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ORIGINAL RESEARCH
ADULT BRAIN

Differentiation of Low- and High-Grade Gliomas Using High
b-Value Diffusion Imaging with a Non-Gaussian

Diffusion Model
X Y. Sui, X Y. Xiong, X J. Jiang, X M.M. Karaman, X K.L. Xie, X W. Zhu, and X X.J. Zhou

ABSTRACT

BACKGROUND AND PURPOSE: Imaging-based tumor grading is highly desirable but faces challenges in sensitivity, specificity, and
diagnostic accuracy. A recently proposed diffusion imaging method by using a fractional order calculus model offers a set of new
parameters to probe not only the diffusion process itself but also intravoxel tissue structures, providing new opportunities for noninvasive
tumor grading. This study aimed to demonstrate the feasibility of using the fractional order calculus model to differentiate low- from
high-grade gliomas in adult patients and illustrate its improved performance over a conventional diffusion imaging method using
ADC (or D).

MATERIALS AND METHODS: Fifty-four adult patients (18 –70 years of age) with histology-proved gliomas were enrolled and divided into
low-grade (n � 24) and high-grade (n � 30) groups. Multi-b-value diffusion MR imaging was performed with 17 b-values (0 – 4000 s/mm2)
and was analyzed by using a fractional order calculus model. Mean values and SDs of 3 fractional order calculus parameters (D, �, and �)
were calculated from the normal contralateral thalamus (as a control) and the tumors, respectively. On the basis of these values, the low-
and high-grade glioma groups were compared by using a Mann-Whitney U test. Receiver operating characteristic analysis was performed
to assess the performance of individual parameters and the combination of multiple parameters for low- versus high-grade differentiation.

RESULTS: Each of the 3 fractional order calculus parameters exhibited a statistically higher value (P � .011) in the low-grade than in the
high-grade gliomas, whereas there was no difference in the normal contralateral thalamus (P � .706). The receiver operating characteristic
analysis showed that � (area under the curve � 0.853) produced a higher area under the curve than D (0.781) or � (0.703) and offered a
sensitivity of 87.5%, specificity of 76.7%, and diagnostic accuracy of 82.1%.

CONCLUSIONS: The study demonstrated the feasibility of using a non-Gaussian fractional order calculus diffusion model to differentiate
low- and high-grade gliomas. While all 3 fractional order calculus parameters showed statistically significant differences between the 2
groups, � exhibited a better performance than the other 2 parameters, including ADC (or D).

ABBREVIATIONS: AUC � area under the curve; FROC � fractional order calculus; ROC � receiver operating characteristic; WHO � World Health Organization

Gliomas are the most common primary brain tumors seen in

adults, accounting for approximately one-third to one-half

of all cases diagnosed1 and 82% of malignant brain tumors.2 Ac-

cording to the latest classification by the World Health Organiza-

tion (WHO), gliomas can be divided into 4 grades, spanning a

broad spectrum of biologic aggressiveness.3 Accurate grading of

gliomas is essential to patient management, not only for selecting

the most effective therapy for malignant tumors but also for

avoiding unnecessary aggressive treatment for low-grade tumors

before malignant transformation, maximizing the quality of life

for patients.

MR imaging has been widely used for the initial diagnosis of

brain tumors. Its role for tumor grading, however, is less estab-
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lished.4 Conventional MR imaging techniques, including precon-

trast T1-weighted, T2-weighted, T2-weighted FLAIR, and post-

contrast T1-weighted imaging, have limited sensitivity (eg,

72.5%) and specificity (eg, 65.0%) for differentiating low- and

high-grade gliomas.4,5 Perfusion imaging (eg, CBV) can improve

the sensitivity to �90%,6 but the specificity (eg, 57.5%) remains

inadequate and is subject to the choice of CBV threshold values,

depending on tumor types.7-9 With the ability to reveal tumor

metabolic changes, MR spectroscopy has also been used for tumor

grading.6,10,11 The long data-acquisition times, poor spatial reso-

lution, and magnetic susceptibility perturbations at specific loca-

tions (eg, near the sinus and the skull) have hindered its wide-

spread clinical application.6,10,11 Because of the aforementioned

challenges and limitations faced by MR imaging/MR spectros-

copy, tissue biopsy remains the criterion standard for tumor clas-

sification and grading, despite its sampling errors, invasiveness,

and inability to evaluate residual tumor tissue after cytoreductive

surgery.5

During the past 2 decades, diffusion imaging based on ADC

has been evaluated for tumor grading.12-14 Despite the potential,

several studies indicate that ADC values overlap considerably

among different tumor grades in both adult15-17 and pediatric

patients.14,18-20 The ADC values of tumor tissues are obtained by

characterizing the diffusion MR imaging signals with a monoex-

ponential function, also known as a Gaussian diffusion model,

which assumes that the diffusion process within a voxel is homo-

geneous.21 Unlike low-grade gliomas, high-grade gliomas have an

increased degree of tissue heterogeneity,22,23 which is not ade-

quately captured by ADC. To overcome this limitation, a number

of non-Gaussian diffusion models24-32 have been developed to

extract tissue microstructural information, including tissue het-

erogeneity, beyond what ADC can provide. The fractional order

calculus (FROC) model,26,29 for example, can produce a set of

parameters, including diffusion coefficient D (in square milli-

meters/second), fractional order derivative in space �, and a spa-

tial parameter � (in micrometers). These parameters provide ad-

ditional avenues to probing not only the diffusion process itself

(D) but also the intravoxel tissue heterogeneity (�) that can be

used to improve tumor characterization.26,29,33 In this study, we

demonstrate the feasibility of using a new set of parameters from

the FROC model to improve MR imaging– based differentiation

of low- and high-grade gliomas in adult patients.

MATERIALS AND METHODS
Patients
The institutional review board of the performing hospital (Tongji

Hospital, Wuhan, China) approved this prospective study, and

written informed consent was obtained from all participating pa-

tients. Fifty-six adult patients (18 –70 years of age) with an initial

diagnosis of gliomas were recruited and underwent multi-b-value

diffusion MR imaging before biopsy or surgical treatment. Two

patients were excluded from the analysis due to excessive motion.

Among the 54 patients included in the study, histopathology re-

vealed 24 low-grade gliomas, including 1 pilocytic astrocytoma

(WHO I), 2 oligodendrogliomas (WHO I and II), 20 astrocyto-

mas (WHO II, predominantly diffuse tumors), 1 ganglioglioma

(WHO II), and 30 high-grade gliomas, including 2 anaplastic oli-

godendrogliomas (WHO III), 10 anaplastic astrocytomas (WHO

III), and 18 glioblastoma multiformes (WHO IV), according to

the WHO guideline of 2007.3

Image Acquisition
All MR imaging examinations were performed on a 3T scanner

(MR750; GE Healthcare, Milwaukee, Wisconsin) with a 32-chan-

nel phased-array head coil. The imaging protocol included pre-

contrast T1-weighted FLAIR, T2-weighted FLAIR, T2-weighted

PROPELLER, and multi-b-value diffusion-weighted sequences,

followed by postcontrast T1-weighted imaging. Susceptibility-

weighted imaging was performed on selected patients when the

conventional sequences were inadequate to characterize hemor-

rhage within tumors. In all sequences, an FOV of 24 cm and a

section thickness of 5 mm were used. The parameters specific to

each anatomic imaging sequence were the following: T1-weighted

FLAIR: TR/TE � 1750/32.4 ms, TI � 860 ms, flip angle � 90°, and

matrix size � 320 � 320; T2-weighted PROPELLER: TR/TE �

4260/102 ms, echo-train length � 32, and matrix size � 320 �

224; T2-weighted FLAIR: TR/TE � 8400/150 ms, TI � 2100 ms,

echo-train length � 26, and matrix size � 256 � 256. The DWIs

were produced by using a single-shot echo-planar imaging se-

quence with 17 b-values (01, 201, 501, 1001, 2001, 4001, 6001, 8001,

10001, 12001, 16001, 20002, 24002, 28002, 32004, 36004 and 40004

s/mm2, in which the subscript denotes the number of averages).

At each b-value, a Stejskal-Tanner diffusion gradient was succes-

sively applied along the x-, y-, and z-axes to obtain a trace-

weighted image to minimize the influence of diffusion anisot-

ropy. The key data acquisition parameters were TR/TE � 3025/

94.5 ms, sensitivity encoding acceleration factor � 2, separation

between 2 diffusion gradient lobes � � 38.6 ms, duration of each

diffusion gradient � � 32.2 ms, matrix size � 160 � 160 (recon-

structed with a 256 � 256 matrix), and scan time � 4 minutes 30

seconds.

Image Analysis
Equation 1 was used to fit the intensity (S) of the multi-b-value

diffusion images voxel-by-voxel, according to the FROC diffusion

model26,29:

1) S � S0exp��D�2�� � 1��	Gd��2��� �
2� � 1

2� 
 1
��� ,

where S0 is the signal intensity without diffusion weighting, Gd is

the diffusion gradient amplitude, and � and � are defined earlier.

The � parameter (dimensionless; 0 � � � 1) is a fractional order

derivative with respect to space, and � (in units of micrometers) is

a spatial constant to preserve the nominal units of the diffusion

coefficient D (in square millimeters/second). In the fitting, D

(which reflects the intrinsic diffusivity) was estimated by a mono-

exponential model by using the data acquired at lower b-values

(�1000 s/mm2), in an attempt to make D equivalent to conven-

tional ADC. After D was determined, � and � were subsequently

obtained from a voxelwise nonlinear fitting by using a Levenberg-

Marquardt algorithm34 with all b-values.

ROIs were first placed on the normal contralateral thalamus,

which served as an internal control, followed by placing ROIs on

the solid region of tumors by 2 neuroradiologists (Y.X. and K.L.X.
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with 8 and 15 years of clinical experience, respectively) blinded to

the histology grades. Guided by the high-resolution anatomic im-

ages, regions of hemorrhage, cystic change, and/or necrosis were

excluded. In the solid region of tumors, the enhancing compo-

nents and the nonenhancing (or not-so-obvious enhancing)

components were measured and averaged. The ROI-based image

analysis was performed with customized software developed in

Matlab (MathWorks, Natick, Massachusetts).

Statistical Analysis
The mean and SD of D, �, and � for each patient were calculated

from the normal contralateral thalamus and the tumor ROIs, re-

spectively. On the basis of these values, the low-grade and high-

grade glioma groups were compared by using a Mann-Whitney

U test with a statistical significance set at P � .05.

To investigate the potential value of using combinations of the

FROC parameters (D, �, and �) for differentiation of low- and

high-grade gliomas, we employed a logistic regression model:

2) P0 � exp(a0 	 a1D 	 a2� 
 a3�)/[1 	 exp(a0 	 a1D

	 a2� 
 a3�)],

where a0 is a constant, and a1, a2, and a3 are the regression coeffi-

cients for D, �, and �, respectively. The regression coefficients

were estimated by using a maximum-likelihood method.35 Re-

ceiver operating characteristic (ROC) analysis was performed to

determine the area under the ROC curve (AUC) for assessing the

performance of tumor differentiation by using each of the 3

FROC parameters individually and the combination of FROC

parameters represented by P0. The best cutoff values in the ROC

analysis were determined by using the Youden index. To deter-

mine the generalizability of the proposed method, we used a hold-

out cross-validation algorithm by applying the logistic regression

model, Equation 2, on a “training dataset” and a “test dataset”

(randomly and equally split from the samples). The Pearson cor-

relation coefficients were then determined between the predicted

values and the “true” histopathologic results. All statistical analy-

ses were performed by using SPSS software (IBM, Armonk, New

York).

RESULTS
Comparison among Representative Patients in Each
Group
Figure 1 shows a set of axial images from a representative patient

(oligodendroglioma, WHO I) in the low-grade glioma group, in-

cluding T2-weighted EPI (Fig 1A), and the FROC maps (color

images in Fig 1B–D). The precontrast and postcontrast T1-

weighted FLAIR, precontrast T2-weighted FLAIR, and T2-

weighted PROPELLER images are available in On-line Fig 1. The

D, �, and � maps (Fig 1B–D, respectively) all exhibited higher

values in the tumor than in the surrounding brain parenchyma.

Figure 2 shows a set of axial images from a representative patient

FIG 1. A 41-year-old female patient with a low-grade glioma (oligodendroglioma, WHO grade I). T2-weighted EPI at b�0 with the tumor ROI
encircled in green (A), and FROC parameter maps of D (B), � (C), and � (D) with the tumor ROIs indicated by the black contours (see On-line Fig
1 for a complete set of images, including axial precontrast T1-weighted FLAIR, postcontrast T1-weighted FLAIR, precontrast T2-weighted FLAIR,
and precontrast T2WI PROPELLER images). Compared with the patient with glioblastoma multiforme in Fig 2, all 3 FROC parameters exhibited
higher values. a.u. indicates arbitrary units. The color scale in (B) is expressed in square micrometers/millisecond.

FIG 2. A 38-year-old male patient with a high-grade glioma (glioblastoma multiforme, WHO grade IV). T2-weighted EPI at b�0 with the tumor
ROI encircled in green (A) and FROC parameter maps of D (B), � (C), and � (D) with the tumor ROIs indicated by the black contours (see On-line
Fig 2 for a complete set of images including axial precontrast T1-weighted FLAIR, postcontrast T1-weighted FLAIR, T2-weighted FLAIR, and
T2-weighted PROPELLER images). Compared with the patient with an oligodendroglioma in Fig 1, all 3 FROC parameters exhibited lower values.
a.u. indicates arbitrary units. The color scale in (B) is expressed in square micrometers/millisecond.
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(glioblastoma multiforme, WHO IV) in the high-grade glioma

group by using a layout similar to that of Fig 1. The FROC param-

eters D, �, and � (Fig 2B–D, respectively) were considerably lower

compared with those in Fig 1B–D, leading to a distinct difference

between the high- and low-grade tumors. Additional anatomic

images are available (On-line Fig 2).

Group Comparison Based on the FROC Parameters
After calculating the mean values of the FROC parameters from

each tumor ROI, we obtained the means and SDs from each pa-

tient group; they are listed in Table 1. Because D is the mathematic

equivalent to the conventional ADC (see “Materials and Meth-

ods”), an agreement of �96% was observed between D from the

FROC model and ADC from a monoexponential fitting by using

2 b-values (b � 0 and 1000 s/mm2), as is typical in clinical studies.

Thus, ADC and D are used interchangeably in this study. Com-

parison of the FROC parameters between the 2 tumor groups is

shown in a set of boxplots (Fig 3). Consistent with the represen-

tative cases in Figs 1 and 2, the group analysis exhibited statisti-

cally higher values (P � .011) in the low-grade than the high-

grade gliomas for each of the 3 FROC parameters. In comparison,

the internal control by using a normal contralateral thalamus

showed no significant differences (P � .706) in the FROC param-

eters between the 2 patient groups, as summarized in Table 1.

ROC Analysis
Figure 4 illustrates the ROC curves using individual FROC pa-

rameters for differentiating low- (positive) from high-grade (neg-

ative) gliomas. Because D and � were strongly correlated (see the

results in Fig 5), � was excluded from the logistic regression to

avoid overweighting. The constant and regression coefficients

of D and � were 19.936, 
0.012, and 
24.145, respectively (see

Equation 2), and the corresponding P0 was used in ROC anal-

ysis to represent the combination of D and �. Table 2 summa-

rizes the cutoff values with the corresponding sensitivity, spec-

ificity, accuracy, positive and negative predictive values, and

asymptotic significance (P value). Although D offered the

highest sensitivity (91.7%), its specificity was the lowest

(63.3%), leading to moderate accuracy (77.5%). The sensitiv-

ity was noticeably improved by � or the combination of � and

D, which resulted in the best accuracy (82.1%). The AUC val-

ues of the ROC analyses together with their 95% confidence

intervals and standard errors are given in Table 3. The param-

eter � had a higher AUC (0.853) than D (0.781) or � (0.703),

indicating a better performance for glioma differentiation. The

combination of D and � did not improve the sensitivity, spec-

ificity, accuracy, or AUC compared with �.

The cross-validation analysis showed that the Pearson corre-

lation coefficients between the predicted values and the “true”

histopathologic results were 0.529 (P � .01) for the training set

and 0.625 (P � .01) for the test set. The significance test for the

difference between the 2 correlations (Fisher Z-test) resulted in a

P value of .617, suggesting that the training and test datasets did

not produce statistically different correlations.

The scatterplots in Fig 5 illustrate the possible (or lack of)

correlation among the FROC parameters using all patient data. A

very strong correlation between D and � was observed (Fig 5A)

with a Pearson correlation coefficient of r � 0.930 (P � .001). In

contrast, a noticeably weaker correlation was seen between D and

� (r � 0.766, P � .001). In Fig 5B, the best cutoff values of D and

� are indicated by the vertical (red) and the horizontal (green)

lines, respectively. The oblique black line in Fig 5B corresponds to

the cutoff probability of P0 � .662 for the combination of D and �.

The close proximity between the black

and green lines is a reflection of the fact

that D has a considerably smaller role

than � in the equation P0 � exp(19.936 


0.012 D 
 24.145 �) / [1 	 exp(19.936 


0.012D 
 24.145 �)].

DISCUSSION
We have investigated the feasibility of

using a set of novel FROC diffusion

parameters to differentiate low- from

high-grade gliomas in adults and dem-

onstrated that D, �, and � exhibited sig-

nificant differences between the 2 tumor

groups. When used individually, �

outperformed the other 2 parameters.

These results are important because they

demonstrate that new parameters from

the FROC diffusion model can contrib-

A B C

FIG 3. Boxplots of FROC parameters D (A), � (B), and � (C) between the low- (L) and high-grade (H)
gliomas. Boxes represent the 25th and 75th percentiles with the median indicated by the middle line in
the box. Vertical end bars denote the range of data except for the outliers (ie, values larger than the
75th percentile or smaller than the 25th percentile) represented by a red asterisk. The black asterisk
indicates a significant difference (P � .05) between the low- and high-grade gliomas.

Table 1: FROC parameters of gliomas and normal contralateral
thalamus of patients with low-grade and high-grade gliomas

D (�m2/ms) � � (�m)
Gliomas

LG 1.54 � 0.35 0.85 � 0.05 8.43 � 0.63
HG 1.19 � 0.36 0.77 � 0.06 8.01 � 0.59
P valuea �.001 �.001 .011

NCTH
LG 0.76 � 0.06 0.78 � 0.03 7.33 � 0.38
HG 0.76 � 0.04 0.78 � 0.03 7.34 � 0.33
P valuea .876 .706 .890

Note:—NCTH indicates normal contralateral thalamus; LG, low-grade; HG, high-
grade.
a Mann-Whitney U test.
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ute positively to glioma differentiation and extend the capability

of diffusion imaging beyond conventional ADC.

During the past 2 decades, ADC has been applied to differen-

tiating a number of brain tumors,14,16,18,36 including gliomas. Al-

though the sensitivity of using ADC to detect neoplastic changes

has been demonstrated, considerable overlap in ADC values exists

between low- and high-grade brain tumors,14,16,17 compromising

the specificity and diagnostic accuracy. The suboptimal performance

of ADC for tumor grading originates, at least in part, from the use of

a Gaussian diffusion model (ie, the monoexponential model), which

assumes a homogeneous diffusion process in the tumor, despite

overwhelming evidence of tumor heterogeneity.37-39 In the presence

of heterogeneity, non-Gaussian diffusion models can be more effec-

tive in characterizing the complex diffusion process, particularly at

high b-values (eg, b � 1500 s/mm2).15,21-32,36,40

Like other non-Gaussian diffusion models, the FROC diffusion

model provides new parameters complementary to ADC. In the

FROC model, correlation between � and intravoxel tissue heteroge-

neity has been suggested in several studies on phantoms and tissue

specimens.26,29,41,42 This correlation is also supported by in vivo

studies indicating that tissues with a smaller �-value exhibit a larger

degree of intravoxel heterogeneity.22,27,33,43 Tissue heterogeneity is

also a contributing factor to the WHO tumor grading system.44

Thus, the � parameter may provide a link between an MR imaging

measurement and WHO grades. The lower � values (ie, a high degree

of intravoxel heterogeneity) seen in high-grade gliomas (Figs 2 and 3)

are consistent with the increased degree of tissue heterogeneity due to

the presence of edema, necrosis, hemorrhage, microcalcification,

and so forth. This observation is also consistent with a recent study on

pediatric brain tumors33,43 in which high-grade tumors showed sig-

nificantly lower � values compared with their low-grade counter-

parts. Further studies on well-controlled excised tissues are needed to

directly establish and validate the correlation between diffusion het-

erogeneity suggested by � and structural heterogeneity revealed by

histopathology.

Kwee et al27 recently studied high-

grade gliomas by using an alternative

non-Gaussian diffusion model based on

a stretched-exponential formulism.28

Although this model is similar to the

FROC model, the stretched-exponential

is developed empirically instead of using

the fractionalized Fick diffusion equa-

tion. The heterogeneity index � in the

stretched-exponential model resembles

� in this study. The � value for high-

grade gliomas was reported to be 0.58 �

0.08, which is lower than � � 0.77 �

0.06 in our study. This finding is most

likely due to the different diffusion times

(�) used in these studies.45 Compared

with the study of Kwee et al, our study

produced a noticeably smaller SD in �

because of the relatively large number of

b-values used. Although a minimum of 4

b-values is needed to obtain the 3 FROC

parameters, a larger number of b-values

improves the robustness of the nonlinear

fitting, particularly when the SNR is low.

Using all the patient data in this

study, we observed a strong linear corre-

lation between D and � (Fig 5A). Be-

FIG 4. ROC curves for � (in red), D (in green), and � (in blue) for
differentiating low- and high-grade gliomas. The diagonal line serves
as a reference.

A B

FIG 5. Scatterplots of D versus � (A) and D versus � (B) from all patients (the blue diamonds
represent low-grade and the red triangles denote high-grade gliomas). A very strong correlation
between D and � (A) (Pearson correlation coefficient r � 0.930; P � .001) and a weaker correlation
between D and � (B) (Pearson correlation coefficient r � 0.766; P � .001) are illustrated. B, The
dashed lines indicate the cutoff values for D (red), � (green), and the combination of D and �
(black; linear equation: � � 0.000497D 	 0.798).

Table 2: Cutoff, sensitivity, specificity, diagnostic accuracy, and asymptotic significance
(P value) using D, �, �, and a combination of D and � for differentiating low- (positive)
from high-grade (negative) gliomasa

Cutoff Sensitivity Specificity Accuracy PPV NPV P Value
D 1.189 91.7% 63.3% 77.5% 66.7% 90.5% �.001
� 0.797 87.5% 76.7% 82.1% 75.0% 88.5% �.001
� 7.969 79.2% 60.0% 69.6% 61.3% 78.3% .0059
D 	 � 0.657 87.5% 76.7% 82.1% 75.0% 88.5% �.001

Note:—PPV indicates positive predictive value; NPV, negative predictive value.
a ROC analyses were used.
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cause � has been related to the dimension of free diffusion

space,26 the correlation in Fig 5A reflects the classic relationship

between the diffusion rate and mean free length. � was less corre-

lated with D or �. This weaker correlation can be exploited to

improve specificity and diagnostic accuracy because these 2 pa-

rameters act more independently. In this study, we have seen ev-

idence suggesting that � is more dominant than D for differenti-

ating low- from high-grade gliomas because the combination of �

with D did not improve the performance compared with using �

alone. This finding suggests the important role of tumor hetero-

geneity in various tumor grades.

Our study has several limitations. First, despite the improve-

ment offered by the FROC model in glioma grading, the sensitiv-

ity, specificity, and diagnostic accuracy remain suboptimal. An

extension of the FROC model to quantifying temporal heteroge-

neity, as demonstrated recently,42,43 suggests new opportunities

to further improve the performance. These non-Gaussian diffu-

sion imaging techniques may eventually help in complementing

surgical biopsy in situations in which tissue biopsy is difficult or

risky. Second, the number of patients enrolled in the study is

moderate. As such, we did not attempt to further distinguishing

glioma subtypes or individual grades. Finally, limited by the SNR,

the highest b-value attempted in this study was 4000 s/mm2,

though an even higher b-value may further improve the reliability

of extracting the FROC diffusion parameters.26,29,45

CONCLUSIONS
We have demonstrated the feasibility of using high-b-value diffu-

sion MR imaging with the FROC diffusion model to improve

differentiation between low- and high-grade gliomas. In particu-

lar, the new parameter � offers a higher diagnostic accuracy than

using the diffusion coefficient (D or ADC) alone and is the most

useful and dominant parameter among the 3 FROC parameters

for differentiating glioma grades. Although the focus of this study

is on gliomas, the non-Gaussian diffusion imaging approach

demonstrated herein is expected to have applications in other

disease processes that involve tissue-heterogeneity changes.
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