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ORIGINAL RESEARCH
PEDIATRIC NEUROIMAGING

Automatic Quantification of Normal Brain Gyrification
Patterns and Changes in Fetuses with Polymicrogyria and

Lissencephaly Based on MRI
Bossmat Yehuda, Aviad Rabinowich, Daphna Link-Sourani, Netanell Avisdris, Ori Ben-Zvi, Bella Specktor-Fadida,

Leo Joskowicz, Liat Ben-Sira, Elka Miller, and Dafna Ben Bashat

ABSTRACT

BACKGROUND AND PURPOSE: The current imaging assessment of fetal brain gyrification is performed qualitatively and subjectively
using sonography and MR imaging. A few previous studies have suggested methods for quantification of fetal gyrification based on
3D reconstructed MR imaging, which requires unique data and is time-consuming. In this study, we aimed to develop an automatic
pipeline for gyrification assessment based on routinely acquired fetal 2D MR imaging data, to quantify normal changes with gesta-
tion, and to measure differences in fetuses with lissencephaly and polymicrogyria compared with controls.

MATERIALS AND METHODS: We included coronal T2-weighted MR imaging data of 162 fetuses retrospectively collected from 2
clinical sites: 134 controls, 12 with lissencephaly, 13 with polymicrogyria, and 3 with suspected lissencephaly based on sonography,
yet with normal MR imaging diagnoses. Following brain segmentation, 5 gyrification parameters were calculated separately for each
hemisphere on the basis of the area and ratio between the contours of the cerebrum and its convex hull. Seven machine learning
classifiers were evaluated to differentiate control fetuses and fetuses with lissencephaly or polymicrogyria.

RESULTS: In control fetuses, all parameters changed significantly with gestational age (P, .05). Compared with controls, fetuses
with lissencephaly showed significant reductions in all gyrification parameters (P # .02). Similarly, significant reductions were
detected for fetuses with polymicrogyria in several parameters (P # .001). The 3 suspected fetuses showed normal gyrification val-
ues, supporting the MR imaging diagnosis. An XGBoost-linear algorithm achieved the best results for classification between fetuses
with lissencephaly and control fetuses (n¼ 32), with an area under the curve of 0.90 and a recall of 0.83. Similarly, a random forest
classifier showed the best performance for classification of fetuses with polymicrogyria and control fetuses (n¼ 33), with an area
under the curve of 0.84 and a recall of 0.62.

CONCLUSIONS: This study presents a pipeline for automatic quantification of fetal brain gyrification and provides normal develop-
mental curves from a large cohort. Our method significantly differentiated fetuses with lissencephaly and polymicrogyria, demon-
strating lower gyrification values. The method can aid radiologic assessment, highlight fetuses at risk, and may improve early
identification of fetuses with cortical malformations.

ABBREVIATIONS: AUC ¼ area under the curve; GA ¼ gestational age; GI ¼ gyrification index; GIA ¼ gyrification index by area; GIC ¼ gyrification index by
contour; LIS ¼ lissencephaly; MCC ¼ Matthews correlation coefficient; max ¼ maximum; MCD ¼ malformation of cortical development; PMG ¼ polymicrogyria;
SI ¼ symmetry index

Fetal cortical development is a complex process that relies
on adequate cell differentiation, proliferation, neuronal

migration, and organization.1 Gyrification starts gradually
from the second trimester and continues during postnatal
life.2 The spatiotemporal pattern of normal fetal gyrification

is correlated with gestational age (GA) and is used to evaluate
brain development.3-6

Disruption of this organized process can cause malformations
of cortical development (MCDs). Two commonMCDs are lissen-
cephaly (LIS) and polymicrogyria (PMG). In LIS, the brain
appears smooth with complete or partial gyral loss,6 while PMG
is characterized by excessive, irregular small gyri that can be focal,Received May 3, 2023; accepted after revision September 23.
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multifocal, unilateral, or bilateral.7 MCDs are associated with a
wide range of clinical outcomes and neurodevelopment disorders
later in life.8

Fetal development is assessed primarily by using sonography,
with MR imaging as a complementary tool to support its findings
or when clinically indicated,9-13 and was shown to have signifi-
cant advantages in diagnosing brain malformations.14-16 Clinical
assessment of fetal brain gyrification using both sonography and
MR imaging is qualitative through visual inspection of the corti-
cal global appearance and specific sulci such as the Sylvian fissure,
and it requires special expertise and experience.7,17,18

The gyrification index (GI) was first introduced in histologic
images of adult brains,17 defined as the ratio between the outer
cortical contour and the cerebral hull contour tightly wrapping
the brain. Additional quantitative parameters such as curvature,
surface area, and the 3D GI have been proposed for the 3D-recon-
structed cortical surface.18-21 Global and local 3D GIs were found
to correlate with age (in children),22 sex,23 and cognitive functions
(in adults).24 Furthermore, parameters from other research fields
have been applied to adults.4,19,25-28 However, these methods are
less applicable to fetal brain MR imaging, due to changes in GA;
high variability in scanning planes, resolutions, and contrasts, as
well as changes in fetal position and motion artifacts.

Some studies proposed methods to quantify fetal gyrification
on the basis of the 3D MR imaging–reconstructed cortical sur-
face.20,28-32 However, these methods require unique data acquisi-
tion, with a few volumes acquired in different spatial planes, and
they are time-consuming and sensitive to fetal motion and require
high computational power. In addition, these methods were devel-
oped in small cohorts (,40, except as in Wright et al20) based on
specific MR imaging sequences with only a few proposed develop-
mental curves for a narrow GA range (except inWright et al20).

Our aims were the following: 1) to develop an automatic pipe-
line for quantitatively assessing fetal cortical folding on the basis of
clinical 2D MR imaging data; 2) to quantify normal gyrification and
symmetry on a large cohort of control fetuses; and 3) to measure
gyrification in fetuses with LIS and PMG and evaluate the machine
learning classification models for control fetuses and fetuses with
LIS or PMG based on quantitative gyrification parameters.

MATERIALS AND METHODS
This retrospective study was approved by the local ethics commit-
tees of 2 institutions, which waived the need for informed consent.

MR Imaging Data and Study Population
The data set included coronal T2-weightedMR imaging, acquired
between 2007 and 2022 from 2 clinical sites, Tel Aviv Sourasky
Medical Center, Tel Aviv, Israel, and the Children’s Hospital of
Eastern Ontario, Ottawa, Ontario, Canada, using 6 MR imaging
scanners from 2 vendors and different sequences and parameters,
as shown in Table 1.

Control fetuses were chosen according to GA for a wide and
well-represented range of weeks with normal MR imaging find-
ings, no chromosomal abnormalities, and no evidence of fetal cy-
tomegalovirus infection or chronic maternal disease. Pregnancies
were dated according to the first-trimester crown-rump length.
Clinical indications for MR imaging in controls included a sus-
pected fetal abnormality on sonography, maternal cytomegalovirus
seroconversion, a family history of genetic disease, and previous
pregnancy with confirmed abnormalities. Fetuses with MCD were
diagnosed by an expert fetal MR imaging neuroradiologist (L.B.-S.
with. 20 years’ experience or E.M. with.15 years).

Poor-quality images, including severe motion or artifacts,
were excluded.

Image Analysis
The image-processing pipeline (Fig 1) includes 4 stages:

A) Brain detection as previously described in Dudovitch et
al33 using an anisotropic 3D U-Net classifier for initial segmenta-
tion and computing a tight bounding box around it.

B) Brain component segmentation,34 using a 2D multiclass
segmentation network, dividing the fetal brain into 6 compo-
nents: left/right hemispheres, left/right lateral ventricles, extra-axial
cerebrum-spinal fluid, and cerebellum (including the brainstem).
Anatomic left and right classifications were based on the inferior-
superior direction (cerebellum) and anterior-posterior direction
(eyes, automatically identified using another deep learning net-
work). Manual segmentation corrections were performed when
needed to ensure accurate GI calculation.

Next, the cerebral contour was defined as the boundary
between the cerebrum and the extra-axial cerebrum-spinal fluid,
and the convex-hull was computed as the smallest convex that con-
tains the contour of the hemisphere. GI parameters were calculated
for each slice, separately for the right and left side as follows:

C) GI by area (GIA) was defined as the ratio of the bounded
area between the cerebral cortex and convex hull contours and
the hemisphere area.

Table 1: MR imaging data included in this study
Vendor/System (Magnetic Field) Sequence No. TE (Milliseconds [SD]) TR (Milliseconds [SD]) Spacing (mm [SD])
GE Healthcare
Discovery MR450 (1.5T) FRFSE 40 121.7 [SD, 2.3] 9946.5 [SD, 1984.5] 3.8 [SD, 0.8]
Signa (1.5T) FIESTA 10 1.7 [SD, 0.09] 3.9 [SD, 0.2] 4.6 [SD, 0.9]

SS-FSE 3 111.7 [SD, 0.6] 2517.4 [SD, 835.9] 3.9 [SD, 0.65
Siemens
Magnetom Aera (1.5T) HASTE 4 94 [SD, 0] 1200 [SD, 0] 3.05 [SD, 0.7]
Magnetom Prisma (3T) HASTE 2 96 [SD, 16.9] 2000 [SD, 0] 3.3 [SD, 1.8]

TRUFI 4 2.5 [SD, 0.01] 4.9 [SD, 0.02] 3.15 [SD, 0.3]
Skyra (3T) HASTE 31 92.4 [SD, 21.7] 1839.1 [SD, 325.1] 3.5 [SD, 0.6]

TRUFI 7 2.5 [SD, 0.04] 4.9 [SD, 0.08] 3.9 [SD, 0.7]
Magnetom Vida (3T) TRUFI 1 2.5 [SD, 0] 4.9 [SD, 0] 3 [SD, 0]

Note:—SS-FSE indicates single-shot, fast spin-echo; TRUFI, true fast imaging with steady-state free precession; FRFSE, fast recovery fast spin echo; HASTE, Half-Fourier ac-
quisition single-shot turbo spin-echo.
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GIA ¼ Sbounded area
Shemisphere area

:Equation 1

D) GI by contour (GIC) was defined as the ratio of the cere-
bral and convex hull contour lengths.

GIC ¼ lcerebral contour
lconvex hull contour

:Equation 2

We extracted 5 gyrification parameters: 1) mean GIA, the
mean value from all slices excluding outliers. A predefined thresh-
old was used and slices located at the most anterior or posterior
parts with the GI below this threshold were excluded; 2) maximum
(max) GIA, the maximum value from all slices, hypothesized to
represent the Sylvian fissure level; 3) bounded volume, the
bounded volume between the hemisphere and its convex hull, nor-
malized by the hemisphere volume. Similarly, 4) mean GIC and 5)
max GIC were extracted on the basis of the GIC defined above.

In addition, the symmetry index (SI) was calculated for each
parameter, where R and L are the GIs of the right and left hemi-
spheres, respectively:

SIparameter ¼ ParameterR � ParameterL
ParameterR þ ParameterL

:Equation 3

Statistical Analysis
Statistical analysis was performed using R Studio, Version 022.07.2
(http://rstudio.org/download/desktop).

Changes with GA in the control group were assessed by fitting
a second-degree polynomial using a parametrical Generalized
Additive Models for Location, Scale, and Shape (GAMLSS;
https://www.gamlss.com/) with a Box-Cox power exponential

distribution, as recommended by the
World Health Organization.35 All P val-
ues were adjusted for multiple compari-
sons as described by Benjamini and
Yekutieli.36 The 95% nonparametric
confidence intervals37 were adjusted to
a false coverage rate of 0.05.38

MCD Classification
Differences between control fetuses
and MCDs were first assessed using
Wilcoxon rank-sum tests while control-
ling for GA. Next, a machine learning
classifier was developed to differentiate
between fetuses with normal gyrification
and those with MCDs, separately for LIS
and PMG, based on all the gyrification
parameters presented in this study: right
and left GIA max, GIA mean, GIC max,
GIC mean, and bounded volume. The
control group included fetuses older
than 24weeks’ GA (n¼ 86) to match the
MCD group, because MCDs can only be
diagnosed after 24weeks’ GA.39,40 Seven
models were tested, including random
forests41 (n¼ 100), linear and radial basis

function kernel Support Vector Machine (SVM),42 Extreme
Gradient Boosting (XGBoost; https://www.nvidia.com/en-us/
glossary/data-science/xgboost/)43 using 2 different objectives, logis-
tic and linear k-nearest neighbors (k¼ 5), and multilayer percep-
tron. To compensate for the inherent imbalance between control
and pathologic cases, the Synthetic Minority Oversampling
Technique (SMOTE; https://arxiv.org/abs/1106.1813)44 was used
in model training. The training phase was performed using a 3-
fold cross-validation scheme, randomly splitting the data into
training data sets (LIS: n¼ 66, fifty-eight controls and 8 cases of
LIS; PMG: n¼ 66, fifty-eight controls and 8 cases of PMG) and
validation data sets (LIS: n¼ 32, twenty-eight controls and 4 cases
of LIS; PMG: n¼ 33, twenty-eight controls and 5 cases of PMG).
The performance of the models was evaluated using several met-
rics, including accuracy (Equation 4), F1 score (Equation 5),
Matthews correlation coefficient (MCC) (Equation 6),45 area
under the curve (AUC) of the receiver operating characteristic
curve, precision, and recall (Equations 7 and 8):

Accuracy ¼ tp þ tn
tp þ fp þ tn þ fn

;Equation 4

F1� Score ¼ 2

recall�1 þ precision�1
¼ tp

tp þ 1
2 ðfp þ fnÞ;Equation 5

MCC ¼ tp � tn � fp � fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtp þ fpÞðtp þ fnÞðtn þ fpÞðtn þ fnÞ
p ;Equation 6

Precision ¼ tp
tp þ fp

;Equation 7

FIG 1. Image-analysis pipeline: A, Brain detection. B, Brain component segmentation. C, GIA calcu-
lation based on the bounded area (yellow) between the cerebral cortex and its convex hull and
the hemisphere area (green, surrounded by the yellow area). D, GIC calculation based on contour
extraction of the cerebral hemisphere (red) and its convex hull (yellow). E, Example of GIC values
in all slices of a single fetus. Outliers are marked in gray and were not included in the mean GIC.
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Recall ¼ tp
tp þ fn

;Equation 8

where tp is true-positive, tn is true-nega-
tive, fp is false-positive, and fn is false-
negative.

RESULTS
A data set of 200 fetuses was collected,
with 9 fetuses excluded due to poor
image quality and 29 for genetic or
abnormal MR imaging findings. Of the
162 fetuses finally included, there were
134 controls (mean GA, 27.9 [SD,
5.3]weeks; range, 18–36 weeks); 12 with
LIS (mean GA, 28.3 [SD, 3.2] weeks;
range, 33–24 weeks); 13 with PMG
(mean GA, 31.5 [SD, 2.7] weeks; range,
27–37 weeks); and 3 fetuses suspected
of having LIS on the basis of sonogra-
phy (mean GA, 31.3 [SD, 1.1] weeks;
range, 30–32.5 weeks), but with normal
MR imaging findings.

Controls
Figure 2 shows 5 control fetuses at dif-
ferent GAs with right hemisphere
contours at the Sylvian fissure level,
demonstrating the advancement in gyr-
ification with gestation. Developmental
curves for GIA and GIC parameters are
presented in Figs 3 and 4, respectively,
separated by the right and left hemi-
spheres. All GI parameters change signif-
icantly throughout gestation (P, .05).

Most parameters increased through-
out gestation, mainly from 23weeks
onward. The max GIA exhibited a U-
shaped parabolic curve, reaching a mini-
mum around the 25th week of GA, possi-
bly due to changes in the Sylvian fissure.

Symmetry indices with GA are
shown in Fig 5, demonstrating homo-
geneous dispersion, indicating no brain
asymmetry.

MCD
Fetuses with MCD exhibited underde-
veloped gyrification compared with
controls. All GI parameters were sig-
nificantly lower in fetuses with LIS
(P, .02) highlighted at late GA, as
seen in Figs 3 and 4, and Table 2.
Representative MR imaging of controls
and fetuses with LIS and PMG of
equivalent ages are demonstrated in
Fig 6.

FIG 2. T2-weighted MR imaging of coronal views for control fetuses demonstrating gyrification devel-
opment of the right hemisphere (red, hemisphere contour) at the Sylvian fissure level with gestation.

FIG 3. Development curves with GA of area-based gyrification parameters. Curve percentile lines
3, 15, 50, 85, and 97 are presented as blue, light blue, purple, green, and yellow, respectively. Note
control fetuses (gray), PMG (green), LIS (red), and suspected LIS (orange).
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Three fetuses suspected of having LIS based on sonography
but diagnosed with normal MR imaging, findings showed normal
GI values, supporting the MR imaging diagnosis.

Fetuses with PMG had significantly lower GICs (P, .001), with
no significant difference in GIAs compared with controls (Table 2).

Brain asymmetry was not significant in fetuses with MCD,
with homogeneous dispersion and no change in GA (Fig 5).
However, 2 fetuses with PMG showed extreme asymmetry,

confirming the radiologic diagnosis. One fetus (34 GA) had PMG
only in the right hemisphere, while the other fetus (36 weeks’
GA) had PMG focused anteriorly, with an abnormal shape of the
right operculum.

MCD Classification
Using machine learning classifiers based on GIC and GIA param-
eters, we evaluated 7 models. The performance of all models is

shown in the Online Supplemental
Data. The best results for classification
of controls and fetuses with LIS were
achieved using XGBoost-logistic, with
the F1 score ¼ 0.60, accuracy ¼ 0.87,
AUC ¼ 0.90, MCC ¼ 0.56, precision ¼
0.48, and recall ¼ 0.83. The best classi-
fier used for PMG was random forest
with an F1 score ¼ 0.59, accuracy ¼
0.89, AUC ¼ 0.84, MCC ¼ 0.53,
precision¼ 0.57 and recall¼ 0.61.

DISCUSSION
In this study, we developed a method
for automatic quantification of fetal gyr-
ification based on clinical heterogeneous
2D MR imaging data, demonstrating
high robustness, and we proposed 5 pa-
rameters. We found significant changes
in gyrification with GA in control
fetuses, with no asymmetry. We also
found significantly reduced gyrification
in fetuses with MCD compared with
controls.

Five quantitative gyrification parame-
ters were extracted for each hemisphere,
including the contour-based parameters
GIC and area-based parameters of GIA.
Previous studies used different methods,
including ridge detection,28 local tensor-
based morphometry,29 and curvature-
based20,30 and sulcal pattern similarities
with fetal brain atlas.31 However, all these
methods require 3D reconstruction, are

FIG 4. Development curves with GA of contour-based gyrification parameters. Curve percentile
lines 3, 15, 50, 85, and 97 are presented as blue, light blue, purple, green, and yellow, respectively.
Note control fetuses (gray), PMG (green), LIS (red), and suspected LIS (orange).

Table 2: Comparisons between LIS or PMG with control fetuses—the adjusted P values and CIs

Parameter
LIS PMG

P Value (CI Lower, CI Upper) P Value (CI Lower, CI Upper)
Mean GIC right .002a (0.001–0.007) ,.001a (0.002–0.008)
Mean GIC left .002a (0.001–0.007) ,.001a (0.002–0.008)
Max GIC right ,.001a (0.004–0.01) ,.001a (0.003–0.008)
Max GIC left ,.001a (0.004–0.009) .001a (0.002–0.007)
Bounded volume right .01 a (0.0003–0.001) .994 (–0.0004–0.0004)
Bounded volume left ,.001a (0.0003–0.009) .366 (–0.0006–0.0002)
Mean GIA right ,.001a (0.0006–0.001) .46 (–0.0002–0.0006)
Mean GIA left ,.001a (0.0006–0.001) .46 (–0.0003–0.0005)
Max GIA right .02a (0.0002–0.002) .88 (–0.001–0.001)
Max GIA left ,.001a (0.0008–0.003) .994 (–0.001–0.001)

a P value, .05.
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time-consuming, and are not easily applicable to clinical data. Our
proposed method presents simple quantifying parameters that can
be used in routine clinical practice and applied to retrospective data
of large cohorts.

Developmental Curves
In this study, growth curves were calculated as recommended by
the World Health Organization.35 Our results indicate that gyrifi-
cation in control fetuses increases in a second-degree polynomial
curve after the 23rd week of gestation. Our findings corroborate
previous studies by Dubois et al46 who described cortical develop-
ment in preterm infants across a similar range, demonstrating an
accelerated gyrification measured by the cortical surface area and
its GI after 28weeks. In addition, Wright et al20 showed nonlinear
increased values in several global curvature–based parameters.
Similarly, Rajagopalan et al28 found that the GI development based
on 3D reconstruction was best described with a second-order poly-
nomial curve. Only 1 study demonstrated a linear gyrification
increase with GA, probably due to the narrow range of GAs.29

Brain Symmetry
Our study did not find evidence of gyrification asymmetry, consist-
ent with previous studies that quantified global gyrification on the

basis of a 3D reconstructed cortical surface.18,20,22,23,25,26,28-30,47

While there is known asymmetry in specific sulci, such as the supe-
rior temporal gyrus,3,46,48 our results suggest that global gyrifica-
tion measurements may not be sensitive enough to detect subtle
regional differences.

MCD
Our results demonstrate significantly reduced gyrification in
fetuses with LIS, with greater deviations at advanced GA.
Notably, our results showed values within the normal range in 3
fetuses suspected of having LIS on the basis of sonography, yet
with a normal MR imaging diagnosis.

Reduced gyrification was also detected in fetuses with
PMG, but only in the GIC parameters. One previous study31

quantified gyrification in PMG and normally developing
fetuses using 3D GI measurements yet did not find differences
between the 2 groups. This was a small-scale study (Ncontrol ¼
17, NPMG ¼ 3). To our knowledge, no additional studies quan-
tified LIS and PMG fetal gyrification patterns with gestation or
developed classifiers on the basis of control fetuses and fetuses
with MCD. The classifiers trained in this study, both for LIS
and for PMG, showed good performance in several metrics;
however, the F1 score was improved when using SMOTE for

FIG 5. Symmetry indices for GI parameters with GA. All are close to zero, with homogeneous dispersion, indicating no brain asymmetry.
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imbalanced data and showed low values. These results are
expected due to the overlap of MCDs and healthy fetuses in
some of our gyrification parameters. Our findings support the
use of quantitative analysis for fetal brain assessment in fetuses
with MCD, to highlight fetuses at risk and to aid radiologic
interpretation and diagnosis.

Limitations
Our study limitations include the potential impact of section ac-
quisition symmetry on 2D gyrification parameters. However,
analyzing each hemisphere separately may address this issue.
This study focused on global parameters and did not analyze spe-
cific sulci. Future studies should develop automatic 2D methods
to assess local parameters in different regions. Additionally, our
gyrification parameters may pseudonormalize the multiple and
shallow gyri in PMGs, leading to values within the normal range.
The outcomes of the MCD fetuses were unavailable, and our cri-
terion standard was the radiologist’s diagnosis based on MR
imaging. Finally, our cohort included 25 fetuses with MCD, rep-
resenting the largest study to date that quantifies gyrification in
MCD, yet the number is relatively small, especially when develop-
ing an automatic classifier. Therefore, due to the small cohort
size, the classifiers developed in this study were only validated
and not tested on a separate test set. Moreover, higher recall is
needed and other parameters should be included in the model
such as brain volume, brain biometrics, and so forth, to develop a
method for clinical use.

CONCLUSIONS
This study presents an automatic quantification of fetal brain
gyrification based on 2D routinely acquired MR imaging data
and suggests the use of 5 parameters. The method success-
fully detected changes in normal gyrification with GA and
showed reduced gyrification in fetuses with MCD compared
with controls. These findings suggest that quantifying gyrifi-
cation can aid in assessing fetal brain maturation and identi-
fying MCDs.
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