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BRIEF/TECHNICAL REPORT
NEUROINTERVENTION

Discrimination of Hemorrhage and Contrast Media in a Head
Phantom on Photon-Counting Detector CT Data

Franka Risch, Ansgar Berlis, Thomas Kroencke, Florian Schwarz, and Christoph J. Maurer

ABSTRACT

SUMMARY: In this anthropomorphic head phantom study, samples containing blood and contrast agent with concentrations rang-
ing from 0 to 6mg iodine per milliliter and another set of samples without blood for reference were scanned with a photon-
counting detector CT using a standard cranial protocol. It was demonstrated that photon-counting detector CT can reliably distin-
guish hemorrhage and contrast media, including density determination of the latter. The technology promises to add value in sev-
eral neuroimaging applications.

ABBREVIATIONS: CM ¼ contrast media; ME70 ¼ virtual monoenergetic image at 70 keV; PCD ¼ photon-counting detector; VNC ¼ virtual noncontrast

In recent years, the field of intracranial endovascular interven-
tion has gained expertise and application due to the therapeutic

benefit that minimally invasive treatment provides.1 Intracranial
interventions, such as recanalization or embolization procedures,
usually require an unenhanced control CT scan to rule out possi-
ble bleeding. However, distinguishing hemorrhage from contrast
enhancement that may have passed the BBB during the interven-
tion is challenging due to their similar x-ray attenuation.2,3

Photon-counting detector CT (PCD-CT) is a promising tech-
nology that has the potential to facilitate the differentiation of
contrast-enhancement media and hemorrhage following neuro-
interventional procedures in clinical routine. This scanner inher-
ently acquires spectral information that allows postprocessing
steps including material differentiation.4 Accordingly, a CT scan
can be separated into the attenuation resulting from remaining
iodine and soft tissue, generating contrast media (CM) maps and
virtual noncontrast (VNC) series. The instant availability of this
information promises to improve the diagnostic confidence and
the associated therapeutic decision.

The purpose of this in vitro study was to evaluate the abil-
ity of PCD-CT to precisely distinguish between blood and io-
dine at various iodine concentrations, including the precise

determination of the CM attenuation within an anthropomor-
phic head phantom.

MATERIALS AND METHODS
Phantom
The phantom used in this study replicates the human brain anat-
omy and comprises brain-equivalent tissue with constant CT val-
ues, surrounded by high x-ray-absorbing structures that simulate
the skull and temporal bones (PFO-Kalotte; Quality assurance in
Radiology and Medicine). Additionally, 3 cylindric holes at the
center, anterior, and lateral aspects, directly beneath the skull,
allow inserts.

Insert Composition
Iodine concentrations from 0 to 6mg/mL with 1 mg/mL
increments were included in this study. As a reference, 1 series of
concentrations consisted solely of iodine (30mg/mL) and sodium
chloride (0.9%). The second series was designed to represent the
actual clinical scenario of iodine mixed with blood. Red cells from
an outdated blood donation were diluted with glucose (40%) and
mixed with iodine and sodium chloride in a constant ratio (2
shares of blood, 1 share of glucose, 1 share of iodine diluted with
sodium chloride) to simulate blood. All solutions were adjusted to
a total volume of 120mL to fill the whole of the phantom with a
stand-off on both sides.

CT Protocol
All samples were scanned on a novel PCD-CT (NAEOTOM
Alpha; Siemens) with a standard clinical cranial CT protocol at all
3 phantom insert positions, respectively. Scans were acquired sin-
gle-source at a tube voltage of 120 kV(peak) in a spiral mode with
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a pitch of 0.55. The reference tube current time product was
adjusted by setting the image quality level to 280, and the single/
total collimation was 0.4/38.4mm.

Image Reconstruction
Images were iteratively reconstructed (Q2, quantum iterative
reconstruction, QIR; Siemens) on the scanner console (Version
VA50A) using a quantitative regular kernel (Qr40). Spectral post-
processing series were generated to fully preserve spectral image
information for further analyses. Section thickness and increment
were set to 1.0/0.4mm.

Image Analysis
Image analysis was performed on a dedicated workstation (syngo.
via, Version VB70A; Siemens) in a dual-energy workflow (virtual
unenhanced application profile). Four different axial section posi-
tions were considered, 2 within and 2 out of the temporal bone
section, approximately equally distributed from the cranial-to-
caudal direction (Fig 1). Circular ROIs with a constant area of 3.5
cm2 were positioned centrally within the inserts, excluding possi-
ble air bubbles. In addition to the positions anterior (A), central
(C), and left (L), 2 further reference measurements posterior
(Rposterior) and right (Rright), which were arranged symmetrically
to the axis of rotation. The calculated iodine concentration in
milligrams per milliliter, as well as the mean and SD of CT values
in Hounsfield units for the CM map, the virtual monoenergetic
image at 70 keV (ME70), and the VNC image were recorded. The
noise level was defined as the SD of CT values measured within
the reference ROIs (Rposterior and Rright).

Statistical Analyses
Statistical analyses were conducted using Python (Version 3.9).
Data were tested for normal distribution using the Shapiro-Wilk
test. To assess differences, we used the paired t test and the
Wilcoxon signed-rank test for parametric and nonparametric
data, respectively. In case of multiple comparisons, P values were

adjusted using the Bonferroni method. Continuous data are given
as mean (SD) or as median (interquartile range) for parametric
or nonparametric data. The accuracy of linear regression analysis
was assessed using the coefficient of determination (r2). Statistical
significance was set at P values, .05.

RESULTS
The effective milliampere-seconds, volume CT dose index, and
dose-length product were 170 mAs, 30.6 mGy, and 533 mGy �
cm for each scan, respectively.

The general noise level was 3.5 (3.3–3.7) HU. All measure-
ments of CT values within the reference and the blood samples
are demonstrated in Fig 2. The reference probes without blood
show low CT values for an actual iodine attenuation of 0mg/mL
with means of 3.8, 13.7, and 9.9 for CM, ME70, and VNC, respec-
tively. With increasing iodine concentrations, Hounsfield units of
CM and ME70 rise accordingly in �22-HU steps with a signifi-
cant (all, P, .01), albeit a small, constant distance of,10 HU
from each other, attributable to the attenuation of the sodium
chloride. Meanwhile VNC CT values remained constant around
9 HU. Results from blood-containing probes were even more
accurate. At zero iodine concentration, ME70 and VNC showed
no significant difference (P¼ .12), and the mean CT values on
CM were close to 0 HU (–0.9 [SD, 1.6] HU). A linear increase of
CT values of ME70 and CM was observed with increasing iodine
attenuation, but with a larger distance in measurement to each
other (�67 HU) due to the blood attenuation. On VNC, CT val-
ues were consistent with smaller SDs compared with the non-
blood samples.

Figure 3 shows the regression analysis between the actual and
measured iodine concentrations of the reference samples without
blood and the samples with blood and glucose. The regression
lines demonstrate a perfect linear relationship with an r2 value of
1.0. However, the measured iodine concentrations are slightly
underestimated with increasing actual concentration, indicated
by the slope of 0.9. ROI positioning above or next to the

FIG 1. The schematic structure of the phantom and the respective positions of measurement. A indicates anterior; C, central; L, left; Rposterior,
posterior reference; Rright, right reference).
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temporal bone structures showed no influence on the measure-
ment and largely overlapped. Figure 4 shows that the mean dif-
ference between the actual and measured iodine concentrations
is –0.2mg/mL, which is consistent for both reference and the
blood samples.

DISCUSSION
In this study, we analyzed several blood samples with iodine con-
centrations ranging from 0 to 6mg/mL in an anthropomorphic
head phantom and tested the ability of PCD-CT to discriminate
CM and to determine its exact concentration. We found that the

spectral data of PCD-CT provide reliable differentiation between
iodine- and noniodine-caused attenuation, regardless of the pres-
ence of blood or the height of CM concentration. Moreover, we
demonstrated the feasibility of iodine concentration determina-
tion using PCD-CT.

In patients with acute ischemic stroke, the BBB disruption can
lead to contrast enhancement of the infarcted area in the first few
hours following mechanical thrombectomy. Distinguishing
between contrast pooling and subarachnoid or parenchymal
hemorrhage is crucial for patient management and outcome.5,6

Additionally, this differentiation is important for other neuroin-
terventions, such as embolization procedures for aneurysms,

FIG 2. Measured CT values within the samples without (A) and with (B) blood, at all positions (anterior, center, left) and on all slices (next and
above the temporal bone structures) presented in boxplots. CT values are compared among ME70, the CM map, and VNC. Statistically signifi-
cant differences are marked. n.s. indicates P. . 05; *, P, . 05; **, P, . 01; ***, P, . 001).

FIG 3. Linear regression of initial and measured iodine concentration of the samples. Reference samples without (A) and with (B) blood including
all positions (anterior, center, left) and the compared between-sections above and next to temporal bone (tb) structures.
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AVMs, dural AVFs, and, more recently, embolization of the mid-
dle meningeal artery for treatment of chronic subdural hemato-
mas.7-9 During these interventions, hemorrhages can easily occur
and must be distinguished from extravasation of CM or contrast
enhancement.

CT is the imaging technique of choice because it is widely
available and allows a rapid and accurate diagnosis. With conven-
tional single-energy CT, however, a differentiation of blood and
CM is extremely difficult due to the similar attenuation behavior
of x-rays.10 Spectral information, such as provided by dual-energy
CT, allows performing material decomposition into attenuation
shares caused by contrast and noncontrast media11 and, therefore,
has a wide range of application in neuroradiologic interventions.7

The introduction of PCD-CT into clinical routine provides inher-
ently spectral information and simultaneously overcomes limita-
tions of conventional energy-integrating detectors with higher
spatial resolution and the absence of electronic noise.4

This study used the standard cranial CT protocol for the
anthropomorphic head phantom, to achieve dose results compa-
rable with those of clinical in vivo scans. Analysis of Hounsfield
units showed that iodine and blood are clearly distinguishable
regardless of the underlying iodine attenuation. Furthermore,
material decomposition of iodine and noniodine shares appears
to be more accurate in samples with blood than in reference sam-
ples with only sodium chloride. Furthermore, differences of
1mg/mL in iodine concentration can clearly be discriminated in
CT values. The automated calculation of the underlying iodine
attenuation shows a perfect linear correlation to the actual one,
albeit with an increasing underestimation for higher concentra-
tions. However, these inaccuracies may be partly due to several
limitations. First, the accuracy of the instruments used and possi-
ble human error could affect the samples and their actual iodine
concentrations. Second, a homogeneous distribution of CM

within the volume of the sample could not be guaranteed, possi-
bly having led to local variation and, therefore, measurement
errors. Third, the experiment is of an in vitro nature, and further
studies are necessary to translate the results into clinical benefits
for patient care.

CONCLUSIONS
PCD-CT proved to be a reliable tool for differentiating blood and
iodine and accurately determining several iodine concentrations
in an anthropomorphic head phantom. These findings suggest
the potential of PCD-CT for various applications in neuroimag-
ing. Further studies should investigate the use of PCD-CT for
imaging of brain hemorrhage with differentiation between calcifi-
cation and hemorrhage, prediction of hematoma expansion on
unenhanced CT and CTA,12 as well as the identification of hem-
orrhagic tumors in hemorrhages of unknown origin.13

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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