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ORIGINAL RESEARCH
PEDIATRICS

Underdevelopment of the Human Hippocampus in Callosal
Agenesis: An In Vivo Fetal MRI Study

X V. Knezović, X G. Kasprian, X A. S̆tajduhar, X E. Schwartz, X M. Weber, X G.M. Gruber, X P.C. Brugger, X D. Prayer, and
X M. Vuks̆ić

ABSTRACT

BACKGROUND AND PURPOSE: In subjects with agenesis of the corpus callosum, a variety of structural brain alterations is already present
during prenatal life. Quantification of these alterations in fetuses with associated brain or body malformations (corpus callosum agenesis
and other related anomalies) and so-called isolated cases may help to optimize the challenging prognostic prenatal assessment of fetuses
with corpus callosum agenesis. This fetal MR imaging study aimed to identify differences in the size of the prenatal hippocampus between
subjects with isolated corpus callosum agenesis, corpus callosum agenesis and other related anomalies, and healthy controls.

MATERIALS AND METHODS: Eighty-five in utero fetal brain MR imaging scans, (20 –35 gestational weeks) were postprocessed using a
high-resolution algorithm. On the basis of multiplanar T2-TSE sequences, 3D isovoxel datasets were generated, and both hippocampi and
the intracranial volume were segmented.

RESULTS: Hippocampal volumes increased linearly with gestational weeks in all 3 groups. One-way ANOVA demonstrated differences in
hippocampal volumes between control and pathologic groups (isolated corpus callosum agenesis: left, P � .02; right, P � .04; corpus
callosum agenesis and other related anomalies: P � .001). Differences among the pathologic groups were also present for both sides.
Intracranial volume and right and left hippocampal volume ratios were different between corpus callosum agenesis cases and controls (P �

.001). When we corrected for intracranial volume, no differences were found between corpus callosum agenesis and other associated
anomalies and isolated corpus callosum agenesis (left, P � .77; right, P � .84). Hippocampal size differences were more pronounced at a
later gestational age.

CONCLUSIONS: Callosal agenesis apparently interferes with the normal process of hippocampal formation and growth, resulting in
underdevelopment, which could account for certain learning and memory deficits in individuals with agenesis of the corpus callosum in
later life.

ABBREVIATIONS: aACC � corpus callosum agenesis and other associated anomalies; ACC � agenesis of the corpus callosum; GW � gestational weeks; HF �
hippocampal formation; iACC � isolated agenesis of the corpus callosum; ICV � intracranial volume

As the largest of the human forebrain commissures, containing

�190 million axons, the corpus callosum begins to develop

between 13 and 14 gestational weeks (GW) in the region of the

ventral lamina reuniens and becomes fully mature at around 10

years of age.1,2 Many complex biologic processes are involved in

its formation, such as birth and migration of commissural neu-

rons, growth and elongation of their axons, crossing of the mid-

line structures, synaptogenesis, and retraction of exuberant ax-

ons. Consequently, numerous human genetic disorders result in

either complete or partial agenesis of the corpus callosum (ACC),

which currently is the most common brain malformation and

occurs in 1:4000 individuals.3 ACC is a very heterogeneous group

of congenital malformations that can be found as isolated agenesis
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of the corpus callosum (iACC) or can be associated with other

brain and body malformations (aACC). When associated with

other comorbid features, ACC is part of a wide range of genetic

and chromosomal anomalies, toxic syndromes, or metabolic dis-

eases and, therefore, has a severe clinical presentation.4 On the

contrary, individuals with iACC have a more favorable prognosis,

with a normal range of intellectual functioning. They display a

typical pattern of neuropsychological and psychosocial deficits,

which include impaired verbal learning and memory.4,5 Several

studies have indicated that the absence of callosal fibers during

development might influence the maturational processes of other

brain regions; this influence can lead, for example, to a reduction

in cortical thickness in some brain regions.6,7

Because the appearance and growth of callosal fibers coincide

with the development of the human hippocampus, we hypothe-

sized that ACC could, consequently, affect the proper formation

of this structure, which is crucial for learning and memory func-

tions.8-10 Therefore, in this retrospective MR imaging study, we

aimed to determine the relationship between ACC and the devel-

opment of the human hippocampal formation.

MATERIALS AND METHODS
Fetuses and MR Imaging
We retrospectively selected 85 fetal MR imaging datasets obtained

from singleton pregnant women who underwent 1.5T fetal MR im-

aging examinations between January 2010 and March 2017, after a

clinical indication for referral to the Department of Radiology, Med-

ical University of Vienna. These women gave written, informed con-

sent for a prenatal MR imaging study before the examination. The

local ethics committee approved the study protocol (registration No.

EK Nr. 2174/2016), and the research was conducted according to the

principles expressed in the Declaration of Helsinki. All image data

were pseudonymized before further analysis.

All MR imaging scans were re-reviewed by a pediatric neuro-

radiologist (G.K.) with extensive experience in fetal MR imaging.

Inclusion criteria for the entire cohort were the following: avail-

able multiplanar T2-TSE sequences, acquired on a 1.5T MR

imaging scanner (cardiac or body coil;

Philips, Best, the Netherlands) in the left

decubitus or supine position without se-

dation (orthogonal axial, coronal, and

sagittal views; Fig 1) (TE � 140 ms,

FOV � 200 –250 mm, slice thickness �

3– 4.4 mm, 0.7-mm in-plane resolu-

tion), and gestational age between 20

and 35 GW.
The inclusion criteria for the healthy

reference cases were the following: nor-
mal central nervous system findings at
screening sonography and MR imaging
examinations, no known genetic or
chromosomal diseases, and normal fetal
growth (On-line Table 1). The inclusion

criteria for the iACC group were the fol-

lowing: complete or partial absence of

the corpus callosum, no known genetic

abnormality (as detected by a chromo-

somal microarray), and no additional

body or brain malformation (as seen by screening sonography

and/or fetal MR imaging) (On-line Table 2). The inclusion crite-

ria for aACC were the following: complete or partial absence of

the corpus callosum and additional body and/or brain malforma-

tion as detected by prenatal sonography and/or MR imaging (On-

line Table 3). Cases with motion-degraded T2WI were excluded

from further analysis (On-line Figure). Fetal age was calculated

from the first day of the woman’s last menstrual cycle (gestational

weeks) and determined with reference to a previous sonographic

examination.

Overall, 85 fetuses were retrospectively selected. The control

group consisted of 39 fetuses with normal brain development, with

gestational ages ranging between 20 and 35 GW (mean age, 28 � 3.8

GW). Two groups with ACC comprised 31 cases with iACC, with a

gestational age ranging between 22 and 34 GW (mean age, 28 � 3.5

GW) and 15 cases with aACC, with a gestational age ranging between

21 and 32 GW (mean age, 26 � 3.7 GW).

MR Imaging Postprocessing
Fiducials placed manually at the distal ends of the lateral ventricles

served as the initialization for an atlas-based brain-masking pro-

cedure on each anisotropic scan. The side of the scan was deter-

mined on the basis of the location of the stomach.

Three anisotropic scans in approximately orthogonal views

were merged using a slice-wise motion-correction procedure and

were used to reconstruct a high-resolution isotropic representa-

tion of the fetal brain (Fig 1).11 Automatic brain extraction was

performed by nonlinear registration of a publicly available spatio-

temporal atlas of fetal brain development12 to the reconstructed

isotropic volume.

Volume Measurement
One reader (V.K.) manually performed the segmentation of the

hippocampal formation (HF) using ITK-SNAP, Version 3.6, soft-

ware (www.itksnap.org).13 For this study, we defined the HF as a

structure that includes the dentate gyrus, the cornu ammonis, the

FIG 1. In vivo T2-weighted images of a control fetal brain, at 30 GW. An example of 3D-recon-
structed MR imaging and segmentation borders for the left (red) and right (green) hippocampus in
sagittal (A), axial (B), and coronal (C) views.
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subiculum, the fimbria, and the alveus (Fig 2). The anatomic bor-

ders used for segmentation of the fetal HF were based on prior

studies14,15 and were traced from the anterior head to the poste-

rior tail. The left HF was always segmented before the right. The

segmentation protocol would start in the sagittal plane, followed

by the axial, and then was confirmed in the coronal plane (Fig 1).

Note that although the HF in this study comprised the dentate

gyrus, the cornu ammonis, the fimbria, the alveus, and the subic-

ulum, these structures were indistinguishable (or partly distin-

guishable) on fetal MR imaging and, thus, were roughly sampled

as a whole complex.14 A few brains had recording artifacts on

some sections where borders of the HF were difficult to recognize.

In these cases, it was necessary to navigate and compare several

sections, forward and backward, to identify the shape and posi-

tion of the structures where the borders were clear.

We obtained intracranial volume (ICV) from labeling the tis-

sue types in the fetal brain using an atlas-based approach, using

successive rigid and nonrigid registrations to a publicly available

spatiotemporal atlas of fetal brain development.12 Available tissue

segmentations in the atlas space were projected onto the individ-

ual case and served as frame for a graph-based segmentation pro-

cedure.16 ICV was then computed as the sum of the volumes of

the gray matter, white matter, thalamus, germinal matrix, brain

stem, cerebellum, ventricles, and CSF.

Statistical Analysis
Statistical analysis was preformed using SPSS Statistics for Win-

dows, Version 24.0 (IBM, Armonk, New York). Absolute volumes

(hippocampal volumes and ICV) are presented in cubic millime-

ters. Relative hippocampal volumes are ratios of the absolute hip-

pocampal volume and ICV. Metric data are presented as mean �

SD and counts, and percentages were used for nominal data. To

determine differences between the ACC and iACC groups, as well as

among age groups, we used a 2-way ANOVA. Paired t tests were

assessed to analyze the differences between the left and right hip-

pocampal volumes. An intraclass correlation coefficient from re-

peated measurements of 18 randomly selected fetal brains, obtained

8 months later, was calculated as a measure of rater segmentation

consistency. The level of significance was set at � � .05.

RESULTS
Segmentation Reliability
An intraclass correlation coefficient was calculated from 18 re-

peated measurements (21.2%). The intraclass correlation coeffi-

cient for the left hippocampus was 0.953, and for the right, 0.906.

Volume Analysis
As shown in Fig 3, absolute volumes of the left and right hip-

pocampus demonstrated an almost linear increase in the control

group, the iACC group, and the aACC group. No significant dif-

ferences between the left and right hippocampal volumes were

present in the control group and the aACC group (Table). How-

ever, the iACC group showed a significant difference between the

left and the right hippocampal volumes, with the right hippocam-

pus having higher values (Table). One-way ANOVA analysis re-

vealed significant differences between the absolute hippocampal

volumes of the control and the pathologic

groups. When we compared the means of

the left and right hippocampal volumes

between the control group and the iACC

group, the P values were .02 and .04, and

for the aACC group, the P value was

�.001. Differences between the patho-

logic groups were also present for both

sides (left, P � .005; right, P � .01). When

comparing absolute ICV, there was no dif-

ference between the control group and the

pathologic groups (iACC, P � .08; aACC

P � .19). However, when we included the

ratios of absolute left and right hippocam-FIG 2. Axial view of a 3D surface model of the left (red) and right (green) hippocampus at 23 GW
(A) and 30 GW (B).

FIG 3. Scatterplots present absolute hippocampal volumes of controls, iACC, and aACC for the left (A) and right (B) hippocampus.
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pal volumes and their ICVs in the analysis, we found a great differ-

ence between the control group and the pathologic groups (P �

.001), while a comparison of the ratios of iACC and aACC did not

show any differences (left, P � .77; right, P � .84).

To gain an even better insight into the extent of differences

among our groups, we divided our data into 3 different time in-

tervals: 20 –25 GW, 26 –30 GW, and 31–35 GW. Change of vol-

ume was significant, indicating that the difference among the 3

groups is not the same for different age groups. As can be seen

from Fig 4, the differences among groups increased with advanc-

ing age (Fig 4).

DISCUSSION
This quantitative prenatal neuroimaging study aimed to assess

hippocampal development in human fetuses with complete

and/or partial callosal agenesis. Compared with age-matched

controls, there were reduced hippocampal volumes in both the

iACC and aACC groups during the early second and third trimes-

ters of pregnancy, suggesting the distinct impact of callosal for-

mation on early hippocampal development.

Correlation of the Development of the Corpus Callosum
and the Hippocampal Formation
The corpus callosum begins to develop between 13 and 14 GW in

the region of the ventral lamina reuniens and becomes fully ma-

ture at around 10 years of age.1,2 The first callosal fibers originate

FIG 4. Moderation effects of age groups on volume group differences were found for the left (A) and right (B) hippocampal volumes but not
for the ratios of absolute hippocampal volume and ICV (C and D).

Mean volumes of hippocampi and P values of left-right
difference

Groups

Left
Volume
(mm3) SD

Right
Volume
(mm3) SD

P
Value

601.21 328.40 621.51 347.10 .180
iACC 416.23 216.20 454.58 223.80 .003
aACC 248.07 125.20 276.27 160.90 .070
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from neurons located in the cingulate cortex, then cross the mid-

line through the transient zone, known as the massa commissu-

ralis, and grow toward the contralateral hemisphere, guided by

many molecular factors and elaborate intercellular interac-

tions.17-23 These initial growing pioneer axons serve as “guide-

posts” for later-arriving axons, which have to decide at several

decision points to travel in the proper direction.19 All parts of the

adult corpus callosum (rostrum, splenium, truncus, and genu)

are visible around 20 GW. Moreover, after 20 GW, the corpus

callosum continues with active growth, as well as with intense

reorganizational processes, until 31 GW, characterized by the re-

traction of an abundant portion of the callosal fibers.24

The HF emerges around 10 GW in the dorsomedial region of

the cerebral hemisphere in the dorsal part of the lamina reuni-

ens.8,9 Between 10 and 14 GW, before the formation of the corpus

callosum, the HF occupies most of the medial hemispheric wall.25

However, around 14 GW, coincident with the emergence of the

formation of the future corpus callosum, the supracallosal por-

tion of the HF starts to display regressive changes.10 In adult ver-

tebrates that lack a corpus callosum, the HF occupies a large por-

tion of the medial surface, and the human HF manifests the same

features until the outgrowth of the first callosal fibers. Between 14

and 15 GW, the HF starts to rotate as a result of the growth of

surrounding brain structures, particularly the expansion of the

corpus callosum. As an archicortical structure, the HF grows

more rapidly than the surrounding neocortical regions.26 Be-

tween 18 and 20 GW, the rotation of the HF is nearly complete,

and by this time, the hippocampal morphology begins to resem-

ble that in the adult. After this period, the HF grows more slowly

than other neocortical regions.

Is reduced hippocampal volume directly caused by the ACC or

is it a completely independent event? The absence of callosal fibers

during development is frequently associated with various limbic

system malformations27 and an abnormal vertical orientation of

the HF, and an arrest of the normal process of its inversion has

been reported.28,29 In addition to its abnormal orientation, the

HF appears to be hypoplastic in human patients lacking a corpus

callosum.29-32 According to animal studies, the axonal collaterals

of developing hippocampal neurons serve as guideposts for cal-

losal axons while crossing the midline structures on their way to

the contralateral hemisphere.19,33 Hence, abnormal hippocampal

development may indirectly influence the proper growth and

elongation of callosal fibers.

The formation of the corpus callosum is a very complex pro-

cess, and disruption of any of the multiple steps involved in its

development, such as the generation and migration of callosal

neurons, axon elongation, glial patterning at the midline, or syn-

aptogenesis, could lead to partial or complete absence of this com-

missure. It may therefore be assumed that the different genes re-

sponsible for guiding all these processes overlap significantly with

those that are important for hippocampal development. One of

the genes known to be crucial for both hippocampal and corpus

callosum development is doublecortin, a gene required for normal

neural migration. In both knockout doublecortin mice and dou-

blecortin-mutated human patients, severe abnormalities of both

of these structures were found, indicating a potentially conserved

role for doublecortin in hippocampal and callosal development.34

Our data from control cases are in accordance with those in

previous studies on fetal hippocampal development that demon-

strate a linear increase in total hippocampal volume between 20

and 31 GW.14,15 It is known that the HF is the fastest growing

brain structure until 20 GW, but after 30 GW, its development

lags behind neocortical regions.10 Because we found an arrest of

hippocampal growth in the second phase of this period in subjects

with ACC, the question is whether this decrease of hippocampal

volume found in subjects with ACC is a result of slowing of nor-

mal growth in this period, or is it possibly a consequence of accel-

erated regressive changes? Thus, it is particularly difficult to de-

cide whether the poorly formed hippocampus results from

hypoplasia or from atrophy. Hypoplasia is defined as underdevelop-

ment of an organ or tissue. Extending postnatal observations,29-32 we

were able to demonstrate that the fetal hippocampus in cases of cal-

losal agenesis mostly does not reach an age-appropriate size, even

during prenatal life. Thus, the term “underdevelopment” or “hyp-

oplasia” was used to describe the reduction in volume of this ar-

chicortical brain structure. Decreased size and connectivity of the

cingulum have also been reported in ACC.35 Thus, as previously

assumed,30 size differences and positional changes of the hippocam-

pus in ACC may be a consequence of changes in the paralimbic

cortices.

To our knowledge, there are no dedicated histologic analyses

of the HF in fetal ACC. To ultimately clarify this point, histologic

studies on postmortem human brain tissue have to be performed

in the future, which will be able to precisely demonstrate possible

changes in cellular and extracellular components in the HF in

cases of ACC.

Finally, a certain limitation of this study is lack of postnatal or

postmortem confirmation of prenatal findings in most of the

ACC cases and healthy controls.

CONCLUSIONS
Our study suggests a relationship between abnormal commissural

development and development of the human HF at prenatal

stages of human life. In fetuses with ACC, the HF follows an ab-

normal anatomic developmental trajectory compared with

healthy subjects, which ultimately results in an underdeveloped

and smaller brain structure. The clinical impact of hippocampal

underdevelopment on postnatal cognitive function in learning

and memory-processing domains must be assessed by future

postnatal follow-up studies.
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Foundation.* *Money paid to the institution.

REFERENCES
1. Rakic P, Yakovlev PI. Development of the corpus callosum and ca-

vum septi in man. J Comp Neurol 1968;132:45–72 CrossRef Medline
2. Giedd JN, Blumenthal J, Jeffries NO, et al. Development of the hu-

man corpus callosum during childhood and adolescence: a longitu-
dinal MRI study. Prog Neuropsychopharmacol Biol Psychiatry 1999;
23:571– 88 CrossRef Medline

3. Paul LK, Brown WS, Adolphs R, et al. Agenesis of the corpus
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