, mathematic modeling using cel-
lular automata is currently underway to preliminarily identify
some of the potentially limited variables for targeted study based
on our hypothesis.

CONCLUSIONS
We found that intracranial metastases follow a size distribution
consistent with a power law distribution. This distribution pat-
tern implies that these tumors are not growing in isolation but
are rather interconnected parts of a complex system. Given the
small range of a values, it is possible that a small number of varia-
bles may markedly influence the variance within this system and
that identification of these variables could be valuable for making
prognoses and treating patients with metastatic cancer. Further

work, both theoretic and experimental, will be required to iden-
tify these factors. To this end, we intend to pursue mathematic
modeling using cellular automata to preliminarily identify possi-
ble variables for more targeted investigation.
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