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ORIGINAL RESEARCH
PEDIATRIC NEUROIMAGING

Diagnostic Value of Multiparameter MRI-Based Radiomics in
Pediatric Myelin Oligodendrocyte Glycoprotein Antibody–

Associated Disorders
Ting Li, Xin Chen, Yang Jing, Haoru Wang, Ting Zhang, Li Zhang, Hao Ding, Mingye Xie, and Ling He

ABSTRACT

BACKGROUND AND PURPOSE: Myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGAD) have a higher preva-
lence among children. For children undergoing the initial manifestation of MOGAD, prompt diagnosis has paramount importance.
This study assessed the performance of multiparameter MRI-based radiomics in distinguishing patients with and without MOGAD
with idiopathic inflammatory demyelinating diseases.

MATERIALS AND METHODS: We enrolled a cohort of 121 patients diagnosed with idiopathic inflammatory demyelinating diseases,
including 68 children with MOGAD and 53 children without MOGAD. Radiomics models (T1WI, T2WI, FLAIR, and compound model)
using features extracted from demyelinating lesions within the brain parenchyma were developed in the training set. The perform-
ance of these models underwent validation within the internal testing set. Additionally, we gathered clinical factors and MRI fea-
tures of brain parenchymal lesions at their initial presentation. Subsequently, these variables were used in the construction of a
clinical prediction model through multivariate logistic regression analysis.

RESULTS: The areas under the curve for the radiomics models (T1WI, T2WI, FLAIR, and the compound model) in the training set
were 0.781 (95% CI, 0.689–0.864), 0.959 (95% CI, 0.924–0.987), 0.939 (95% CI, 0.898–0.979), and 0.989 (95% CI, 0.976–0.999), respec-
tively. The areas under the curve for the radiomics models (T1WI, T2WI, FLAIR, and the compound model) in the testing set were
0.500 (95% CI, 0.304–0.652), 0.833 (95% CI, 0.697–0.944), 0.804 (95% CI, 0.664–0.918), and 0.905 (95% CI, 0.803–0.979), respectively.
The areas under the curve of the clinical prediction model in the training set and testing set were 0.700 and 0.289, respectively.

CONCLUSIONS: Multiparameter MRI-based radiomics helps distinguish MOGAD from non-MOGAD in patients with idiopathic
inflammatory demyelinating diseases.

ABBREVIATIONS: AUC ¼ area under the ROC curve; IIDDs ¼ idiopathic inflammatory demyelinating diseases; LASSO ¼ least absolute shrinkage and selection
operator; MOG ¼ myelin oligodendrocyte glycoprotein; MOGAD ¼ myelin oligodendrocyte glycoprotein antibody associated disorders; NMOSD ¼ neuromyelitis
optica spectrum disorder; ROC ¼ receiver operating characteristic

Myelin oligodendrocyte glycoprotein antibody-associated
disorders (MOGAD) represent a collection of immune-

mediated monophasic or multiphasic demyelinating diseases
affecting the brain, optic nerve, and spinal cord.1 This condition

falls under the umbrella of idiopathic inflammatory demyelinat-

ing diseases (IIDDs), with the distinguishing feature being the

myelin oligodendrocyte glycoprotein (MOG) antibody as a

unique biomarker. MOGAD is more prevalent in children than

in adults. In children, about 13% of the antibodies that cause
autoimmune encephalitis are MOG antibodies.2 In contrast, MS

occurs less frequently in children than in adults. In children

experiencing the initial onset of MOGAD, early diagnosis is of

utmost importance. During the acute phase, treatment primarily

involves the use of glucocorticoids, high-dose IV immunoglobu-

lin, or plasma exchange. Failure to correctly diagnose MOGAD

can result in delayed treatment, progression, and recurrence,

ultimately leading to irreversible damage to the CNS following

multiple relapses.3,4

The early diagnosis of MOGAD in children continues to pose
challenges in both imaging and clinical practice. While the
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detection of MOG antibodies in serum or CSF samples serves as
a crucial diagnostic indicator, it typically takes approximately 2
weeks and can be costly. Moreover, some primary hospitals lack
the capability to perform such tests, leading to delays in a timely
diagnosis.5,6 In MOGAD and other IIDDs, brain parenchymal
lesions appear as high-signal demyelinating lesions on FLAIR
and T2WI sequences. Although previous studies have identified
certain MR imaging features associated with brain lesions in chil-
dren with MOGAD, qualitative MR imaging features are insuffi-
cient for identifying these disorders.7

In recent years, radiomics has emerged as a novel discipline
extensively used in tumor-related diseases. By analyzing the ROI
in images, radiomics involves extracting and calculating first-
order, second-order, and high-order features. This process ena-
bles the discovery of hidden pathology, prognostic indicators,
and other features that may not be discernible to the naked eye.8

However, the application of radiomics in children with IIDDs
has been limited.9 Currently, there are no reports on the use of
MR imaging radiomics to differentiate IIDDs caused by MOG
antibodies and those with other origins. In this study, we aimed
to address this gap by constructing models using 3 conventional
MRI sequences (T1WI, T2WI, and FLAIR) to distinguish
MOGAD from non-MOGAD in patients with IIDDs. The valid-
ity and performance of these models were verified and compared,
ultimately identifying the model with the most optimal perform-
ance. We anticipate that these models will serve as effective tools
for computer-aided identification of patients with MOGAD, fill-
ing a critical need in the field of IIDDs.

MATERIALS AND METHODS
This retrospective, single-center study was approved by the insti-
tutional review board of Children’s Hospital of Chongqing
Medical University with a waiver of written informed consent.

Patients
We conducted a retrospective collection of clinical and MRI data
from children admitted to our neurology department between
February 2017 and December 2021. The study focused on chil-
dren diagnosed with MOGAD and those with other IIDDs dur-
ing their initial attack.

The inclusion criteria were as follows:

1) Acute or subacute onset characterized by single or multiple
symptoms such as optic neuritis, encephalitis, meningoence-
phalitis, brainstem encephalitis, and myelitis.

2) Patients with a positive antibody for MOG (excluding other
positive antibodies like glial fibrillary acidic protein, N-methyl-
D-aspartate, and aquaporin-4). Confirmation of negative anti-
bodies to MOG, glial fibrillary acidic protein, N-methyl-D-
aspartate, and aquaporin-4 was achieved by detecting relevant
neurologically autoimmune antibodies in CSF/serum samples
using the cell-based assay method.

3) Brain MRI examination with clear and complete images
showing demyelinating lesions in the brain parenchyma per-
formed within a window of 15 days before or after the neuro-
logically relevant autoimmune antibody test.

Exclusion criteria were as follows:

1) The presence of other possible diseases such as neurodegener-
ative, metabolic, or cerebrovascular.

2) Poor image quality that would impede further research.

The flow chart is depicted in the Online Supplemental Data.
A total of 121 patients with IIDDs were enrolled in the study,
comprising 68 patients with MOGAD and 53 patients without
MOGAD. We collected clinical features including sex and age at
the time of the initial attack. The study cohort was randomly
sampled at a ratio of 7:3 and divided into a training set and a test-
ing set. In the training set, there were 47 patients with MOGAD
and 37 patients without MOGAD. The testing set included 21
patients with MOGAD and 16 patients without it.

MR Imaging Technique
The children were examined using a 3T MRI machine
(Achieva 3T; Philips Healthcare) or a 1.5T MR imaging
machine (Signa Horizon Lx; GE Healthcare). MR images
mainly included axial sequences, T1WI (TR¼ 700ms, TE¼
30ms), T2WI (TR¼ 3000ms, TE¼ 100ms), and T2-FLAIR
(TR¼ 8000ms, TE¼ 94ms). Scanning parameters were the
following: section number¼ 16, section thickness¼ 5mm,
spacing ¼ 1mm, FOV¼ 18� 18 cm, number of excitations¼
2–4. Patients who were unable to cooperate were sedated
before undergoing MR imaging.

Radiomics Processing
Segmentation of ROIs. The T1WI, T2WI, and FLAIR sequences
of brain MRIs from all patients were obtained in DICOM format
from the PACS system. The ROI segmentation was performed
using ITK-SNAP (Version 3.6.0; www.itksnap.org) software by
radiologist 1 with .5 years of diagnostic experience. Radiologist
1 carefully segmented the ROI along the lesion edges on the
T1WI, T2WI, and FLAIR images. The ROI encompassed demye-
linating lesions in the brain parenchyma and perifocal edema
while excluding CSF. Radiologist 2 with 10 years of diagnostic ex-
perience verified the segmentation. The agreement of the final
selected radiomics features between 2 radiologists was evaluated
using intra-class correlation coefficient. The result is depicted in
the Online Supplemental Data.

Feature Extraction, Selection, and Model Establishment
Features were extracted from the T1WI, T2WI, and FLAIR sequen-
ces of the patient’s brain MRIs. The extracted radiomics features
encompassed first-order features, shape features, texture features, as
well as Laplacian of Gaussian–filtered and wavelet transform fea-
tures. The selection of radiomics features underwent 4 stages using
Python software (PyRadiomics, Version 2.2.0; https://github.com/
AIM-Harvard/pyradiomics/blob/master/docs/index.rst). In the first
stage, features were chosen through variance thresholding, with fea-
tures having a threshold value of.0.8 retained for further analysis.
Subsequently, the features underwent downsampling using the uni-
variate selection method, and features with a P value , .05 were
retained. Next, the features were selected using a least absolute
shrinkage and selection operator (LASSO) regression analysis with
10-fold cross-validation to determine the optimal l value. Finally, a
feature-correlation analysis was performed to select the most rele-
vant features. For each patient, a Radscore was calculated using the
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equation, and Radscore models were developed for individual
sequences as well as a compound of the 3 sequences.

Radscore ¼ Intercept þ
Xn

i¼1

coefficients½i� � Feature½i�

Patient Characteristics and Clinical Model Building
We collected clinical features including sex and age at the time of
the initial attack. Additionally, the MRI presentations of the
patient’s brain lesions were evaluated, and consensus was reached
through discussions by radiologist 1 and radiologist 2. The assess-
ments included the following points: 1) determining the number
of lesions (single or multiple); 2) identifying involvement of the
cerebral cortex, white matter, thalamus, cerebral peduncle, and
cerebellar peduncle; and 3) assessing whether the lesions involved
the bilateral cerebral hemispheres. Univariate logistic analysis
was performed on the collected clinical and imaging features, and
the influencing factors with statistical significance (P, .05) were
analyzed by multivariate logistic regression analysis to establish
the clinical model.

Statistical Analysis
Statistical analysis for this study was conducted using R Studio
software (Version 4.1.2; http://rstudio.org/download/desktop).
Paired-samples t tests or nonparametric tests were used for the
analysis of clinical and imaging data. To evaluate the efficacy of the
models, we used various evaluation metrics, including the receiver
operating characteristic (ROC) curve, area under the ROC curve
(AUC), accuracy, sensitivity, and specificity, which were assessed

in both the training and testing sets. The
DeLong test was applied to compare the
effectiveness of different models within
the training set. Statistical significance
was defined as P, .05.

RESULTS
Patient Characteristics and
Clinical Model Building
Among the patients with MOGAD,
there were 27 males and 41 females,
ranging in age from 1 year 7months to
14 years, with a mean age of 2.6 years.
In the non-MOGAD group, there were
27 males and 26 females, ranging from
1 to 13 years of age, with a mean age of
6.5 years. A comparison of the clinical
features and MR imaging presentations
of the patients is shown in Table 1. The
analysis revealed no statistically signifi-
cant differences in terms of sex, multi-
ple lesions, involvement of lesions in
the bilateral cerebral hemispheres, and
involvement of the white matter and
cerebellar peduncles between the 2
groups (P. .05). However, statistically
significant differences were observed in

terms of age, involvement of the cortex, thalamus, and peduncu-
lus cerebri (P, .05).

Characteristics, including age and involvement of the cortex,
were identified as significant with P, .05 by univariate analysis.
Both of them, age (OR ¼ 1.1896, P¼ .017) and involvement of
cortex (OR¼ 3.9862, P¼ .0207), were selected by multivariate
logistic regression analysis (Table 2). The AUCs of the clinical
prediction model in the training set and testing set were 0.700
and 0.289. The ROC curves depicting the clinical model are pre-
sented in Fig 1.

Feature Extraction and Selection
On the basis of the ROI segmentation performed by 2 radiolog-
ists, a total of 1688 features were extracted from the T1WI,
T2WI, and FLAIR sequence images. Initially, redundant features
were eliminated using the variance threshold method, resulting
in the removal of 168, 128, and 127 features with thresholds of
,0.8. Subsequently, the single-variable selection method was
used, resulting in the selection of 30,233 and 395 features, which
were further selected through LASSO regression analysis (Online
Supplemental Data). The l value was determined using 10-fold
cross-validation. By applying feature-correlation analysis, a total
of 15 features for the T1WI model, 22 features for the T2WI
model, 19 features for the FLAIR model, and 32 features for the
compound model were selected. The 10 most optimal features for
each sequence, used for constructing the radiomics models, are
presented in the Online Supplemental Data. By means of the
equation, the Radscore was calculated for each patient, and radio-
mics models were developed for individual sequences as well as
the combined analysis of all 3 sequences.

Table 1: Clinical and MR imaging features of patients with and without MOGADa

Patient Characteristic MOGAD Group Non-MOGAD Group P Value
Age (mean) (median) (yr) 2.6 [SD, 3.1], 2.6 6.5 [SD, 3.7], 6.5 .045
Sex .217
Male 27 27
Female 41 26

Cortex 22 8 .029
White matter 54 45 .437
Thalamus 41 17 .002
Pedunculus cerebri 23 7 .009
Cerebellar peduncles 13 7 .385
Multifoci 66 48 .129
Involvement of both
cerebral hemispheres

57 46 .649

a Significant difference with P value ,.05.

Table 2: Univariate and multivariate logistic analysis in the cohort
Variable Univariate Analysis (P Value) Multivariate Analysis (P Value)

Age .041a .017a

Sex .753
Cortex .027a .021a

White matter .657
Thalamus .220
Pedunculus cerebri .072
Cerebellar peduncles .172
Multifoci .116
Involvement of both
cerebral hemispheres

.749

aSignificant difference with P value ,.05.
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Efficacy of Radiomics Models to Identify MOGAD
The T1WI sequence model demonstrated an AUC of 0.781 (95%
CI, 0.689–0.864), with accuracy, sensitivity, and specificity values
of 69.0%, 74.5%, and 62.2% in the training set, respectively. In the
testing set, the values were 0.500 (95% CI, 0.304–0.652) for AUC,
45.9% for accuracy, 57.1% for sensitivity, and 31.2% for specificity.

For the T2WI sequence model, the training set yielded an
AUC of 0.959 (95% CI, 0.924–0.987), with accuracy, sensitivity,
and specificity values of 85.7%, 89.4%, and 81.1%, respectively. In
the testing set, the values were 0.833 (95% CI, 0.697–0.944) for
AUC, 78.4% for accuracy, 85.7% for sensitivity, and 68.8% for
specificity.

The FLAIR sequence model achieved an AUC of 0.939 (95%
CI, 0.898–0.979) in the training set, along with accuracy, sensitiv-
ity, and specificity values of 84.5%, 85.1%, and 83.8%, respectively.
In the testing set, the values were 0.804 (95% CI, 0.664–0.918) for
AUC, 73.0% for accuracy, 76.2% for sensitivity, and 68.8% for
specificity.

The compound model combining all 3 sequences had an
AUC of 0.989 (95% CI, 0.976–0.999), with accuracy, sensitivity,
and specificity values of 94.0%, 93.6%, and 94.6% in the training
set, respectively. In the testing set, the values were 0.905 (95% CI,
0.803–0.979) for AUC, 83.8% for accuracy, 90.5% for sensitivity,
and 75.0% for specificity (Table 3). The ROC curves depicting the
models are shown in Fig 2.

The DeLong test indicated that the efficacy of the compound
model, as well as the FLAIR and T2WI sequence models, was

superior to that of the T1WI model, with statistically significant
differences. Additionally, the compound model showed higher ef-
ficacy than the FLAIR sequence model, while the differences
between the compound model and the T2WI sequence model, as
well as between the FLAIR sequence model and the T2WI
sequence model, were not statistically significant (Table 4).

DISCUSSION
Although MOGAD was introduced as a new subtype of IIDD in
2018, our understanding of this condition has improved with time,
revealing that the MOG antibody is the most common autoim-
mune antibody associated with IIDDs in children.10 MR imaging
plays a crucial role in the clinical assessment of patients with
MOGAD. In MOGAD, brain parenchymal lesions appear as high-
signal demyelinating lesions in FLAIR and T2WI sequences.11

These lesions resemble those seen in acute disseminated encepha-
lomyelitis and typically manifest as asymmetrically distributed
multiple lesions with indistinct borders, potentially accompanied
by edema around larger lesions. MR imaging offers high soft-tissue
resolution, multiple parameters, and diverse sequences, enabling
the visualization of demyelinating lesions in IIDDs.12

Although previous studies have identified certain MR imaging
features associated with brain lesions in children with MOGAD
such as a higher involvement of the cortex, thalamus, and cere-
bral peduncle compared with those without MOGAD, these
manifestations lack specificity, and accurate diagnosis cannot rely
solely on imaging features.13 As in the clinical model based on

FIG 1. ROC curves of the clinical prediction model in the training and testing sets.

Table 3: Evaluation indexes of T1WI, T2WI, FLAIR, and compound models in the training and testing sets
Models AUC (95% CI) Accuracy Sensitivity Specificity

T1WI
Training set 0.781 (0.689–0.864) 0.690 0.745 0.622
Testing set 0.500 (0.304–0.652) 0.459 0.571 0.312

T2WI
Training set 0.959 (0.924–0.987) 0.857 0.894 0.811
Testing set 0.833 (0.697–0.944) 0.784 0.857 0.688

FLAIR
Training set 0.939 (0.898–0.979) 0.845 0.851 0.838
Testing set 0.804 (0.664–0.918) 0.730 0.762 0.688

Compound
Training set 0.989 (0.976–0.999) 0.940 0.936 0.946
Testing set 0.905 (0.803–0.979) 0.838 0.905 0.750
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clinical and imaging features in this study, efficacy was low in
both the training and testing groups. The AUCs of the clinical
prediction model in the training set and testing set were 0.700
and 0.289. The emergence of radiomics, a field that uses auto-
mated data-mining algorithms to extract high-throughput, non-
visualized feature parameters from images, has shown great
potential in elucidating the pathology, efficacy, and prognosis of
various lesions.14 While radiomics is predominantly used in tu-
mor-related diseases, its application in IIDDs in children, particu-
larly using MR imaging radiomics, remains unexplored.

To date, only a limited number of studies have investigated
the application of MR imaging radiomics in IIDDs, particularly
in MS. These studies have demonstrated the potential of MR

imaging radiomics in the diagnosis and prediction of MS pro-
gression.9 For instance, research has shown that radiomics
based on T2WI sequences in brain MRIs can effectively differ-
entiate MS from central small-vessel disease.15 Moreover, a
compound MR imaging model using T1WI and T2WI sequen-
ces has been shown to successfully distinguish white matter
lesions between MS and neuromyelitis optica spectrum disorder
(NMOSD).16 Furthermore, MR imaging radiomics has proved
effective in predicting the progression of MS, with certain stud-
ies establishing models based on the T2WI sequence to predict
the progression of unenhanced MS lesions.17 Existing MR imag-
ing radiomics studies in MS have predominantly focused on a
single sequence or compound modeling of 2 sequences, leading
to a biased selection. Due to the absence of standardized criteria
for sequence selection, choosing the most appropriate MRI
sequence for radiomics modeling can effectively enhance diag-
nostic performance.18

This study used the imaging data from our center to extract
features from 3 conventional MR imaging sequences, enabling
the establishment of robust radiomics models for differentiating
MOGAD and non-MOGAD. Most interesting, 2 of the most
crucial features identified in previous MRI-based radiomics
research to differentiate MS from NMOSD were texture

Table 4: DeLong test among T1WI, T2WI, FLAIR, and compound
models in the training set

Models
DeLong Test
(P value)

T1WI training set T2WI training set 0.0018
FLAIR training set 0.0041

T2WI training set FLAIR training set 0.3317
Compound training set 0.0502

FLAIR training set Compound training set 0.0061
Compound training set T1WI training set ,0.0001

FIG 2. ROC curves of the radiomics models. T1WI (A), T2WI (B), FLAIR (C), and the compound model (D) of 3 sequences.
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features.19 In our prediction models, a large portion of the 4
models comprised texture features. Previous reports have indi-
cated that texture heterogeneity is associated with the severity of
histopathologic injury.20 Another MRI-based radiomics dis-
crimination study between MS and NMOSD discovered differ-
ences in Gln values within the gray-level run length matrix
features of patients with MS and NMOSD. It potentially reflect-
ing varying degrees of tissue damage between the 2 conditions.21

Gln measures the similarity of gray level values throughout the
ROI. If the gray level values are similar, the value is small. In
our study, the gray-level run length matrix is included within
the texture features of the models, suggesting the presence of
differences in tissue damage between MOGAD and non-
MOGAD. Additionally, some valuable features extracted in this
study were derived from wavelet transform. Wavelet transform
encompasses intensity and texture information and applies a
linear or radial wave matrix to the image. It can capture the spa-
tial relationship among $3 pixels, potentially uncovering more
nuanced information regarding the pathologic level of the
lesions. However, further research is necessary to confirm these
findings.

Moreover, while most radiomics studies on MS primarily
use T2WI sequences, our study demonstrates that both T2WI
and FLAIR models have excellent performance. The classifica-
tion efficiency of the T2WI and FLAIR sequence models is sig-
nificantly superior to that of the T1WI sequence model. This
heightened classification efficiency in the T2WI and FLAIR
sequence models may stem from the higher ability to distinguish
demyelinating lesions. Additionally, it is possible that the fea-
tures extracted from T2WI and FLAIR sequences more effec-
tively capture the underlying pathology of demyelinating
lesions. Notably, in this study, the compound model that com-
bines features from all 3 sequences demonstrates higher diag-
nostic efficiency compared with the single-sequence models of
T1WI and FLAIR.

However, this study has several limitations. First, it is a retro-
spective study, which may introduce selection bias and limit the
generalizability of the findings. Therefore, further confirmation
of these results is warranted through prospective studies. Second,
the present study used only conventional sequences of brain
MRIs for modeling purposes. In future investigations, incorporat-
ing additional imaging techniques such as quantitative MRI and
fMRI features could potentially enhance the efficiency of our
radiomics model. Previous studies have shown that incorporating
magnetization transfer imaging features from quantitative MRI
can improve the performance of models in identifying MS.22

Third, the original image-layer thickness in this study was 5mm,
and although the spatial resolution was improved to 1mm during
preprocessing, the improvement may have resulted in lower ac-
curacy in delineating boundaries of small lesions. Therefore, the
5-mm image-layer thickness was used in this study, but this
might have an impact on the diagnostic performance of radiomic
features. Last, the sample size in this study is relatively small.
MOGAD is a newly proposed subtype of IIDDs, and previous
cases are limited. Hence, in future studies, a multicenter prospec-
tive design should be established to expand the sample size and
further validate the findings.

CONCLUSIONS
In this study, we have demonstrated that radiomics models based
on T2WI, FLAIR sequences, and a compound model of 3 con-
ventional sequences in brain MR imaging can effectively and
early on distinguish children with unknown causes of IIDDs dur-
ing their initial onset. We have also identified the important role
of textural features in the differential diagnosis. Notably, both the
T2WI and FLAIR models exhibited exceptional performance as
single-sequence models. Moreover, the compound model showed
superior diagnostic capability compared with the T1WI and
FLAIR models individually, thereby addressing the gap in radio-
mics application for IIDDs beyond MS. We believe that radio-
mics holds great potential for extension to other subtypes of
IIDDs in the future and will find widespread use in the diagnosis,
evaluation, and prognosis of demyelinating diseases in children.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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