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ORIGINAL RESEARCH
ARTIFICIAL INTELLIGENCE

Synthesizing Contrast-Enhanced MR Images from
Noncontrast MR Images Using Deep Learning

Gowtham Murugesan, Fang F. Yu, Michael Achilleos, John DeBevits, Sahil Nalawade, Chandan Ganesh, Ben Wagner,
Ananth J Madhuranthakam, and Joseph A. Maldjian

ABSTRACT

BACKGROUND AND PURPOSE: Recent developments in deep learning methods offer a potential solution to the need for alterna-
tive imaging methods due to concerns about the toxicity of gadolinium-based contrast agents. The purpose of the study was to
synthesize virtual gadolinium contrast-enhanced T1-weighted MR images from noncontrast multiparametric MR images in patients
with primary brain tumors by using deep learning.

MATERIALS AND METHODS:We trained and validated a deep learning network by using MR images from 335 subjects in the Brain
Tumor Segmentation Challenge 2019 training data set. A held out set of 125 subjects from the Brain Tumor Segmentation Challenge
2019 validation data set was used to test the generalization of the model. A residual inception DenseNet network, called T1c-ET,
was developed and trained to simultaneously synthesize virtual contrast-enhanced T1-weighted (vT1c) images and segment the
enhancing portions of the tumor. Three expert neuroradiologists independently scored the synthesized vT1c images by using a
3-point Likert scale, evaluating image quality and contrast enhancement against ground truth T1c images (1 ¼ poor, 2 ¼ good,
3 ¼ excellent).

RESULTS: The synthesized vT1c images achieved structural similarity index, peak signal-to-noise ratio, and normalized mean square
error scores of 0.91, 64.35, and 0.03, respectively. There was moderate interobserver agreement between the 3 raters, regarding the
algorithm’s performance in predicting contrast enhancement, with a Fleiss kappa value of 0.61. Our model was able to accurately
predict contrast enhancement in 88.8% of the cases (scores of 2 to 3 on the 3-point scale).

CONCLUSIONS: We developed a novel deep learning architecture to synthesize virtual postcontrast enhancement by using only
conventional noncontrast brain MR images. Our results demonstrate the potential of deep learning methods to reduce the need
for gadolinium contrast in the evaluation of primary brain tumors.

ABBREVIATIONS: BraTS ¼ Brain Tumor Segmentation Benchmark; ET ¼ enhancing tumor; GBCA ¼ gadolinium-based contrast agent; MSE ¼ mean squared
error; NMSE ¼ normalized mean squared error; PSNR ¼ peak signal-to-noise ratio; RID ¼ Residual Inception DenseNet; SFL ¼ spatial frequency loss; SPL ¼
structural perception loss; SSIM ¼ structural similarity index; T2w ¼ T2-weighted; vT1c ¼ virtual contrast-enhanced T1-weighted; WT ¼ whole tumor

Structural MR imaging offers superior soft tissue contrast
compared with other imaging modalities, and plays a crucial

role in the evaluation of brain tumors by providing information
about lesion location as well as morphologic features such as ne-
crosis, the extent of tumor spread, and the associated mass effect
on surrounding brain parenchyma. The administration of

intravenous gadolinium-based contrast agents (GBCAs) short-
ens T1 relaxation times and increases tissue contrast by accentu-
ating areas where contrast agents have leaked through the
blood-brain barrier into the interstitium. This blood-brain bar-
rier breakdown is a feature of certain brain tumors, including
high-grade gliomas, and can serve as an important tool for diag-
nosis and assessment of a treatment response.1

GBCAs have been used for decades in MR imaging and have

historically been considered safe for patients with normal renal

function.1 It is well-known that there is a risk of nephrogenic sys-

temic fibrosis associated with GBCA administration in patients

with renal impairment, particularly when linear conjugates of gad-

olinium are used.2 Moreover, recent studies have shown gadolin-

ium deposits in tissues throughout the body, even in the setting of

normal renal function, which has raised additional concerns about
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the long-term safety of these agents.3 Within the brain, persistent

increased signal intensity on T1-weighted (T1w) MR images has

been reported within the dentate nucleus and globus pallidus fol-

lowing the prior administration of both linear and macrocyclic

GBCAs.
Because of these concerns about the toxicity of gadolinium,

there has been growing interest in alternative approaches to con-
trast-enhanced MR imaging. Examples include manganese-based
contrast agents4 as well as noncontrast techniques, such as arterial
spin-labeling5 and chemical exchange saturation transfer.6 Recent
developments in deep learning algorithms have shown promise
in image synthesis and reconstruction. The main goal of this
study is to investigate the potential of deep learning methods to
simulate contrast enhancement within brain gliomas by using a
limited set of standard clinical noncontrast MR images. Our con-
tributions in this work are 3-fold. First, we developed a novel deep
learning network to demonstrate the ability of deep learning to
synthesize virtual contrast-enhanced T1w images (vT1c) by using
only noncontrast FLAIR, T1w, and T2-weighted (T2w) images.
Second, we utilized imaging data from different scanners at multi-
ple sites to train the model and evaluated its performance in pre-
dicting gadolinium enhancement by using quantitative and
qualitative metrics. Third, we analyzed the contribution of each
set of input MR images in synthesizing the vT1c image to gain
insights regarding the further optimization and streamlining of
the MR imaging protocol for clinical application.

MATERIALS AND METHODS
Data and Preprocessing
The multimodal Brain Tumor Segmentation Benchmark (BraTS)
data set provides a general platform for developing deep learning

models.7 The BraTS 2019 data set used in our study consists of
MR imaging data from 460 patients with gliomas, acquired from
multiple institutions,8 including the University of Pennsylvania;
MD Anderson Cancer Center; Washington University School of
Medicine in St. Louis; and Tata Memorial Centre in India. The
data set has a wide variation in imaging protocols and acquisition
parameters. All subjects had precontrast T1w, T2w, and FLAIR
as well as postcontrast T1c images. From this set, a single-fold
training split of 335 subjects, including 259 high-grade glioma
subjects and 76 low-grade glioma subjects, were used for training,
while 125 subjects were held out for testing. The training data set
was further randomly split into 300 and 35 subjects for the train-
ing and in-training validation of the model, respectively.

Data Preprocessing. The standard preprocessing steps performed
by BraTS included coregistration to an anatomic brain template,9

resampling to isotropic resolution (1 mm3), and skull stripping.10

Additionally, we performed N4 bias field correction11 to remove
radiofrequency inhomogeneity and normalized to zero mean and
unit variance.

Network Architecture
A schematic of our proposed network architecture is shown in
Fig 1. The residual inception DenseNet (RID) network was first
proposed and developed by Khened et al12 for cardiac segmenta-
tion. Our implementation of the RID network incorporated slight
modifications in Keras with a TensorFlow backend (Fig 2). In the
DenseNet architecture, the GPU memory footprint increases as
the feature maps and spatial resolution increases. The skip con-
nections from the down-sampling path to the up-sampling path
used elementwise addition, instead of the concatenation operation

FIG 1. Residual inception DenseNet (RID). A, RID model for virtual contrast enhancement (vT1c prediction) and enhancing tumor (ET) segmenta-
tion. B, RID model for whole tumor (WT) segmentation.
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in DenseNet, to mitigate feature map explosion in the up-sam-
pling path. For the skip connections, a projection operation was
done by using Batch-Norm-1�1-convolution-drop-out to
match the dimensions for element-wise addition (Fig 3). These
modifications to the DenseNet architecture helped to reduce the
parameter space and the GPU memory footprint without affect-
ing the quality of the segmentation output. In addition to per-
forming dimension reduction, the projection operation helped
in learning interactions of cross-channel information13 and

accelerated convergence. Furthermore, the initial layer of the

RID network included parallel convolutional neural network

(CNN) branches that were similar to the inception module with

multiple kernels of varying receptive

fields, which helped to capture view-

point-dependent object variability and

learn relationships between image

structures at multiple scales.14

Model Training
The RID model was trained on 2D
input patches of size 64�64�3 that
were extracted from each image section,
with 3 channels (1 for each input image
contrast). T1w, T2w, and FLAIR images
were concatenated to create the 3 chan-
nels of the input. The decoder part of
the network was bifurcated to generate
2 outputs: 1) synthesized virtual T1c
images (vT1c) and 2) a segmentation

mask of enhancing tumor (ET). Linear and sigmoid activations
were utilized for the vT1c generation and ET segmentation,
respectively. The mean squared error (L2) loss assumes that the
input data set consists of uncorrelated Gaussian signals. This
assumption is not always true in real-world data and can result in
blurry images. To create sharper output images, we optimized the
RID model with the structural perception loss for the vT1c crea-
tion and the Dice loss for the ET segmentation. The structural

perception loss (SPL), which is further detailed below, is a combi-

nation of L2, perception, spatial frequency, and structural similar-

ity loss. Additionally, a separate model, referred to as the whole

tumor (WT) model, was trained by using only T2w images to

FIG 2. Residual inception DenseNet (RID). A, RID model for whole tumor segmentation. B, RID model for virtual contrast enhancement and
enhancing tumor segmentation.

FIG 3. Building blocks of residual inception network. From left to right, dense block, convolution
block, transition block, and projection block.
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segment the entire tumor by minimizing Dice loss (Fig 1B). At
each stage, the RID model and the WT model were trained until

convergence by using Adam optimizers with a learning rate of

0.001 on NVIDIA Tesla P40 GPUs. The tumor grades and man-

ual ground truth annotations for the held out 125 subjects were

not made available by BraTS. To facilitate the quantitative analy-

sis and ET segmentations on the held out data set, we derived the

annotations by using a model15 that was trained on the same

BraTS 2019 training data set.

Structural Perception Loss
The loss function based on the mean squared error (MSE)
between the pixel values of the original images and the recon-
structed images is a common choice for learning. However, only
using the MSE (L2 loss) results in blurry image reconstruction16

with a lack of high spatial frequency components that represent
edges. Therefore, in addition to the L2 loss, we used the spatial
frequency loss (SFL) to emphasize the high-frequency compo-
nents. Furthermore, a convolutional layer with a Laplacian filter
bank as weights was added to the model to emphasize sharp fea-
tures, such as edges. Perceptual and structural similarity-based
(SSIM) losses were also added to improve the model’s perform-
ance. We used a pretrained VGG-16 network to define perceptual
loss functions that measure perceptual differences between pre-
dicted images and ground truth images.17 The VGG loss network
remained fixed during the training process. The model was
trained to optimize the combination of all of the above losses,
which we refer to as structural perception loss (SPL) for simplic-
ity, and can be determined as follows:

SPL ¼ 1� að Þ:L2þ a: SSIMþ b : SFLþ g : Perceptual;

where a, b , and g represent the normalized contribution of each
individual loss. The values were selected to give equal weights for
each loss. We combine multiple similarity and error losses to
obtain a smooth and realistic virtual contrast synthesis. In this
study, we used a ¼ .5, b ¼ .5, and g ¼ .5. The combination of
multiple loss functions can be interpreted as a form of regulariza-
tion, as it constrains the search space for possible candidate solu-
tions for the primary task.18

Evaluation and Statistical Analysis
Quantitative Evaluation. Model performance was evaluated by
comparing the model predicted output (vT1c) image to the
ground truth T1c image. We computed the SSIM, peak signal-
to-noise ratio (PSNR), and normalized mean squared error
(NMSE). The PSNR measures the voxelwise difference in signal,
the NMSE captures the L2 loss, and the SSIM compares the non-
local structural similarity. To evaluate the algorithm’s perform-
ance for a segmenting enhancing tumor, Dice scores were
calculated separately for the whole brain, whole tumor, and
enhancing tumor regions by using our previously developed
brain tumor segmentation ensemble network.15 The Dice scores
of the ET segmentation were calculated without any correction
for the whole brain image after skull stripping (whole brain) but
with corrections for whole tumor (after removing predictions
outside of the whole tumor segmentation) and ET (after

removing predictions outside of the ET segmentation) to quan-
tify the performance of the model in segmenting ET.

Qualitative Evaluation. To assess the subjective visual quality of
the synthesized GBCA enhancement (vT1c), 3 board-certified
neuroradiologists (FY [8 years of experience], JD [8 years of expe-
rience], and MA [6 years of experience]) rated the synthesized
vT1c images by comparing them to the ground truth T1c scans.
For each data set, scores were determined by taking into account
the general image quality and the degree of visual conformity of
the ET region to the ground truth by using a 3-point Likert scale
(1 ¼ poor, the algorithm misidentifies the presence or absence
of contrast enhancement over the whole tumor volume; 2 ¼
good, the algorithm correctly simulates the signal intensity and
the regional extent of enhancement in a portion of the tumor;
and 3 ¼ excellent, the algorithm correctly simulates enhance-
ment throughout nearly the full volume of the tumor). The
interrater agreement between each rater was computed by using
the Fleiss kappa for 3 scale ratings. When discrepancies arose
between raters, a consensus rating was obtained through major-
ity voting. The consensus ratings were also dichotomized into
low (1) and high (2–3) ratings. The raters also examined the
results of the enhancement predictions at a granular level. This
included the degree of overestimation or underestimation, the
location of enhancement within the tumor (peripheral or lat-
eral), the presence of distant enhancement, the presence of any
artifacts, and the overall improvement in image quality.

Importance of the Input MR Sequences for Prediction. To deter-
mine the contribution of different input MR imaging sequences
on the prediction of the vT1c image, we tested the trained model
by iteratively replacing all voxels of each input MR image with ze-
ros while retaining the other 2 input noncontrast MR images.

RESULTS
Quantitative Evaluation
The T1c-ET RID model was tested on 125 held out test subjects.
The average PSNR, NMSE, and SSIM for the whole brain were
64.35, 0.03, and 0.91. The whole tumor and ET regions demon-
strated lower SSIM and PSNR values compared with the whole
brain (Table 1). The Dice coefficients for ET on 125 validation
subjects were .32, .35, and .62 for the uncorrected (whole brain),
corrected for whole tumor, and corrected for ET cases, respec-
tively. In most cases, the model was able to synthesize T1c images
with well-defined enhancing regions, as shown in Fig 4. Out of
the 125 subjects tested, only 13 were labeled as low performance
after the consensus rating between 3 raters, resulting in an accu-
racy of 88.8% in synthesizing vT1c. Table 2 summarizes the qual-
ity of enhancement, the location of enhancement in the tumor

Table 1: Quantitative evaluation. Analysis of virtual enhance-
ment prediction by using various masks generated by an exter-
nal model

Mask SSIM NMSE Dice PSNR
Whole brain 0.91 0.03 0.32 64.35
Whole tumor 0.90 0.01 0.35 48.99
Enhancing tumor 0.90 0.01 0.62 49.93
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(peripheral/lateral), the prediction of distant enhancement, the
presence of artifacts, and the predicted image quality improvement.

Qualitative Evaluation
Representative images are shown in Fig 4. Comparing the synthe-
sized vT1c images with the ground truth T1c images, 89.6% of
the subjective rater scores after consensus were within the good
and excellent range (Supplemental Online Data). The intraclass
rater reliability of the 3 neuroradiologists was 0.61, indicating
moderate interrater agreement by using the 3-point Likert scale.
A consensus rating was obtained through majority voting in sit-
uations in which the raters had different scores. In cases where
the 3 ratings differed, the lowest rating was taken as the consen-
sus. After consensus, a subset of cases (11.2%, 14 cases) was rated
as low, in which enhancing regions were not well-captured or
were absent, compared with the ground truth T1c data (Fig 5).
An example of a low-rated vT1c image is shown in Fig 4.

Importance of the Input MR Sequences for Prediction of
Contrast Enhancement
By replacing each input sequence with zeros, we were able to
determine which sequences are important in the prediction of
specific components of the output vT1c images. The T1w image
contributes primarily structural brain information in the pre-
dicted vT1c image. The FLAIR and T2w images primarily influ-
ence the predicted contrast enhancement (Fig 6).

DISCUSSION
We developed and trained a deep learning model utilizing a
diverse multi-institutional data set that was able to synthesize
vT1c images for primary brain tumors by using only noncon-
trast FLAIR, T2w, and T1w images. Qualitative and quantita-
tive evaluations showed the robust performance of the model
when predicting tumor enhancement. In most cases, the
enhancing and nonenhancing portions of the tumors were cor-
rectly predicted.

Gong et al20 developed a deep learning method to predict full-
dose T1w postcontrast (T1c) images by using one-tenth of the
standard GBCA dose. With respect to this prior work, our study
represents an advancement by using only noncontrast sequences
to predict T1c images.19 Narayana et al20 evaluated whether deep
learning can predict enhancing demyelinating lesions on MR
imaging scans that were obtained without the use of contrast ma-
terial and demonstrated moderate to high accuracy in patients
with multiple sclerosis. Kleesiek et al12 developed a Bayesian net-
work to predict T1c by using noncontrast T1w, T2w, FLAIR,
DWI, and SWI as a 10-channel input.12 Recently, Calabrese et al21

conducted a study to explore the feasibility of dose-free synthesis
by training 3D convolutional networks on an internal data set of
400 subjects with 8 noncontract MR images as input and evaluating

FIG 4. Synthesized virtual contrast enhanced T1w (vT1c) images in 3 different subjects. Ground truth (left column) and synthesized vT1c (right
column) image pairs for 9 subjects.

Table 2: Quantitative presence and location of the under/over-
estimation of synthetic contrast enhancement, the introduc-
tion of artifacts, and the image quality improvement on vT1c

Reviewer
1 (FY)

Reviewer
2 (MA)

Reviewer
3 (JD)

Overestimate (O) 26 27 20
Underestimate (U) 71 69 58
Both (O and U) 11 8 34
Central 54 35 64
Peripheral 94 71 97
False distant enhancement 10 9 15
Missed distant enhancement 5 4 2
Artifact 17 22 25
Image quality improved 10 NA 3

Note:—NA indicates not applicable.
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the model on an external BraTS data set
of 200 subjects. For quantitative evalua-
tion, the authors employed an external
model that was trained on BraTS data to
generate enhancing tumor segmentation
by incorporating real (T1c) and virtual
contrast (vT1c) in addition to other
noncontrast multiparametric MR
images (T1, T2, and FLAIR). They
reported that the synthesized whole
brain postcontrast images exhibited
both qualitative and quantitative simi-
larity to the real postcontrast images,
as indicated by quantitative metrics
such as the Dice coefficients of 0.65 6

0.25 and 0.62 6 0.27 for the internal
and external BraTS data sets, respec-
tively, for the enhancing tumor com-
partment. In contrast, our method
solely utilizes noncontrast multipara-
metric MR images (T1, T2, and
FLAIR) to predict and segment virtual
contrast enhancement, which accounts

FIG 6. Importance of input sequences example. Top row, input images: T1w, FLAIR, T2, and the ground truth T1c. Bottom row, output images
with (A) all inputs (T1w, FLAIR, and T2w) given to the model, (B) T1w replaced with zeros in the input, (C) FLAIR replaced with zeros in the input,
and (D) T2 replaced with zeros in the input. The T2 and FLAIR inputs together provide contrast enhancement prediction, whereas T1w input pro-
vides primarily anatomic detail.

FIG 5. Mosaic plot illustrating the distribution of 3 expert radiologists and their consensus along
a 3-point Likert scale.
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for the comparatively lower enhancing tumor Dice score
observed for the whole brain in our study.

Our results further support this approach by demonstrating
the successful prediction of enhancement in almost 90% of the
testing data set. Moreover, we were able to achieve comparable
results (with superior performance in quantitative metrics,
including PSNR and SSIM) while utilizing notably fewer sequen-
ces (only T1w, T2w, and FLAIR images) that are standard for
clinical brain imaging protocols. Furthermore, the need for fewer
sequences also facilitates reduced scan times, which is an impor-
tant consideration for critically ill, claustrophobic, and cognitively
impaired patients.

Another advantage of our strategy included the use of a more
diverse data set (BraTS) for both training and testing. Whereas
prior studies utilized imaging data from a single institution, BraTS
comprises data from multiple sites with variations in acquisition
parameters, scanner platforms, and imaging protocols.12,19

Introducing more heterogeneity to the training data set enhances
the generalizability of the trained networks. Furthermore, testing
on a substantially larger data set quantifies the generalizability of
the model more accurately. Taken together, these result in a more
generalized approach that is robust to differences in imaging hard-
ware and software and is therefore more amenable to clinical
translation.

Our analysis of the relative contributions of the input sequen-
ces revealed that the FLAIR and T2w images contributed comple-
mentary information in predicting enhancement within the
tumor. This is consistent with the results presented by Kleesiek
et al12 who noted that T2w images were the most important for
predicting contrast. FLAIR and T2w images are generally thought
of as having greater contrast-to-noise for the delineation of pa-
thology, compared with T1w images. Tissue changes that are
related to disruption of the blood-brain barrier that led to or are
seen in association with contrast enhancement, such as necrosis
and edema, may be better delineated with these sequences. The
T1w images contributed information primarily toward delineat-
ing structural details of the brain. T1w images are generally
regarded as anatomic images for their ability to capture the fine
anatomic details of the brain.

The T1c-ET model failed to predict gadolinium enhancement
in subjects for whom 1 or more of the input sequences had a sig-
nificant motion artifact and for whom the tumor was isointense
to normal brain parenchyma on both T2w and FLAIR sequences
(Supplemental Online Data). The failure of the model in the latter
scenario may be due to an inadequate representation of tumors
with these imaging features in the training set. This could be alle-
viated through the incorporation of additional, larger data sets
for training in the future. The deterioration of image quality due
to image artifacts, such as motion, could be separately addressed
by either preventing them during acquisition or correcting them
retrospectively.22 Another potential limitation for implementa-
tion is that we used only primary brain tumor cases for the train-
ing and testing of the model. The application of the algorithm in
cases of sub-centimeter brain metastases and its extension to
other body parts represent exciting areas to explore in the future.

An in-depth qualitative review of the synthesized vT1c revealed
that, though the enhancement accuracy is satisfactory, there is a

tendency to overestimate or underestimate the enhancement, and
there is also a potential for distant enhancement. Regarding this
approach, the implications of these observations and the effective-
ness of radiologic/surgical decisions and survival predictions based
on vT1c, compared with those of real T1c images, must be further
investigated before the method can be translated into a clinical
tool. Taken together, the results of the current study should be
regarded as a proof-of-concept study of clinical feasibility. Future
directions to augment the performance of our model include
the incorporation of larger data sets and different pathologies as
well as the potential acquisition of additional sequences, includ-
ing rapid low-dose, low-resolution echo-planar gadolinium-
enhanced images (as are used for dynamic perfusion MR imag-
ing techniques).19

CONCLUSIONS
We developed a novel deep learning architecture to synthesize
virtual contrast-enhanced T1w images (vT1c) by using only
standard clinical noncontrast multiparametric MR images. The
model demonstrated good quantitative and qualitative perform-
ance in a larger and more heterogeneous data set than those used
in prior studies, and showed the feasibility of gadolinium-free
predictions of contrast enhancement in gliomas. FLAIR and T2w
images were found to provide complementary information for
predicting tumor enhancement. Further studies in larger patient
data sets with different neurologic diseases are needed to fully
assess the clinical applicability of this novel approach.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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