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ORIGINAL RESEARCH
ARTIFICIAL INTELLIGENCE

Deep Learning–Based Synthetic TOF-MRA Generation Using
Time-Resolved MRA in Fast Stroke Imaging

Sung-Hye You, Yongwon Cho, Byungjun Kim, Kyung-Sook Yang, InSeong Kim, Bo Kyu Kim, Arim Pak, and
Sang Eun Park

ABSTRACT

BACKGROUND AND PURPOSE: Time-resolved MRA enables collateral evaluation in acute ischemic stroke with large-vessel occlu-
sion; however, a low SNR and spatial resolution impede the diagnosis of vascular occlusion. We developed a CycleGAN-based
deep learning model to generate high-resolution synthetic TOF-MRA images using time-resolved MRA and evaluated its image qual-
ity and clinical efficacy.

MATERIALS AND METHODS: This retrospective, single-center study included 397 patients who underwent both TOF- and time-
resolved MRA between April 2021 and January 2022. Patients were divided into 2 groups for model development and image-quality
validation. Image quality was evaluated qualitatively and quantitatively with 3 sequences. A multireader diagnostic optimality evalu-
ation was performed by 16 radiologists. For clinical validation, we evaluated 123 patients who underwent fast stroke MR imaging to
assess acute ischemic stroke. The diagnostic confidence level and decision time for large-vessel occlusion were also evaluated.

RESULTS: Median values of overall image quality, noise, sharpness, venous contamination, and SNR for M1, M2, the basilar artery,
and posterior cerebral artery are better with synthetic TOF than with time-resolved MRA. However, with respect to real TOF, syn-
thetic TOF presents worse median values of overall image quality, sharpness, vascular conspicuity, and SNR for M3, the basilar ar-
tery, and the posterior cerebral artery. During the multireader evaluation, radiologists could not discriminate synthetic TOF images
from TOF images. During clinical validation, both readers demonstrated increases in diagnostic confidence levels and decreases in
decision time.

CONCLUSIONS: A CycleGAN-based deep learning model was developed to generate synthetic TOF from time-resolved MRA.
Synthetic TOF can potentially assist in the detection of large-vessel occlusion in stroke centers using time-resolved MRA.

ABBREVIATIONS: AdaLIN ¼ Adaptive Layer-Instance Normalization; AIS ¼ acute ischemic stroke; BA ¼ basilar artery; EMT ¼ endovascular mechanical
thrombectomy; GAN ¼ generative adversarial network; IQR ¼ interquartile range; LVO ¼ large-vessel occlusion; PCA ¼ posterior cerebral artery; PSNR ¼ peak
SNR; synTOF ¼ synthetic TOF; SSIM ¼ structural similarity index measurement; TR ¼ time-resolved

The primary goal of performing MRA in acute ischemic stroke
(AIS) is to identify the presence of large-vessel occlusion

(LVO), while the secondary objective is to assess the collateral
status. Collateral status is the main factor determining how rap-
idly the penumbral tissue progresses to an irreversible infarct
core.1 Recent studies have revealed the significance of collateral
imaging in selecting eligible patients for endovascular mechanical
thrombectomy (EMT) in the late window, determining the need
for transferring the patient to an EMT-capable hospital, predict-
ing prognosis, and determining stroke etiology.1-6 Therefore, the
American Heart Association/American Stroke Association 2019
guidelines suggest that incorporating collateral flow status into
the clinical decision-making process for eligible candidates may
help determine their eligibility for EMT.7

Time-resolved (TR) MRA enables the noninvasive evaluation
of collateral status. A set of images is sequentially acquired at
multiple time points while the contrast agent passes through the
target vessel (Online Supplemental Data).8-11 Several existing
techniques for TR-MRA, including time-resolved imaging of
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contrast kinetics (TRICKS; GE Healthcare) and time-resolved
imaging with stochastic trajectories (TWIST; Siemens), use cen-
ter-weighted keyhole imaging and peripheral undersampling.12

This method is particularly useful for evaluating the collateral or
retrograde flow that occurs around stenoses. Nevertheless, com-
pared with TOF-MRA, the inherent SNR penalties associated
with undersampling and acceleration techniques further hinder
the attainable spatial resolution of TR-MRA, thereby diminishing
its usefulness in the assessment of LVO.9,13

The cycle-consistent generative adversarial network (GAN)
(CycleGAN; https://github.com/junyanz/CycleGAN), which is a
deep learning algorithm, aims to improve image quality through
learning between high-quality and low-quality images.14-19 The
purpose of this study was to develop a CycleGAN model that
generates high-quality synthetic TOF (synTOF) images from
low-quality TR-MRA peak arterial phase images and to verify
the clinical efficacy of synTOF in diagnosing LVO.

MATERIALS AND METHODS
Patient Selection
This retrospective study was approved by the institutional review
board (Korea University Anam Hospital), and the need for
informed consent was waived due to its retrospective design. Our
study cohort included 1002 patients who underwent TOF-MRA
from April 2021 to January 2022. Among them, 397 patients
(mean age, 66.94 [SD, 13.79] years, 43.6% women [173/397])
underwent both TOF- and TR-MRA to evaluate their collateral

statuses (Fig 1). These 397 patients were divided into a training
data set for model development (50.1%, [199/397]; mean age,
66.36 [SD, 14.02] years; 43.7% women [87/199]) and a validation
data set for image-quality assessment [49.9%, [198/397]; mean
age, 67.58 [SD, 13.56] years; 43.4% women (86/198)]. For clinical
validation, 123 patients (mean age, 72.85 [SD, 11.24] years; 41.5%
women [51/123]) who underwent fast stroke MR imaging
(FLAIR, DWI, perfusion MR imaging, and TR-MRA) to evaluate
AIS during the same period were included in this study. Clinical
information, such as sex, age, reason for fast stroke MR imaging,
location of the AIS, and the LVO site, was collected.

Image Acquisition
MR imaging was performed with two 3T MR imaging scanners
(Magnetom Skyra and Magnetom Prisma; Siemens) using a 64-
channel head and neck coil. The specific imaging parameters for
TOF- and TR-MRA (TWIST) are listed in the Online Supple-
mentary Data. After we obtained a pre-enhancement image, 30
consecutive T1WI 3D data sets were acquired in the coronal
plane after automatic injection of 0.2mL/kg of gadoteridol
(ProHance; Bracco), followed by 30mL of saline. Both sequences
were performed in the same session.

Among the dynamic images, the peak arterial phase images
were selected to evaluate LVO. MIP images (40 images [anteropos-
terior 20, lateral 20]) of TOF- and TR-MRA were automatically
created under the same conditions by Siemens 3D software
(Syngo.via; Siemens Healthineers, Forchheim, Germany).

FIG 1. Study design. GRE indicates gradient recalled-echo.

1392 You Dec 2023 www.ajnr.org

https://github.com/junyanz/CycleGAN


Model Development
Training Stage. A schematic diagram of the network architecture
and model details are shown in the Online Supplementary Data.
This model was developed with paired TR-TOF MIP imaging
sets from 199 patients. It includes 2 generators and discrimina-
tors, 4 loss functions, and a gradient-weighted class activation
map (GradCAM; https://medium.com/the-owl/gradcam-in-pytorch-
7b700caa79e5). The basic architecture was based on an unsupervised
generative attention network with Adaptive Layer-Instance
Normalization (AdaLIN) for image-to-image translation and
was customized to improve model performance (https://
github.com/taki0112/UGATIT). The encoder is composed of 2
convolution layers (2D, kernel size: 3) with a stride size of 2 for
downsampling and 4 residual blocks. The decoder consists of 4 re-
sidual blocks and 2 upsampling convolution layers (2D, kernel
size: 3) with a stride size of 1. We used instance normalization for
the encoder and AdaLIN for the decoder. Hyperparameters used
in various training settings are listed in the Online Supplementary
Data. GradCAMwas incorporated into the foundational CycleGAN
model to enable selective attention on specific areas of the image
after testing improvement in terms of the structural similarity
index measurement (SSIM) in 10 patients randomly selected
from the validation data set (Online Supplementary Data). The
same 150 training epochs were applied to all cases.

Validation Stage. The performance of the developed model to
generate synTOF (GTOF) was assessed using the peak SNR
(PSNR) and SSIM as metrics, defined as follows:20

PSNR ðx; yÞ ¼ 20 log10
MAXx

kx� yk2
:

SSIM ðx; yÞ ¼ ð2mxmyþC1Þð2s xy þ C2Þ
ðmx2 þmy2 þ C1Þðs x2 þ s y2 þ C2Þ :

Image Interpretation
Image-Quality Evaluation (Qualitative and Quantitative Analysis).
Two neuroradiologists (S.E.P and S.-H.Y., with 6 and 11 years of
neuroradiologic experience) evaluated the image quality of the
validation data set: 594 imaging sets (198� 3 [TR-MRA, synTOF,
and TOF]) from 198 patients (Online Supplementary Data). Each
image set consisted of 40 anonymized MIP images and was eval-
uated through a PACS. Regarding disagreements in the qualitative
evaluation, the final result was determined through a consensus
meeting with 3 neuroradiologists, including another experienced
neuroradiologist (B.K., with 17 years of experience in neuroradiol-
ogy). The mean value from the 2 readers was used in the quantita-
tive analysis. A 5-point Likert scale was used to evaluate each kind
of image-quality parameter (Online Supplementary Data). For
quantitative analysis, crucial ROIs were manually located at each
vessel, demonstrating the highest signal intensity in the MIP
image anterior-posterior view. The SNRs were calculated in the
M1, M2, M3, posterior cerebral artery (PCA), and basilar arteries
(BAs) (mean signal intensity/SD of the background SI).

Diagnostic Performance for Intracranial Aneurysm and Stenosis
Detection. The same neuroradiologists who performed image-
quality evaluation assessed the presence of aneurysms (largest

lesion) and intracranial arterial stenoses (most stenotic lesion,
exceeding a moderate degree). Another neuroradiologist (B.K.,
with 17 years of experience in neuroradiology) evaluated both
diseases using TOF and VICAST criteria.21

Multireader Image-Optimality Test with 16 Radiologists. Sixteen
radiologists (7 and 9 neuroradiologists with 1–18 years of radio-
logic experience) evaluated imaging sets from 20 randomly cho-
sen patients in the validation data set. Three image sequences of a
patient were randomly arranged and shown simultaneously;
then, we asked the following 3 tasks: 1) imaging optimality: select
all the imaging sequences suitable for interpretation; 2) image
preference: select the best MRA sequence subjectively perceived
as optimal for interpretation; and 3) image discrimination:
choose 1 MRA sequence that is highly likely to be a genuine TOF.

Assessment of Diagnostic Confidence Level and Decision Time
for LVO in Fast Stroke MR Imaging. For the 123 patients who
underwent fast stroke MR imaging, 2 neuroradiologists (B.K.K.
and S.E.P., with 12 and 6 years of experience in neuroradiology,
respectively) independently graded the diagnostic confidence
level for intracranial LVO on the basis of a 5-point Likert scale.
The time for the decision was defined as the difference between
the time when eachMRA image was opened and the time when the
decision for LVO was made by the neuroradiologist. In the first
session, 2 neuroradiologists evaluated the diagnostic confidence
level and decision time using only TR-MRA. After 1month, both
were assessed using TR-MRA and synTOF-MRA simultaneously
by the same neuroradiologist.

Statistical Analysis. The normality of the data distribution was
assessed for each parameter using the Kolmogorov–Smirnov test.
Patient data are reported as percentage (%), mean (SD), or median
(interquartile range, [IQR]). The significance level of P, .05 was
used to consider statistical significance. A Bonferroni correction
was applied for post hoc analysis, in which the adjusted P value
was multiplied by the number of comparisons made. The
Friedman test was used to compare .3 non-normally distributed
continuous variables, including qualitative and quantitative
image-quality analyses and the diagnostic optimality tests. The
McNemar-Bowker test was used to compare the distribution of
confidence levels between the 2 different imaging sets and the
diagnostic performance of 3 imaging sets. The Wilcoxon test was
used to compare the nonparametric equivalents of the paired sam-
ples, specifically the median values of the diagnostic confidence
level and time for decision. Interobserver agreement was assessed
on the basis of the analysis of weighted k values (qualitative analy-
sis) or intraclass correlation coefficients (quantitative analysis).

MedCalc for Windows (Version 20.218; MedCalc Software)
and SPSS Statistics software (Version 22.0; IBM) were used for all
statistical analyses.

RESULTS
Patient Characteristics
Baseline patient characteristics of the model development and
clinical validation data sets are listed in Table 1. In the clinical
validation data set, 56 patients (45.5%, 56/123) showed acute is-
chemic infarction on DWI. Intracranial LVO was present in 25
patients (20.33%).
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Model Development
The median values and IQR of SSIM and PSNR between synTOF
and TOF were 0.67 (0.65–0.69) and 15.56 (14.82–16.42) dB,
respectively (Online Supplemental Data).

Qualitative Assessment
Qualitative analysis results are presented in the Online Supplemental
Data. The synTOF showed significantly higher median values on
the 5-point Likert scale compared with TR in all the following pa-
rameters: overall image quality, noise, sharpness, and venous con-
tamination (P, .001). In comparison with real TOF, synTOF has
lower median values in overall image quality, sharpness, and vas-
cular conspicuity (P, .001). The interobserver agreement for all
5 parameters was substantial or excellent (weighted k . 0.700)
(Online Supplemental Data).

Quantitative Assessment
The Online Supplemental Data demonstrate the results of the
quantitative analysis. The SNRs of the synTOF in the MCA (M1
and M2 segments) and BA were significantly higher than those in
the TR (P, .001) in contrast to the M3 segment (P¼ 1.000).
Compared with TOF, the SNRs of synTOF were significantly lower
for the M3, BA, and PCA (P, .001), with no significant differen-
ces for M1 (P¼ 1.000) and M2 (P¼ .358). The interobserver

agreement for all values was excellent
(intraclass correlation coefficient .

0.800) (Online Supplemental Data).

Diagnostic Performance for
Intracranial Aneurysm and
Stenosis Detection
The sensitivity in aneurysm detection
for both 4D and synTOF was 50%
(Online Supplemental Data). The an-
eurysm height for all false-negative
cases was ,2mm. The sensitivity in
stenosis detection for 4D and synTOF
was 75% and 86%, respectively. The
diagnostic performance of both diseases
was significantly lower than that of TOF
(P, .05). No significant differences
existed between 4D and synTOF (P val-
ues; aneurysm ¼ 1.000; stenosis ¼
.063). Representative images are shown
in the Online Supplemental Data.

Multireader Imaging-Optimality
Evaluation
The results for multireader image-opti-
mality assessment for the 3 questions are
presented in the Online Supplemental
Data. For the first question, which per-
tained to imaging optimality for reading,
no statistically significant difference was
observed between the values for synTOF
and real TOF imaging techniques, and
both were significantly higher than those
obtained using TR (TR versus synTOF

versus TOF; median [IQR]; 0.50 [0.00–2.00] versus 20.00 [18.00–
20.00] versus 20.00 [18.50–20.00], P¼ 1.000). With respect to imag-
ing preference, no statistically significant difference was observed
between the values for synTOF (median, 4.50 [IQR, 4.00–9.50])
and TOF (median, 15.50 [IQR, 10.00–16.00]) (P¼ .279). Finally,
for the last question, which aimed to select real TOF images, no
statistically significant difference was observed between the values
for synTOF (median, 10.00 [IQR, 3.50–16.00]) and TOF (median,
9.00 [IQR, 3.00–16.50]) (P¼ 1.000).

Diagnostic Confidence Level and Decision Time for LVO in
Fast Stroke MR Imaging
Table 2 and Fig 2 present the results of the diagnostic confidence
level and decision time for LVO. The diagnostic confidence levels
were significantly higher for readers 1 and 2 when they deter-
mined LVO with both TR and synTOF images than with TR-only
(TR and synTOF versus TR-only; reader 1: median, 5.00 [IQR,
4.00–5.00] versus 4.00 [IQR, 4.00–4.00]; reader 2: median, 5.00
[IQR, 4.00–5.00] versus 4.00 [IQR, 3.00–4.00], P, .001). The me-
dian values of decision time were significantly shorter in the TR
and synTOF reading sessions than in the TR session (TR and
synTOF versus TR-only; reader one: 25.00 [IQR, 20.00–42.75] ver-
sus 33.00 [IQR, 30.00–38.00], P¼ .004; reader two: 25.00 [IQR,
22.00–38.00] versus 39.00 [IQR, 30.00–50.00], P, .001).

Table 1: Clinical characteristics of the patients

Model Development

Training Data Set Validation Data Set Total
No. of patients 199 198 397
Age (mean) (yr) 66.36 (SD, 14.02) 67.58 (SD, 13.56) 66.97 (SD, 13.79)
Female 87 (43.7%) 86 (43.4%) 173 (43.6%)
Clinical validation

No. of patients 123
Age (mean) (yr) 72.85 (SD, 11.24)
No. women 51 (41.5%)

Reason for fast stroke MR
imaging
Mental change 53 (43.1%)
Right-sided weakness 12 (9.8%)
Left-sided weakness 18 (14.6%)
Dysarthria 23 (18.7%)
Dizziness 3 (2.4%)
Facial palsy 4 (3.3%)
Visual disturbance 3 (2.4%)
Seizure 5 (4.1%)
Syncope 2 (1.6%)

Acute ischemic stroke
None 67 (54.5%)
ACA territory 4 (3.3%)
MCA territory 30 (24.4%)
PCA territory 2 (1.6%)
BA/VA territory 12 (9.8%)
Multiterritorial 8 (6.5%)

LVO
None 98 (79.7%)
ICA 9 (7.3%)
ACA 1 (0.8%)
MCA (M1) 6 (4.9%)
MCA (M2) 6 (4.9%)
PCA 1 (0.8%)
BA/VA 2 (1.6%)

No. performing DSA 10 (8.1%)

Note:—ACA indicates anterior cerebral artery; VA, vertebral artery.
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Representative TR-MRA, synTOF, and TOF images are
shown in Fig 3.

DISCUSSION
The major findings of this study are summarized as follows. 1) A
high-resolution synTOF generation model based on CycleGAN
was developed for the diagnosis of LVO in AIS. 2) In comparison
with TR-MRA, synTOF achieves a statistically significant reduc-
tion in noise and improvement in sharpness. 3) The model per-
formance is excellent in terms of SNR improvement for M1, M2,
BA, and PCA. 4) SynTOF does not accomplish equivalent image
quality compared with TOF except for noise, venous contamina-
tion, and SNR of M1/M2. 5) SynTOF features limited the per-
formance in detecting intracranial aneurysms and stenoses. 6)
The combined use of both synTOF and TR-MRA has the poten-
tial to enhance diagnostic confidence and decrease decision time
for the diagnosis of LVO in AIS for distal ICA to M2 occlusion.

CycleGAN: Deep Learning Algorithm
for Intersequence Image Transfer
Our deep learning model improved the
image quality of TR-MRA. This may
have been influenced by 2 factors: the
use of proper target images (TOF-MRA)
and the effectiveness of the CycleGAN
algorithm. TOF-MRA is the most com-
monly used intracranial MRA sequence
with high image quality, and neuroradi-
ologists are familiar with its image con-
trast.22 Therefore, we hypothesized that
paired TOF images serve as a valuable
guide for enhancing the image quality of
TR-MRA. CycleGAN was selected for
training because of its recognized capa-
bility of intersequence transfer. The
GAN was designed to generate new
images through simultaneous training of
the generator and discriminator net-
works.19,23 In our study, CycleGAN, a
modified version of the GANwith 2 gen-
erators and discriminators, was used to
prevent mode collapse. Additionally,
GradCAM was introduced into the
model to drive the focus of the generator
and discriminator toward meaningful
regions of the images. An effective algo-
rithm and an appropriate target image
may have contributed to the favorable
performance of the model.

Clinical Application of synTOF in AIS
The use of MRA has 2 objectives in
AIS: diagnosis of LVO and assessment
of collateral status.7 Considering the
first objective and image quality, TOF-
MRA was deemed the most suitable
method. However, it may not be possi-
ble to perform owing to the long scan

time. Furthermore, TOF-MRA does not provide adequate infor-
mation regarding the aortic and proximal cervical arteries,
which are technically important for EMT. Single-phase con-
trast-enhanced MRA offers the advantage of a large FOV and
short scan time; however, it is also known to underestimate the
collateral status.24,25 TR-MRA is considered the most suitable
option for the secondary objective of AIS evaluation, but chal-
lenges in attaining maximum efficiency for the primary purpose,
owing to limitations in both spatial resolution and SNR, are
unavoidable. Our results indicate that the use of synTOF signifi-
cantly improved the diagnostic confidence level for LVO and
reduced the decision time. Thus, in instances in which real TOF
acquisition is impeded by time constraints, synTOF images
from TR-MRA may serve as valuable additional high-resolution
images for the initial evaluation of AIS. However, the diagnostic
performance of synTOF in aneurysm and stenosis detection is
still limited.

FIG 2. Diagnostic confidence level of TR-MRA-only versus TR-MRA and synTOF.

Table 2: Diagnostic confidence level of TR-alone versus TR and synTOF

TR TR and synTOF P Value
No. of patients 123 123
Reader 1

Confidence level ,.001a

5 (Definite) 21 (17.1%) 69 (56.1%)
4 (Probable) 76 (61.8%) 41 (33.3%)
3 (Possible) 23 (18.7%) 10 (8.1%)
2 (Uncertain) 2 (1.6%) 2 (1.6%)
1 (Ambiguous) 1 (0.8%) 1 (0.8%)
Median (IQR) 4.00 (4.00–4.00) 5.00 (4.00–5.00) ,.001b

Time for decision (median) (IQR) (sec) 33.00 (30.00–38.00) 25.00 (20.00–42.75) .004b

Reader 2
Confidence level ,.001a

5 (Definite) 17 (13.8%) 69 (56.1%)
4 (Probable) 71 (57.7%) 44 (35.8%)
3 (Possible) 25 (20.3%) 7 (5.7%)
2 (Uncertain) 7 (5.7%) 2 (1.6%)
1 (Ambiguous) 3 (2.4%) 1 (0.8%)
Median (IQR) 4.00 (3.00–4.00) 5.00 (4.00–5.00) ,.001b

Time for decision (median) (IQR) (sec) 39.00 (30.00–50.00) 25.00 (22.00–38.00) ,.001b

aMcNemar-Bowker test was performed.
bWilcoxon test was performed.
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CT versus an MR Imaging–Based Protocol for AIS
Two distinct imaging protocols, namely CT and MR imaging, are
used for AIS evaluation. The preference in most stroke centers is
CT for AIS evaluation, driven by its predominant advantages
over MR imaging, such as rapid acquisition, widespread availabil-
ity, and cost-effectiveness. A previous study with 36 tertiary hos-
pitals reported that approximately 70% of stroke centers have
adopted CT-based protocols.26 Additionally, CTA, including the
delayed phase, offers the highest image resolution for evaluating

LVO and collateral status. Nevertheless, some centers have
explored the use of MR imaging owing to its unique strengths:
1) high accuracy for core infarction, 2) estimation of the onset
time in wake-up strokes, 3) effective identification of stroke-
mimic conditions, and 4) lack of radiation. In our center, we
use a 6-minute MR imaging–based protocol for patients with
presumed in-hospital stroke, and the results of our study may
benefit MR imaging–based stroke centers. Considering the dif-
ferent goals of deep learning–based image-quality improvement

FIG 3. Representative images of TR-MRA, synTOF, and TOF.
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in MR imaging and CT, namely scan time reduction and radia-
tion reduction, respectively, the advantage of CT-based proto-
cols will be boosted by further deep learning–based studies to
reduce the radiation and contrast dose while maintaining the
image quality.

Limitations
First, the study was a retrospective single-center one. Second,
multiobserver imaging evaluation was performed on limited
patients, which could have impacted the generalizability of the
results. Third, this study had a limitation in that it focused only
on a single field strength (3T) and a single vendor sequence
(TWIST). Fourth, the number of patients in the clinical valida-
tion group with AIS on DWI and LVO on MRA was relatively
low, because our hospital only uses an MR imaging–based stroke
protocol for inpatient strokes and a CT-based protocol at the
emergency stroke center. Additionally, only 3 cases of LVO were
included for the posterior circulation. Thus, further studies that
include a larger number of patients are needed to determine the
usefulness of synTOF in posterior circulation occlusion. Fifth,
this model was developed using MIP images rather than raw
data. This model is effective for LVO detection. However, raw-
data images are essential for a confirmative diagnosis of stenoses
and aneurysms. Further studies using raw data and another algo-
rithm should be conducted. Sixth, owing to the widespread use of
CT-based protocols in AIS evaluation, the applicability of our
research findings is limited. They could be applied only to stroke
centers that follow an MR imaging–based protocol. Further stud-
ies regarding image-quality improvement through reduction of
the radiation dose in CT-based protocols will be needed. Seventh,
we did not perform quantitative analysis for vascular sharpness.
A reliable quantitative measuring method for sharpness should
be developed because resolution enhancement may, essentially,
affect image-quality improvement. Finally, DSA was performed
on a limited number of patients, precluding a thorough evalua-
tion of the diagnostic accuracy of synTOF- and TR-MRA.

CONCLUSIONS
In this study, we developed a CycleGAN-based deep learning
model aimed at generating a synTOF with improved resolution
and SNR. Despite the good image quality of TOF, it is often not
performed for AIS because of the long scan time. TR-MRA with
additional deep learning–based synTOF has the potential to effec-
tively achieve both goals of initial stroke evaluation: accurate and
rapid diagnosis of LVO and proper evaluation of collateral
circulation.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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