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ORIGINAL RESEARCH
ADULT BRAIN

In Vivo Assessment of the Impact of Regional Intracranial
Atherosclerotic Lesions on Brain Arterial 3D Hemodynamics

X C. Wu, X S. Schnell, X P. Vakil, X A.R. Honarmand, X S.A. Ansari, X J. Carr, X M. Markl, and X S. Prabhakaran

ABSTRACT

BACKGROUND AND PURPOSE: Intracranial atherosclerosis induces hemodynamic disturbance, which is not well-characterized, partic-
ularly in cerebral flow redistribution. We aimed to characterize the impact of regional stenotic lesions on intracranial hemodynamics by
using 4D flow MR imaging.

MATERIALS AND METHODS: 4D flow MR imaging was performed in 22 symptomatic patients (mean age, 68.4 � 14.2 years) with intra-
cranial stenosis (ICA, n � 7; MCA, n � 9; basilar artery, n � 6) and 10 age-appropriate healthy volunteers (mean age, 60.7 � 8.1 years). 3D
blood flow patterns were visualized by using time-integrated pathlines. Blood flow and peak velocity asymmetry indices were compared
between patients and healthy volunteers in 4 prespecified arteries: ICAs, MCAs, and anterior/posterior cerebral arteries.

RESULTS: 3D blood flow pathlines demonstrated flow redistribution across cerebral arteries in patients with unilateral intracranial
stenosis. For patients with ICA stenosis compared with healthy volunteers, significantly lower flow and peak velocities were identified in
the ipsilateral ICA (P � .001 and P � .001) and MCA (P � .001 and P � .001), but higher flow, in the ipsilateral PCA (P � .001). For patients with
MCA stenosis, significantly lower flow and peak velocities were observed in the ipsilateral ICA (P � .009 and P � .045) and MCA (P � .001
and P � .005), but significantly higher flow was found in the ipsilateral posterior cerebral artery (P � .014) and anterior cerebral artery (P �

.006). The asymmetry indices were not significantly different between patients with basilar artery stenosis and the healthy volunteers.

CONCLUSIONS: Regional intracranial atherosclerotic lesions not only alter distal arterial flow but also significantly affect ipsilateral
collateral arterial hemodynamics.

ABBREVIATIONS: ACA � anterior cerebral artery; AI-F � flow rate asymmetry index; AI-V � peak velocity asymmetry index; BA � basilar artery; ICAD �
intracranial atherosclerotic disease; PCA � posterior cerebral artery; PC-MRA � phase-contrast MR angiogram; VENC � velocity encoding

Intracranial atherosclerotic disease (ICAD) is characterized by

narrowing and blockage of the major intracranial arteries due to

accumulation of atherosclerotic plaques within the vessel wall. It

represents one of the most common causes of ischemic stroke

worldwide, with higher occurrence rates in Asians, Hispanics, and

blacks than in whites.1

Patients with symptomatic ICAD have a high risk of stroke

recurrence, particularly those with high-grade (70%–99%) steno-

sis.2 Currently, aggressive medical management is recommended

for the treatment of ICAD. However, approximately 12% of pa-

tients with ICAD experience a recurrent stroke within the first

year.3 Therefore, careful risk stratification and monitoring of

ICAD are paramount. In particular, hemodynamic failure may

impart a high risk in a subset of patients with ICAD. Local hemo-

dynamic alterations secondary to ICAD, particularly in the loca-

tions proximal and distal to the stenosis, may be useful markers of

recurrent stroke risk.4,5 Because DSA is invasive, noninvasive al-

ternatives such as sonography and 2D phase-contrast MR imag-

ing have been used to measure hemodynamic changes in patients

with ICAD, classify stenosis severity, predict risk of recurrent

stroke, and detect in-stent restenosis after stent placement.6-9

However, these techniques may be limited by low reproducibility,

an inadequate insonation window, or insufficient anatomic cov-

erage. In addition, the impact of atherosclerotic lesions on the

hemodynamics in other vascular territories and the redistribution
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of cerebral blood flow through circle of Willis collaterals are not

well-characterized. Furthermore, a 3D characterization of the ste-

nosis-induced hemodynamic changes across the entire cerebral

vasculature and a comparison of the hemodynamics between pa-

tients with ICAD and age-controlled healthy volunteers have not

been previously reported, to our knowledge.

4D flow MR imaging (ie, time-resolved 3D phase-contrast MR

imaging with 3-directional velocity-encoding) provides reliable

flow measurements consistent with 2D phase-contrast MR imag-

ing and offers additional benefits, including retrospective flow

quantification at any vessel location within the imaging volume

and 3D blood flow visualization of the entire vasculature.10-12

Recently, 4D flow MR imaging has attracted increasing interest in

the assessment of intracranial hemodynamics in patients with

cerebrovascular diseases, such as intracranial aneurysms, vein of

Galen malformation, and cerebral arteriovenous malformation.13-17

The purpose of this study was to evaluate the impact of re-

gional intracranial atherosclerotic lesions on cerebral artery he-

modynamics in comparison with healthy volunteers by using 4D

flow MR imaging.

MATERIALS AND METHODS
Study Subjects
Between 2012 and 2014, clinical records of symptomatic patients

with ICAD who had undergone 4D flow MR imaging were retro-

spectively reviewed (n � 26). The study included only patients

with moderate (50%–70%) to severe (�70%) symptomatic intra-

cranial stenosis. DSA, the criterion standard for stenosis measure-

ment, is associated with a small but noticeable risk of complica-

tions; moreover, in the absence of an endovascular intervention, it

is unreasonable to mandate its use. Alternatively, CTA has excel-

lent diagnostic accuracy with a sensitivity and specificity of �97%

compared with DSA.18 TOF-MRA has been demonstrated to be a

reliable tool for assessing intracranial artery stenosis,19 but con-

trast-enhanced MRA was superior to TOF-MRA for the detection

of ICA stenosis.20 In our study, stenosis severity was evaluated on

the basis of clinically available CTA or a combination of TOF-

MRA and contrast-enhanced MRA with a circle of Willis FOV.

Two patients with near-occlusion stenosis were excluded because

flow analysis was not possible due to slow flow, and 2 additional

patients with bilateral stenosis were also excluded. Twenty-two

patients (mean age, 68.4 � 14.2 years; 10 women) and 10 age-

appropriate healthy volunteers (mean age, 60.7 � 8.1 years; 4

women) were included (Table). The stenosed vessels for patients

with ICAD were as follows: unilateral intracranial ICA (n � 7)

with stenosis locations in the cavernous (n � 5/7) and petrous

(n � 2/7) segments, unilateral MCA (n � 9), and the basilar artery

(BA, n � 6). The study was conducted in accordance with a pro-

tocol approved by the local institutional review board, which per-

mitted retrospective chart review. Informed consent was obtained

from all healthy volunteers.

MR Imaging
All measurements were performed on a 1.5T or 3T MR imaging

scanner (Magnetom Avanto or Skyra; Siemens, Erlangen, Ger-

many). 4D flow MR imaging was performed after standard T1-

MPRAGE and 3D TOF-MRA sequences. Cerebral 3D blood flow

was measured by using 4D flow MR imaging with 3-directional

velocity-encoding and 3D volumetric coverage of the major intra-

cranial vessels (see Fig 1 for the volume coverage). The scan was

prospectively gated with electrocardiography R waves produced

by chest leads. Pulse sequence parameters were as follows: TR �

5.4 ms, TE � 2.8 ms, flip angle � 15°, velocity sensitivity (velocity-

encoding [VENC]) � 100 cm/s, FOV � 220 � 160 mm2, band-

Demographics and clinical features of the 22 patients with ICAD
and 10 age-appropriate healthy volunteers included in the studya

Subject Groups

P
Values

Healthy
Volunteers

Patients
with ICAD

Subject characteristics
No. 10 22 –
Age (yr) 60.7 � 8.1 68.4 � 14.2 .124
Sex (male/female) 6:4 12:10 –
Height (m) 1.74 � 0.12 1.71 � 0.11 .503
Weight (kg) 79.8 � 13.7 76.0 � 14.8 .557
Body mass index (kg/m2) 26.2 � 2.9 26.0 � 3.9 .878

Stenosed vessels
ICA (moderate/severe) – 7 (4/3) –
MCA (moderate/severe) – 9 (3/6) –
BA (moderate/severe) – 6 (2/4) –

Note:— – indicates not applicable.
a “Moderate” and “severe” indicate stenosis of 50%–70% and �70%, respectively.
P values are calculated using the Mann-Whitney U test; P � .05 was considered
statistically significant.

FIG 1. Sagittal T1-weighted MPRAGE (A) and vessel MIP (B) images of
the head show the 3D volume coverage for 4D flow imaging. A 3D
phase-contrast MR angiogram was derived from the 4D flow data and
was used for positioning 2D analysis planes in the major cerebral
arteries (C). Time-integrated 3D pathlines illustrate the cumulative
flow path of the vessels within the 3D PC-MRA volume over 1 cardiac
cycle (D). L indicates left; R, right.
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width � 445 Hz/pixel, temporal resolution � 43 ms, voxel size �

(1.1–1.2) � (1.1–1.2) � (1.2–1.4) mm3, acceleration factor R � 2

(generalized autocalibrating partially parallel acquisition), acqui-

sition time � 15–20 minutes depending on the heart rate of the

subjects.

3D Blood Flow Visualization
All 4D flow MR imaging data were preprocessed by using an in-

house software programmed in Matlab (MathWorks, Natick,

Massachusetts), as previously described.21 The preprocessing in-

cluded random noise reduction as well as corrections for velocity

aliasing and phase offsets from Maxwell cross-terms and eddy

currents. In addition, a 3D phase-contrast MR angiogram (PC-

MRA) was derived from the magnitude and phase-difference data

(Fig 1C). The preprocessed data were then further analyzed in a

3D visualization software package (EnSight; CEI, Apex, North

Carolina). Cerebral 3D blood flow was visualized by using time-

integrated 3D pathlines, which illustrated the collective pathline

traces of 25,000 virtual particles equally distributed within the 3D

PC-MRA over 1 cardiac cycle (Fig 1D). The color coding of the

pathlines reflects the magnitude of blood flow velocities in the

vasculature. For display purposes, a velocity window of 0 –50 cm/s

was used to better visualize the flow patterns in the low-velocity

vascular territories (eg, poststenosis, posterior circulation, and so

forth).

Vascular Flow Quantification
As illustrated in Fig 1C, for normal cerebral vessels (ie, all vessels

of healthy volunteers and those vessels without stenosis in pa-

tients), 2D analysis planes were manually positioned perpendic-

ular to 4 prespecified pairs of cerebral arteries by using the 3D

PC-MRA for anatomic orientation (ICA: between the lacerum C3

and cavernous C4 segments; MCA: middle M1 segment; anterior

cerebral artery [ACA]: middle A1 segment; posterior cerebral ar-

tery [PCA]: middle P2 segment). For the stenosed vessel, an anal-

ysis plane was placed at approximately 1 cm distal to the location

of the stenosis to measure poststenotic flow. For each analysis

plane, volumetric flow rate (milliliter/second) and peak velocities

(meter/second) were calculated. The flow analysis was performed

by a scientist (C.W.) with �7 years of MR imaging research expe-

rience. A recent study by our group reported an excellent inter-

observer agreement (Lin concordance correlation coefficient,

�c � 0.996) for quantitative blood flow and velocity measure-

ments in intracranial arteries.12 The same criterion was applied

for quantitative flow assessment in this study.

Flow and Velocity Asymmetry Indices
Absolute cerebral blood flow and velocity values are age- and

sex-dependent.12,22 Thus, the flow/velocity ratios (asymmetry in-

dices) between the affected (left) and nonaffected (right) arteries

were used to compare the differences between patients with ICAD

and healthy volunteers to minimize the impact of age and sex on

flow analysis. The absolute values of the velocities and flow rates

are shown in On-line Tables 1– 4.

Asymmetry indices were calculated as the ratios of the flow

rate (AI-F) and peak velocities (AI-V) between the affected and

nonaffected side (affected/nonaffected) for patients with unilat-

eral ICA and MCA stenosis or between the left and right sides

(left/right) for healthy volunteers and patients with BA stenosis.

In addition, schematic vascular flow models were created to char-

acterize the normal cerebral flow distribution and stenosis-in-

duced flow redistribution in the ipsilateral cerebral arteries com-

pared with the contralateral counterparts.

Statistical Analysis
The asymmetry indices in each subgroup were illustrated by using

box-and-whisker plots. Mann-Whitney U tests were used to com-

pare the asymmetry indices between patient subgroups and

healthy volunteers. In addition, posterior-to-anterior flow ratios,

the ratios of the posterior flow (PCA flow) and anterior flow

(summation of ACA and MCA flow), were compared between

patients with BA stenosis and healthy volunteers by using a

Mann-Whitney U test. All statistical analyses were performed by

using the MedCalc software package (Version 14.8.1; MedCalc

Software, Mariakerke, Belgium). P � .05 was considered statisti-

cally significant.

RESULTS
Study Cohort
Demographics and clinical features of the patients with ICAD and

healthy volunteers are summarized in the Table. There were no

significant differences between healthy volunteers and patients

with ICAD in terms of age, height, weight, and body mass index.

3D Visualization of Intracranial Hemodynamics
3D flow pathlines in healthy volunteers demonstrated symmetric

blood flow velocities and patterns in all prespecified cerebral ar-

teries (Fig 2A, an example of the volunteers). In contrast, blood

flow was compromised at the location of arterial stenosis (thick

yellow arrows) compared with the contralateral counterpart (thin

white arrows) in patients with unilateral ICA (Fig 2B) and unilat-

eral MCA (Fig 2C) stenosis. Additionally, we observed elevated

ipsilateral PCA flow in the patients with ICA stenosis (small pink

arrow, Fig 2B) as well as increased ipsilateral ACA flow in the

patients with MCA stenosis (small pink arrow, Fig 2C). Although

blood flow was substantially decreased in the stenosed BA (thick

yellow arrow, Fig 2D), no side-to-side flow difference was ob-

served in a patient with BA stenosis (Fig 2D).

Flow and Peak Velocity Asymmetry Indices
For patients with ICA stenosis compared with healthy volunteers,

the flow rate and peak velocity asymmetry indices (affected/non-

affected ratios) were both significantly lower in the ICA (Fig 3A,

AI-F: 0.40 � 0.17 versus 0.97 � 0.06, P � .001; Fig 4A, AI-V:

0.57 � 0.16 versus 0.95 � 0.09, P � .001) and MCA (Fig 3B, AI-F:

0.55 � 0.23 versus 0.99 � 0.06, P � .001; Fig 4B, AI-V: 0.72 � 0.18

versus 1.04 � 0.13, P � .002). In contrast, the flow asymmetry

index was significantly higher in the PCA (Fig 3C, AI-F: 1.55 �

0.33 versus 1.00 � 0.06, P � .001).

For patients with MCA stenosis compared with healthy volun-

teers, the flow and velocity asymmetry indices were both signifi-

cantly lower in the ICA (Fig 3A, AI-F: 0.77 � 0.27 versus 0.97 �

0.06, P � .009; Fig 4A, AI-V: 0.84 � 0.18 versus 0.95 � 0.09, P �

.045) and MCA (Fig 3B, AI-F: 0.45 � 0.24 versus 0.99 � 0.06, P �
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.001; Fig 4B, AI-V: 0.68 � 0.27 versus 1.04 � 0.13, P � .005). By

comparison, the indices were significantly higher in the PCA (Fig

3C, AI-F: 1.33 � 0.49 versus 1.00 � 0.06, P � .014) and ACA (Fig

3D, AI-F: 1.57 � 0.54 versus 1.02 � 0.19, P � .006; Fig 4D, AI-V:

1.29 � 0.39 versus 0.99 � 0.13, P � .042).

The flow and velocity asymmetry indices were not significantly

different between patients with BA stenosis and healthy volun-

teers in any prespecified location. However, the posterior-to-an-

terior flow ratios in patients with BA stenosis (0.23 � 0.05) were

significantly lower (P � .030) compared with the healthy volun-

teers (0.37 � 0.16).

ICAD Flow-Redistribution Model
Figure 5 illustrates the normal and stenosed schematic vascular

flow models that include the 4 prespecified artery pairs. For the

normal vascular model (Fig 5A), blood flow was comparable in

the cerebral artery pairs. However, in the ICA stenosis model (Fig

5B), blood flow decreased in the ipsilateral ICA and MCA, but

increased in the ipsilateral PCA compared with the contralateral

counterparts. In the MCA stenosis model (Fig 5C), blood flow

decreased in the ipsilateral ICA and MCA, but increased in the

ipsilateral PCA and ACA. In contrast, there were no side-to-side

flow differences in the BA stenosis model (Fig 5D).

DISCUSSION
The results of this study demonstrate the potential of 4D flow MR

imaging for the comprehensive evaluation of intracranial hemo-

dynamics in patients with ICAD. The findings demonstrate that

focal intracranial atherosclerotic lesions not only alter vascular

flow dynamics in the stenotic artery but also significantly influ-

ence the regional hemodynamics in other vascular territories. In-

deed, unilateral intracranial atherosclerotic lesions cause cerebral

blood flow redistribution across ipsilateral circle of Willis

collaterals.

Catheter cerebral angiography, though invasive, remains the

definitive diagnostic tool for the quantification of stenosis severity

and assessment of collateral flow. Intracranial atherosclerotic le-

sions are dynamic and may progress or regress with time, and

symptomatic ICAD involves a high recurrence rate.1,23 Thus, reg-

ular monitoring of the lesions may provide quantitative metrics of

hemodynamic alternations, which may predict stroke risk and

response to therapy. Noninvasive imaging modalities, such as

MRA and transcranial Doppler, have high accuracy in excluding

intracranial stenosis. However, these techniques may result in

over- or underestimation of the stenosis due to dephasing arti-

facts, flow signal loss, or inadequate insonation window.24

Currently, intracranial hemodynamic disturbance in patients

with ICAD is primarily assessed by sonography or quantitative

MRA (2D PC-MRA).6,8,9,25-27 However, very few studies have

been performed to characterize the 3D blood flow disturbance

and flow redistribution across the major cerebral arteries in pa-

tients with ICAD. An early study by Hope et al28 reported that

TOF-MRA overestimated stenosis, and 4D flow MR imaging ve-

locity measurements could improve the accuracy of the diagnosis.

Hemodynamic measurements using 3D blood flow patterns can

enhance anatomic vessel imaging in that the quantitative hemo-

dynamic information not only improves diagnosis but can poten-

tially be used in prognosis and risk stratification.

The impact of regional atherosclerotic lesions on the flow re-

distribution across cerebral vessels remains incompletely under-

stood. Using quantitative MRA, Ruland et al29 observed elevated

ipsilateral PCA flow in patients with ICA or MCA stenosis. van

Everdingen et al30 reported reduced ipsilateral MCA flow in pa-

tients with ICA occlusion. In our study, we found decreased ipsi-

lateral MCA flow and increased ipsilateral PCA flow in patients

with ICA or MCA stenosis, which is in agreement with the previ-

ous findings. Additionally, we identified increased ipsilateral ACA

flow in patients with MCA stenosis.

Previous studies have demonstrated that the interhemispheric

differences of cerebral flow parameters in healthy subjects were

not significant. An early study by Sorteberg et al31 reported that

there were only minor side-to-side differences of blood flow

velocities in healthy adults and a difference of �14% was con-

sidered abnormal in the ICAs and MCAs. Obata et al32 also

identified no significant difference between left and right ICA

flow in healthy subjects. We corroborated these findings in

healthy volunteers and noted significant side-to-side flow dif-

FIG 2. Time-integrated 3D pathlines illustrate symmetric and coher-
ent flow velocities of the left and right cerebral arteries in a healthy
volunteer (A). Reduced blood flow velocities are observed in the ste-
nosed vessel (thick yellow arrows) compared with the contralateral
counterpart (thin white arrows) in 2 patients with left ICA (B) and left
MCA (C) stenosis. The pink arrows indicate augmented ipsilateral col-
lateral flow. In a patient with BA stenosis (D), blood flow velocity is
substantially decreased in the severely stenosed BA (thick yellow ar-
row; pathlines are invisible due to slow flow) but shows no significant
side-to-side difference of flow velocities in the bilateral cerebral ar-
teries. w/ indicates with.
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ferences in symptomatic patients with

unilateral ICA or MCA stenosis, consis-

tent with prior observations.29,30,33

Collateral flow has been recognized

as an independent predictor of recurrent

stroke risk in patients with symptomatic

intracranial atherosclerosis.34 In pa-

tients with unilateral ICA stenosis, we

observed significantly decreased flow in

the ipsilateral ICA and MCA but in-

creased flow in the ipsilateral PCA, indi-

cating possible PCA-to-MCA collateral

flow pathways to maintain necessary

perfusion pressure in the MCA territory.

The finding is consistent with previous

studies that reported higher blood flow

or velocities in the ipsilateral PCA in pa-

tients with ICA lesions.29,35 Similarly, in

patients with unilateral MCA stenosis,

we identified significantly decreased

flow in the ipsilateral ICA and MCA but

increased flow in the ipsilateral ACA

and PCA, suggesting potential ACA-to-

MCA and PCA-to-MCA collateral flow

pathways via leptomeningeal anastomo-

ses.36 The finding also agrees with previ-

ous reports that have shown elevated

flow or velocities in the ipsilateral ACA

and PCA in patients with MCA stenosis

or occlusion.37,38 In contrast, no side-

to-side differences of the flow parame-

ters were observed in patients with BA

stenosis, indicating no interhemispheric

difference of BA flow distribution. How-

ever, significantly lower posterior-to-

anterior flow ratios in patients with BA

stenosis compared with healthy volun-

teers indicate hemodynamic compro-

mise in the posterior circulation.

For image acquisition, 1.5T and 3T

MR imaging scanners were used, de-

pending on the availability of the scan-

ners. However, previous studies have

shown that the influence of different

field strengths on quantitative blood

flow assessment was minor.10,39 Quanti-

tative flow measurements in intracranial

vessels and the thoracic aorta were not

significantly different between 1.5T and

3T.

Limitations
The small number of patients in each

stenosis subgroup is a major limitation
of the study, which precludes a system-
atic analysis of the association between
stenosis severity and quantitative flow
parameters and the influence of differ-

FIG 3. Asymmetry index of the blood flow in 4 major cerebral vessel locations (A, ICA; B, MCA; C,
PCA; and D, ACA) in patients with stenosis in the ICA (n � 7), MCA (n � 9), and BA (n � 6)
compared with age-appropriate healthy volunteers (n � 10). Single and double asterisks indicate
significant differences with .01 � P � .05 and P � .01, respectively. ICA-Pt, MCA-Pt, and BA-Pt are
patients with ICA, MCA, and BA stenosis, respectively.

FIG 4. Asymmetry index of the peak velocities in 4 major cerebral vessel locations (A, ICA; B,
MCA; C, PCA; and D, ACA) in patients with stenosis in the ICA (n � 7), MCA (n � 9), and BA (n �
6) compared with age-appropriate healthy volunteers (n � 10). Single and double asterisks indi-
cate significant differences with .01 � P � .05 and P � .01, respectively. ICA-Pt, MCA-Pt, and BA-Pt
are patients with ICA, MCA, and BA stenosis, respectively.
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ent vascular variants of the circle of Willis (eg, ACA or PCA hyp-
oplasia) and intracranial atherosclerotic risk factors (eg, diabetes,
hypertension, hypercholesterolemia, and so forth) on cerebral he-
modynamics. The flow analysis was restricted to patients with
moderate and severe stenosis because greater hemodynamic alter-
ations are expected in this group of patients compared with pa-
tients with mild stenosis. In addition, dominant ACA and PCA
flow and potential blood flow redistribution across the ipsilateral
circle of Willis collaterals (ie, through anterior/posterior commu-
nicating arteries) might be confounding factors to the collateral
flow analysis. Further studies with larger patient cohorts, includ-
ing those with mild stenosis, are warranted to investigate the im-
pact of different vascular morphology, stenosis severity, and ath-
erosclerosis risk factors on intracranial hemodynamic changes.
Nevertheless, to our knowledge, this is the largest cohort to date
for 3D blood flow visualization of stenosis-induced intracranial
flow redistribution as well as a quantitative comparison of flow
and velocity asymmetry in the major cerebral arteries between
patients with ICAD and healthy volunteers.

The current 4D flow MR imaging technique is also limited by
insufficient spatial resolution for the characterization of blood
flow at sites of critical or severe stenosis. Instead, poststenotic flow
was used to represent the regional flow in the stenotic artery. The
in-plane resolution of 1.1–1.2 mm in this study was appropriate
for measuring blood flow in the large cerebral arteries (eg, ICAs
and MCAs). However, the accuracy of flow quantification in the
smaller arteries (eg, ACAs and PCAs) may be compromised by
partial volume effects. In addition, flow measurements in the pos-
terior communicating artery and leptomeningeal collaterals are
not possible. Therefore, a higher magnetic field (7T) with in-
creased spatial resolution may be required for improved flow as-
sessment in the smaller vessels.

The wide use of 4D flow MR imaging in clinical applications is
hindered by its relatively long scanning time. Noticeable effort has
been made to accelerate data acquisition by using non-Cartesian
sampling or compressed sensing techniques. For example, the
phase contrast with vastly undersampled isotropic projection re-

construction sequence based on a highly undersampled 3D radial
acquisition enables a total imaging time of �8 minutes.40 Basha et
al41 reported an acceleration factor of 7 by using randomly under-
sampled echo-planar imaging with compressed sensing recon-
struction. A recent study by Dyvorne et al42 has demonstrated the
feasibility of an abdominal 4D flow MR imaging scan in a single
breath-hold by combining spiral sampling and dynamic com-
pressed sensing. In addition, the limited availability of the 4D flow
MR imaging sequence further hinders its wide implementation in
clinical sites.

In addition, single-VENC 4D flow MR imaging includes an
inherent trade-off related to the selection of an optimal VENC.
On the one hand, the VENC should be higher than the maximum
expected velocity to avoid velocity aliasing. On the other hand, a
VENC that is too high undermines the reliability for detecting
slow flow (eg, reduced flow in the stenosed vessels) because the
velocity noise level is proportional to the VENC. Dual- or multi-
VENC techniques have been proposed to extend the dynamic
range of velocities that can be reliability assessed.43,44 Complex
flow characteristics (eg, disturbed or turbulent flow fluctuations
associated with vascular stenosis) cause flow-related signal loss
and present another challenge for accurate poststenotic flow as-
sessment. Ultrashort TE 4D flow MR imaging has been shown to
provide more reliable stenotic flow quantification.45,46 A recent
study by Petersson et al47 reported a stack-of-spiral technique,
which provided more favorable stenotic flow assessment against
the conventional Cartesian counterpart.

CONCLUSIONS
The study demonstrates the potential of 4D flow MR imaging for

comprehensive hemodynamic characterization in patients with

intracranial atherosclerosis. The results indicate that regional ath-

erosclerotic lesions can not only alter local vascular flow dynamics

but also significantly influence the hemodynamics in other vascu-

lar territories, potentially due to collateral flow recruitment. 4D

flow MR imaging provides additional hemodynamic information

that may assist in elucidating the pathophysiology and autoregu-

lation mechanism in intracranial atherosclerosis and in predicting

the risk of recurrent stroke.
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