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ORIGINAL RESEARCH
PEDIATRICS

Diffusion Tractography Biomarkers of Pediatric Cerebellar
Hypoplasia/Atrophy: Preliminary Results Using Constrained

Spherical Deconvolution
X S. Fiori, X A. Poretti, X K. Pannek, X R. Del Punta, X R. Pasquariello, X M. Tosetti, X A. Guzzetta,

S. Rose, X G. Cioni, and X R. Battini

ABSTRACT

BACKGROUND AND PURPOSE: Advances in MR imaging modeling have improved the feasibility of reconstructing crossing fibers, with
increasing benefits in delineating angulated tracts such as cerebellar tracts by using tractography. We hypothesized that constrained
spherical deconvolution– based probabilistic tractography could successfully reconstruct cerebellar tracts in children with cerebellar
hypoplasia/atrophy and that diffusion scalars of the reconstructed tracts could differentiate pontocerebellar hypoplasia, nonprogressive
cerebellar hypoplasia, and progressive cerebellar atrophy.

MATERIALS AND METHODS: Fifteen children with cerebellar ataxia and pontocerebellar hypoplasia, nonprogressive cerebellar hypopla-
sia or progressive cerebellar atrophy and 7 controls were included in this study. Cerebellar and corticospinal tracts were reconstructed by
using constrained spherical deconvolution. Scalar measures (fractional anisotropy and mean, axial and radial diffusivity) were calculated. A
general linear model was used to determine differences among groups for diffusion MR imaging scalar measures, and post hoc pair-wise
comparisons were performed.

RESULTS: Cerebellar and corticospinal tracts were successfully reconstructed in all subjects. Significant differences in diffusion MR
imaging scalars were found among groups, with fractional anisotropy explaining the highest variability. All groups with cerebellar pathol-
ogies showed lower fractional anisotropy compared with controls, with the exception of cerebellar hypoplasia.

CONCLUSIONS: This study shows the feasibility of constrained spherical deconvolution to reconstruct cerebellar and corticospinal
tracts in children with morphologic cerebellar pathologies. In addition, the preliminary results show the potential utility of quantitative
analysis of scalars of the cerebellar white matter tracts in children with cerebellar pathologies such as cerebellar hypoplasia and atrophy.
Further studies with larger cohorts of patients are needed to validate the clinical significance of our preliminary results.

ABBREVIATIONS: AD � axial diffusivity; CA � progressive cerebellar atrophy; CH � nonprogressive cerebellar hypoplasia; CPCT � corticopontocerebellar tract;
CST � corticospinal tract; CTT � cerebellar-thalamic tract; dMRI � diffusion MR imaging; FA � fractional anisotropy; MD � mean diffusivity; PCH � pontocerebellar
hypoplasia; RD � radial diffusivity

In past years, there has been an increasing interest in the appli-

cation of advanced MR imaging techniques for in vivo investi-

gation of WM microstructure by using diffusion MR imaging

(dMRI).1 dMRI provides image contrast based on differences in

the magnitude of diffusion of water molecules in the brain.2 By

combining the directional information and magnitude of aniso-

tropic diffusion of the individual voxels, the trajectories of the

main WM tracts in the brain can be reconstructed2,3 and quanti-

tative analysis of WM organization can be performed.2 dMRI sca-

lars can be measured in specific anatomic ROIs or within/along

reconstructed WM tracts to measure tissue properties.2 Several

studies have shown that advanced fiber tractography algorithms

provide invaluable qualitative and quantitative information on

the brain WM microstructure that cannot be obtained with con-

ventional structural neuroimaging sequences.2,4

Developments in high-angular-resolution diffusion imag-

ing5,6 and progress in postprocessing software that take into ac-Received July 24, 2015; accepted after revision September 29.
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count multiple fiber orientations in the same voxel have improved

the correct anatomic reconstruction of WM tracts such as the

afferent and efferent cerebellar pathways5-9 by accommodating

crossing fibers. Improvements in fiber tractography of the cere-

bellar pathways are important because a large number of congen-

ital, acquired, or degenerative diseases of pediatric10-26 and

adult27-31 populations affect the cerebellum.

Currently, the diagnosis of nonprogressive cerebellar hypopla-

sia (CH) and progressive cerebellar atrophy (CA) is based on

qualitative criteria that take into account conventional, structural

MR imaging sequences.32-35 CH refers to a developmental (non-

progressive) reduction of cerebellar volume with preserved near-

normal shape,32 while CA is defined as progressive loss of cerebel-

lar parenchyma, with secondary enlargement of the interfolia

space.33 In some diseases with prenatal onset, hypoplasia of the

cerebellum may be associated with pontine hypoplasia (ie, pon-

tocerebellar hypoplasia [PCH]17). Despite improvement of struc-

tural MR imaging techniques (eg, phased array and higher mag-

netic field), differentiation of CH and CA remains challenging,

particularly when only 1 MR imaging study is available.32-35 A

correct distinction between CH and CA is important in terms of

management, prognosis, and family counseling. Neuroimaging

methods that may increase the sensitivity in the diagnosis of CH

and CA are warranted.

We aimed to study the feasibility of constraint spherical de-

convolution fiber tractography to reconstruct cerebellar WM

tracts and corticospinal tracts (CSTs) in children with PCH, CH,

and CA. We hypothesized that despite different degrees of reduc-

tion of cerebellar volumes, our approach could successfully re-

construct cerebellar tracts. In addition, we aimed to measure mi-

crostructural properties of cerebellar tracts and CSTs in patients

and age-matched controls. We expected that the reconstructed

WM tracts would show altered scalar metrics in patients com-

pared with controls. Differences in dMRI scalars of the cerebellar

tracts and CSTs among the 3 groups of patients may shed light on

the underlying pathomechanism causing macroscopic cerebellar

abnormalities and may facilitate the differentiation among the 3

groups of diseases.

MATERIALS AND METHODS
Subjects
Children with cerebellar ataxia for this prospective study were

recruited at Stella Maris Scientific Institute from June 2013 to

January 2015 and underwent MR imaging as part of their clin-

ical diagnostic work-up. Inclusion criteria for this study were

evidence of isolated PCH, CH, or CA on structural conven-

tional MR imaging and the availability of 2 structural MR

imaging studies at least 1 year apart to clearly differentiate CH

and CA. On the basis of the 2 structural neuroimaging studies,

all patients were classified into the following groups: CH, PCH,

and CA.32-35 Children with supratentorial abnormalities were

excluded from the study. Age-matched typically developing

children were recruited as controls. The institutional review

board approved the study, and informed parental consent was

obtained for all participants.

Data Acquisition
MR imaging data were acquired by using a 1.5T MR imaging

scanner (Signa Horizon 1.5; GE Healthcare, Milwaukee, Wiscon-

sin). A high-resolution structural 3D T1 BRAVO sequence (GE

Healthcare) was acquired by using the following parameters: sec-

tion thickness, 0.9 mm; FOV, 25.6 � 31.5 cm; TR/TE, 12.36/5.18

ms; flip angle, 13°. The acquisition time was 4 minutes and 30

seconds. dMRI data were acquired by using an echo-planar mul-

tidirection diffusion-weighted sequence. The imaging parameters

were the following: 45 axial sections; section thickness, 3 mm;

FOV, 24 � 29.6 cm; acquisition matrix, 80 � 80 (in-plane reso-

lution, 3.0 � 3.7 mm); TR/TE, 11,000/92 ms. dMRI data were

acquired along 30 noncollinear directions by using a b-value of

1000 s/mm2, in which the encoding gradients were distributed in

space by using the electrostatic approach. In addition, 1 measure-

ment without diffusion weighting (b�0 ss/mm2) was performed.

The dMRI acquisition time was 6 minutes.

Structural Image Analysis
Structural images were assessed by an experienced pediatric neu-

roradiologist (R.P.). All MR imaging studies were qualitatively

evaluated for the presence of CH, PCH, or CA according to pub-

lished diagnostic criteria.15,17 Supratentorial structures were

systematically assessed to exclude children with cerebral

involvement.

dMRI Data Analysis and Fiber Tractography
An extensive preprocessing procedure was performed to detect

and correct image artifacts caused by involuntary head motion,

cardiac pulsation, and intensity inhomogeneities, as previously

described,23,36,37 by using FSL tools (http://www.fmrib.ox.ac.uk/

fsl),38 ANTS (http://picsl.upenn.edu/software/ants/), and in-

house tools. Constrained spherical deconvolution was used to es-

timate the fiber-orientation distribution for fiber tractography

with the MRtrix package (http://neuro.debian.net/pkgs/mrtrix.

html).6 To facilitate manual ROI placement, we generated a

short-track color-encoded track-density image by using 5 million

streamlines of a maximum length of 2 cm seeded throughout the

entire brain volume.23,36,37 Cerebellar tracts were reconstructed

on the basis of a multi-ROI approach (On-line Figure).

The corticopontocerebellar tract (CPCT) constitutes the

main afferent pathway from the cerebral cortex to the cerebel-

lum. To identify the CPCT, we placed a seeding ROI in the

middle cerebellar peduncle (drawn on the coronal plane of the

track-density image map in the green area [anteroposterior

fiber direction]) and an inclusion ROI in the posterior limb of

the internal capsule (drawn on the axial plane of the color-

coded track-density image in the blue area [top-down fibers

direction]). Frontal, parietal, and occipital projections to the

cerebellum were included. ROIs were drawn separately for the

right and left sides.

The cerebellar-thalamic tract (CTT) is the main efferent tract

from the cerebellum. To identify the CTT, we placed a seeding ROI

in the superior cerebellar peduncle (drawn on the coronal plane of

the track-density image map in the light blue area [anteroposterior

mixed with top-down fiber direction, more vertically displaced com-

pared with CPCT]) separately on the right and left sides.
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The CST originates from the precentral areas and descends

through the centrum semiovale and ipsilateral posterior limb of

internal capsule. To identify the CST, we chose the posterior limb

of the internal capsule as the seeding ROI. An additional ROI was

placed in the cerebral peduncle, on the right and left sides sepa-

rately, on the axial plane of the color-coded track-density image,

according to WM atlas mapping.3

Ten thousand streamlines were generated from the seeding

ROIs. The maximum number of attempts (ie, number of seeded

streamlines) was 1 million. Several exclusion ROIs were system-

atically placed to remove aberrant fibers.

Tracts were visually examined by 2 experienced raters (R.P.

and S.F.) on all subjects to verify trajectory and anatomic land-

marks described in the referenced atlas of human WM3 and to

check false-positive streamlines.

Fractional anisotropy (FA), mean diffusivity (MD), axial dif-

fusivity (AD), and radial diffusivity (RD) were calculated as

weighted mean values within each tract.

Statistical Analysis
For all subjects, several dMRI scalars were calculated for each

reconstructed tract. For each tract, a t test was used to compare

dMRI scalars of the right and left sides. When no significant dif-

ferences were found, the mean values of the right and left sides

were averaged for further analysis.

A general linear model incorporating age as a covariate of no

interest was used to determine the difference among groups for

fiber tractography scalar measures (FA, MD, AD, RD). Post hoc

pair-wise comparisons were performed to correct for multiple

comparisons (Bonferroni-corrected P values).

Statistical analysis was performed by using SPSS, Version 2.0

(IBM, Armonk, New York), and all P values were 2-tailed. Results

were considered significant at P � .05.

RESULTS
Subjects
Fifteen children (mean age, 8.8 � 4.9 years; range, 4 –16 years)

with cerebellar abnormalities and 7 normally developing con-

trols (mean age, 9.8 � 4.2 years; range, 4 –16 years) were re-

cruited for this study. On the basis of structural MR imaging

studies, patients were classified as follows: 5 children had CH

(mean age, 14.2 � 2.3 years; range, 11–17 years), 5 patients had

PCH (mean age, 6.2 � 4.3 years; range, 3–11 years), and 5 had

CA (mean age, 6.2 � 3.1 years; range, 3–9 years). Detailed

demographic, clinical, and genetic information of the 15 pa-

tients are shown in On-line Table 1.

Tracts were successfully reconstructed in all subjects (Fig 1);

however, fewer than 10,000 streamlines were generated in all

groups for both the CPCT (mean number, 8050.89 � 2076.61)

and the CTT (mean number, 5236.67 � 1731.02), with no differ-

ences across groups or controls. No significant differences

emerged in scalar measures between the right and left sides. Av-

eraged means and SD of dMRI scalars for each tract are reported

in Table 1. Results for FA and MD are plotted in Fig 2. All pair-

wise comparisons for averaged scalar measures of each tract are

reported in Table 2.

Corticopontocerebellar Tract
There were significant differences among the groups in FA (P �

.001, R2 � 0.89), MD (P � .005, R2 � 0.59), and RD (P � .001,

R2 � 0.71). Post hoc analysis revealed that compared with con-

trols, FA was reduced in PCH (Bonferroni-corrected P values �

.001) and CA (Bonferroni-corrected P values � .002). PCH

showed lower FA compared with CH (Bonferroni-corrected P

values �.001) and CA (Bonferroni-corrected P values � .001). In

addition, in PCH MD (Bonferroni-corrected P values � .005) and

RD (Bonferroni-corrected P values � .001) values were higher

compared with those of controls. No differences were found be-

tween controls and CH.

Cerebellar-Thalamic Tract
There were significant differences between groups in FA (P �

.001, R2 � 0.80) and RD (P � .014, R2 � 0.49). Post hoc analysis

revealed that compared with controls, FA was significantly lower

in PCH (Bonferroni-corrected P value � .001) and CA (Bonfer-

roni-corrected P value � .001). PCH (Bonferroni-corrected P

value � .001) and CA (Bonferroni-corrected P value � .019)

showed lower FA compared with CH. Furthermore, PCH (Bon-

ferroni-corrected P value � .041) and CA (Bonferroni-corrected

P value � .028) showed higher RD compared with controls. No

differences were detected between controls and CH.

Corticospinal Tract
There were significant differences among groups in FA (P � .001,

R2 � 0.89), AD (P � .003, R2 � 0.56), and RD (P � .001, R2 �

0.75). Post hoc analysis revealed that compared with controls, FA

was lower in PCH (Bonferroni-corrected P value � .001) and CA

(Bonferroni-corrected P value � .001). PCH showed lower FA

compared with CH (Bonferroni-corrected P value � .001) and

CA (Bonferroni-corrected P value � .041). Furthermore, PCH

showed higher MD compared with controls (Bonferroni-cor-

rected P value � .005) and higher RD compared with both con-

trols (Bonferroni-corrected P value � .001) and CA (Bonferroni-

corrected P value � .045). Finally, CA showed lower AD

(Bonferroni-corrected P value � .043) compared with controls.

No differences were detected between controls and CH.

DISCUSSION
This study shows a 100% success rate for fiber tractography recon-

struction of afferent (CPCT) and efferent (CTT) cerebellar tracts and

the CST in children with CH, PCH, and CA. We used probabilistic

tractography with constrained spherical deconvolution to recon-

struct the WM tracts. In adults with ataxic syndromes, previous

studies showed that probabilistic tractography is more accurate

and less variable compared with deterministic tractography in

reconstructing WM tracts within the cerebellar peduncles.31

However, our very high successful rate is not straightforward be-

cause traditional tensor techniques have serious limitations in

regions of crossing fibers due to the inability to represent multi-

ple, independent intravoxel orientations. The superior cerebellar

peduncles are the main component of the CTT and cross the

midline in the midbrain at the level of the inferior colliculus. The

dorsomedial portion of the superior cerebellar peduncle and its

ventral fibers are the first to decussate, while the middle part de-
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cussates at a more rostral level. The mid-
dle cerebellar peduncle represents the last
portion of the CPCT. Middle cerebellar
peduncles connect the brain stem nuclei
with the contralateral cerebellar hemi-
sphere and cross the midline at the level of
the pons. Constrained spherical deconvo-
lution is a new and innovative model of
the diffusion signal that allows the resolu-
tion of crossing fibers in voxels containing
multiple fiber orientations.6 Compared
with classic tensor models, it improves the
estimated fiber orientations present in
each voxel, which is especially important
for fiber tractography of bundles with
abundant crossing fibers, such as the cere-
bellar tracts, and allows a more accurate
reconstruction of WM tracts.

High-order probabilistic fiber trac-
tography models provide not only qual-
itative but also quantitative informa-
tion, and dMRI scalars (FA, MD, AD,
and RD) can be measured. The results of
our study show differences in dMRI sca-
lars of the cerebellar tracts and CST
among the 3 groups of patients and con-
trols. Our findings further support the
high value of quantitative analysis of
dMRI scalars to assess tissue microstruc-
tural properties in children with differ-
ent cerebellar diseases.30,31 dMRI scalars
are derived from tensor eigenvalues and
depend on WM characteristics such as
axonal density and the size and degree of
myelination.2,39,40 AD describes water
molecule mobility along the main fiber
orientation axis (estimates axonal in-
jury41), while RD describes water mobil-
ity perpendicular to the fiber axis (esti-
mates myelin injury41). FA describes the

relationship between AD and RD and is

related to MD (eg, often a decrease in FA

is associated with an increase in MD and
RD). Each dMRI scalar, however, can be

affected by different tissue properties.2

In our study, FA values explained the
highest amount of variability across
groups, in agreement with previous
studies.2,31,39,40 MD changed consis-
tently with FA as shown in Fig 2 but ex-
plained across-group variability to a
lesser degree.

Post hoc analysis revealed differences
in FA and RD values between children
with cerebellar pathologies and controls,
with the exception of patients with CH.
Compared with controls, changes in MD
reached statistical significance only in the

FIG 1. Reconstructed bundles for corticopontocerebellar (left), cerebellar-thalamic (middle), and
corticospinal (right) tracts in subjects with (from top to bottom) CH, PCH, CA, and controls.
Bundles are overlaid on T1-weighted images. Figures are representative of the global shape of the
reconstructed bundles, irrespective of the cropping of the anatomic section.

Table 1: Mean and SD of FA, MD, AD, and RD within the CPCT, CTT, and CST

Tract/Group FA Mean (SD)
MD Mean (SD)
(10−3 mm2/s)

AD Mean (SD)
(10−3 mm2/s)

RD Mean (SD)
(10−3 mm2/s)

CPCT
CH 0.42 (0.03) 0.98 (0.11) 1.42 (0.12) 0.76 (0.09)
PCH 0.27 (0.04) 1.14 (0.14) 1.41 (0.08) 0.99 (0.14)
CA 0.35 (0.03) 0.99 (0.03) 1.36 (0.03) 0.81 (0.04)
Control 0.44 (0.02) 0.88 (0.07) 1.37 (0.09) 0.66 (0.06)

CTT
CH 0.28 (0.03) 1.39 (0.11) 1.79 (0.09) 1.26 (0.17)
PCH 0.19 (0.03) 1.49 (0.18) 1.79 (0.23) 1.39 (0.14)
CA 0.22 (0.02) 1.59 (0.14) 1.68 (0.21) 1.41 (0.15)
Control 0.29 (0.02) 1.29 (0.17) 1.81 (0.19) 1.27 (0.21)

CST
CH 0.44 (0.02) 1.07 (0.29) 1.69 (0.16) 0.91 (0.11)
PCH 0.31 (0.03) 1.29 (0.13) 1.71 (0.19) 1.08 (0.11)
CA 0.36 (0.03) 1.06 (0.06) 1.46 (0.05) 0.86 (0.06)
Control 0.45 (0.02) 0.97 (0.04) 1.43 (0.06) 0.73 (0.04)
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CPCT of children with PCH. However, boxplots showed a trend of

changes in MD in children with CA matching FA changes across

groups (reduction of FA corresponded to an increase of MD and

RD2). Changes in dMRI scalars in cerebellar WM tracts may gen-

erally result from primary or secondary involvement. In WM

tracts with primary involvement, myelin necrosis and axonal loss

may lead to the formation of cystic spaces filled by CSF. The in-

creased content of unhindered, isotropically diffusing water in

these cavities is shown by a marked increase in MD.42 On the

contrary, in secondary WM involvement, there is neither substan-

tial water accumulation in the interstitial spaces nor formation of

cysts, even of microscopic dimensions, resulting in only a limited

increase in MD.42

In children with PCH, we found a reduction of FA in all tracts

compared with all groups, with the exception of CTT compared

with children with CA. In addition, subjects with PCH showed

higher MD and RD compared with controls in the CPCT and CST

and higher RD in the CTT compared with controls. These find-

ings support an involvement of WM tracts outside the cerebellum

as previously shown by neuropathology studies.43 In addition,

neuropathology studies in PCH showed regressive (primary)

changes with cystic formation in the cerebellar WM.44 Degener-

ative cystic formation in the cerebellar WM causes an increase in

isotropically diffusing water and, hence, a marked increase in MD

as we found in the CPCT (including the middle cerebellar pedun-

cle) of children with PCH. This explanation applies at least to 2 of

the 5 patients with PCH. Three subjects with PCH had mutations

in the CASK gene.45 CASK-related PCH is rather of a malforma-

tive, not degenerative, nature. Neuropathology findings in a

2-week-old male patient revealed mainly GM involvement.46 A

more recent study, however, showed a role of CASK in axonal

outgrowth and branching, supporting WM involvement as

shown by our results.47 Further studies including a larger and

more homogeneous group of patients with PCH may elucidate

the detailed pathomechanism leading to dMRI changes in GM or

WM tracts within and outside of the cerebellum.

In children with CA, we found reduced FA compared with

controls and CH in all reconstructed WM tracts and an increase in

RD in the CTT, including the superior cerebellar peduncle. In

neuronal ceroid lipofuscinosis and congenital disorders of glyco-

sylation type 1a due to PMM2 mutation, neuropathology studies

showed that the primary involvement affected the cerebellar cor-

tex with extensive loss of Purkinje cells and granule cells.48 Neu-

ropathology studies and our findings (decrease in FA and increase

in RD without significant changes in MD) suggest that involve-

ment of the cerebellar WM is most likely of a secondary nature

FIG 2. Plots of fractional anisotropy and mean diffusivity within the corticopontocerebellar, cerebellar-thalamic, and corticospinal tracts for
CH, PCH, CA, and controls.

Table 2: Pair-wise comparisons for averaged scalar measures of
each tract

PCH CA Control
CPCT

CH
FA (pB � .001)a (pB � .242) (pB � .714)
MD (pB � 1.000) (pB � 1.000) (pB � .278)
AD (pB � 1.000) (pB � 1.000) (pB � .297)
RD (pB � .212) (pB � 1.000) (pB � .277)

PCH
FA (pB � 0.001)a (pB � .001)a

MD (pB � 0.149) (pB � .005)a

AD (pB � 1.000) (pB � .952)
RD (pB � .045)a (pB � .001)a

CA
FA (pB � .002)a

MD (pB � .821)
AD (pB � 1.000)
RD (pB � .289)

CTT
CH

FA (pB � .001)a (pB � .019)a (pB � 1.000)
MD (pB � 1.000) (pB � 1.000) (pB � 1.000)
AD (pB � 1.000) (pB � 1.000) (pB � 1.000)
RD (pB � 1.000) (pB � 1.000) (pB � .715)

PCH
FA (pB � 293) (pB � .001)a

MD (pB � 1.000) (pB � .504)
AD (pB � .914) (pB � 1.000)
RD (pB � 1.000) (pB � .041)a

CA
FA (pB � .001)a

MD (pB � .071)
AD (pB � .315)
RD (pB � .028)a

CST
CH

FA (pB � .001)a (pB � .082) (pB � .492)
MD (pB � .621) (pB � 1.000) (pB � 1.000)
AD (pB � 1.000) (pB � .289) (pB � .143)
RD (pB � .265) (pB � 1.000) (pB � .018)

PCH
FA (pB � .041)a (pB � .001)a

MD (pB � .221) (pB � .005)a

AD (pB � .040)a (pB � .157)
RD (pB � .045)a (pB � .001)a

CA
FA (pB � .001)a

MD (pB � 1.000)
AD (pB � 1.000)
RD (pB � .215)

Note:—pB indicates Bonferroni-corrected P value.
a Significant.
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(Wallerian degeneration). In subjects with CA, we found dMRI

changes not only within the cerebellar tracts but also in the CST.

This finding may reflect a more diffuse involvement as shown in

PCH. In neuronal ceroid lipofuscinosis, atrophy of the cerebral

cortex and periventricular WM abnormalities have been re-

ported.49 Atrophy of the cerebral cortex and abnormalities of the

subcortical WM have also been shown in congenital disorders of

glycosylation type 1a.50 Although no supratentorial abnormalities

were detected in our patients on conventional MR imaging,

changes in the CST may be secondary to ongoing injury of the

cerebral cortex and subcortical WM.

In children with CH, we did not find differences in scalars

compared with controls. This result is in contrast with the find-

ings in CA and PCH. The lack of differences in dMRI scalars

between children with CH and controls suggests that the micro-

structure of cerebellar WM tracts is preserved (eg, normal axonal

packing, diameter, and myelination) and that a malformed cere-

bellum does not cause a secondary alteration of the connecting

WM tracts (at least detectable by our approach). This finding is

important for the primary or secondary role of the cerebellum in

the pathogenesis of cognitive and affective impairment in chil-

dren with CH. Distinction between CA and CH is not difficult in

theory but can be problematic or impossible in practice on the

basis of a single examination.32-35 An accurate differentiation be-

tween CA and CH is important for a targeted diagnostic work-up,

correct diagnosis, early institution of the correct therapy, predic-

tion of the prognosis, and counseling of the family, including

inheritance pattern and risk of recurrence. Our preliminary re-

sults suggest that FA values of the CTT may differentiate CA and

CH on a single neuroimaging study. Our preliminary results,

however, need to be validated in future studies, including larger

cohorts of patients.

Limitations
This study was performed in the context of a clinical MR imaging

examination. Due to the need for a short acquisition time, we

were able to apply only 30 gradient directions. This number of

directions is too low to qualify the technique as high-angular-

resolution diffusion imaging.5 However, we believe that this

number of directions is appropriate for a preliminary project to

study the feasibility of advanced processing procedures with con-

strained spherical deconvolution in children with cerebellar pa-

thologies. A higher number of gradient directions, measurement

of DTI scalars along the white matter tracts (instead of 1 average

value), and inclusion of additional white matter tracts (eg, spino-

cerebellar tracts) may provide additional important information

and should be considered for future research studies, including a

larger cohort of patients. The sample size is limited due to the

inclusion criteria and the low prevalence of the included cerebel-

lar pathologies in the pediatric population. However, the signifi-

cant results, even in a small cohort of patients, are convincing.51

CONCLUSIONS
Our study shows the feasibility of probabilistic tractography with

constrained spherical deconvolution to reconstruct cerebellar

tracts and the CST in children with morphologic cerebellar pa-

thologies. In addition, our preliminary results show the potential

utility of quantitative analysis of scalars of the cerebellar WM

tracts in children with cerebellar pathologies such as CH and CA.

Further studies with larger cohorts of patients are needed to vali-

date the clinical significance of our preliminary results.
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