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REVIEW ARTICLE

Monoclonal Antibodies: What the Diagnostic
Neuroradiologist Needs to Know

R. Alsufayan, C. Hess, and T. Krings

ABSTRACT

SUMMARY: Monoclonal antibodies have become increasingly popular as novel therapeutics against a variety of diseases due to
their specificity, affinity, and serum stability. Due to the nearly infinite repertoire of monoclonal antibodies, their therapeutic use is
rapidly expanding, revolutionizing disease course and management, and what is now considered experimental therapy may soon
become approved practice. Therefore, it is important for radiologists, neuroradiologists, and neurologists to be aware of these
drugs and their possible different imaging-related manifestations, including expected and adverse effects of these novel drugs.
Herein, we review the most commonly used monoclonal antibody–targeted therapeutic agents, their mechanism of action, clinical
applications, and major adverse events with a focus on neurologic and neurographic effects and discuss differential considerations,
to assist in the diagnosis of these conditions.

ABBREVIATIONS: Ab ¼ antibody; AE ¼ adverse event; Ag ¼ antigen; ARIA ¼ amyloid-related imaging abnormalities; CAA ¼ cerebral amyloid angiopathy;
CTLA-4 ¼ cytotoxic T-lymphocyte Ag 4; Fc ¼ constant fragment; IRAE ¼ immune-related AE; IRIS ¼ immune reconstitution inflammatory syndrome; mAb ¼
monoclonal antibody; NTZ ¼ natalizumab; PML ¼ progressive multifocal leukoencephalopathy; PRES ¼ posterior reversible encephalopathy syndrome; TNF ¼
tumor necrosis factor

Antibodies (Abs) are produced by B cells and share the same
basic structure, which is Y-shaped and allows Ab molecules

to carry out their dual functions: antigen (Ag) binding and bio-
logic activity mediation.

The base of the Ab is composed of a constant fragment (Fc),
which imparts the effector properties of the molecule in the
immune system, on its recognition by Fc receptors present on
various cell types that determine the actual biologic effect. The
opposing end is the variable fragment of the molecule that binds
to unique Ags, imparting the specificity of each Ab. Each B-cell
line produces Abs specific for 1 unique epitope, thus resulting in
monoclonal Ab (mAb) production. At times, multiple B cells
generate different Abs against multiple epitopes from different

regions of a full-length protein Ag. This feature allows immune
responses to a highly specific target to disable/eliminate the Ag
from the system, after which B cells remain in the bloodstream
ready to produce Abs when the Ag is encountered again.1

The method of producing various mAbs against a variety of
targets, ranging from cancer to autoimmune diseases, is similar.
The target Ag, or part thereof, is injected into a host animal,
mounting an immune response and creating a pool of B cells spe-
cific to that Ag. The B cells are then harvested and cultured with
myeloma cells, creating a hybridoma of a line of immortal mAb-
producing cells that can divide to generate more of the desired
mAbs. However, the Fcs of Abs produced in host animals are for-
eign to the human immune system, inducing a response that can
neutralize the treatment or even lead to an anaphylactic reaction.
Three options are available to overcome this hurdle: The mAbs
can be humanized through the use of transgenic mice that create
Abs with human Fcs. Products that use this method have names
that end in -zumab.1 A second approach is to split host-derived
mAbs and then combine the created variable fragment with
human Fc. The end products are chimeras and have names that
end in -ximab.1 A third approach is to create a fusion protein
composed of a human Fc and an Ag-specific receptor. These do
not resemble typical Abs but act in a similar manner and have
names that end in -cept.1 mAbs mediate their therapeutic effect
by targeting cells for death via Ab-induced apoptosis, Ab-
dependent cell cytotoxicity, or complement mediated cell lysis, or
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mAbs can physically block a receptor ligand interaction,1 with
the ultimate goal of targeting a specific cell population or mole-
cule relevant to disease pathogenesis.

Generally, only �0.1% of the circulating Abs enter the brain,
and they do so via either adsorptive-mediated endocytosis, car-
rier-mediated transport, or receptor-mediated transcytosis.2 This
process is discussed in greater detail in the Online Supplemental
Data.

Immunostimulating mAbs: Ipilimumab and Tremelimumab
Ipilimumab and tremelimumab are mAbs that selectively block
cytotoxic T-lymphocyte Ag 4 (CTLA-4), an immune-inhibitory
protein expressed on activated T cells, thereby enhancing the
immune response against tumors.3 In multiple trials, they have
shown high efficacy in the treatment of metastatic melanoma.3,4

They are currently under study for the treatment of various other
types of advanced malignancy, including metastatic renal cell car-
cinoma and prostate cancer.

The most common adverse events (AEs), affecting .10% of
patients, are diarrhea, rash, pruritus, fatigue, nausea or vomiting,
abdominal pain, insomnia, anorexia, hallucinations, and tempera-
ture intolerance.3,4 In addition, a novel spectrum of autoimmune-
inflammatory toxicities surfaced, the pathogenic mechanism of
which seems to be sustained by the positive modulation on the
immune system known as immune-related AEs (IRAEs).5 The
gastrointestinal tract, liver, skin, pituitary, and the musckuloskele-
tal system are most frequently involved, leading to colitis, hepati-
tis, dermatitis, hypophysitis, and arthritis. Rarer IRAEs include
uveitis, thyroiditis, primary adrenal insufficiency, polyneuritis,
Guillain-Barré syndrome, optic ischemic or peripheral neuropa-
thy, pneumonitis, pancreatitis, aseptic meningitis, nephritis, red
blood cell aplasia, myocarditis, myasthenia gravis, sarcoidosis, and

myositis. The frequency and severity of
IRAEs appear to be dose-dependent.6,7

Occasionally (�1%), deaths have occurred
as a result of colonic perforation.8

From a neurologic and neuroradio-
logic point of view, hypophysitis is the
most commonly encountered AE of
these drugs and is estimated to occur in
10%–18% of patients treated.9 MR imag-
ing features of hypophysitis are typically
characterized by diffuse enlargement of
the pituitary gland, with loss of normal
posterior pituitary signal intensity on the
precontrast T1WI and variable enlarge-
ment of the infundibulum. Enhancement
is typically uniform but can be heteroge-
neous (Fig 1).10

Symptoms are variable, such as fa-
tigue, insomnia, anorexia, hallucina-
tions, and temperature intolerance. The
laboratory findings may show a decline
in values of biomarkers of the affected
pituitary lobe, ie, thyroid-stimulating
hormone, cortisol, and sex hormones
compared with the normal ranges.

Several issues concerning anti-CTLA-4–induced hypophysitis
remain to be fully elucidated, including the higher prevalence in
males and the lower incidence in patients exposed to tremelimu-
mab compared with ipilimumab.11

Clinically, resolution of acute symptoms after discontinuation
of mAb treatment and steroid therapy is typically seen; if required,
hormone replacement therapies are initiated. It remains to be seen
how many patients will have persistent partial hypopituitarism or
panhypopituitarism requiring long-term hormone replacement.
Most important, the treatment of IRAEs with immunosuppressive
agents, such as corticosteroids, does not appear to affect the anti-
tumor response.6

The most important differential diagnosis is that of a new pi-
tuitary metastatic deposit; this can only be evaluated with time
with follow-up imaging after cessation of mAb treatment (Online
Supplemental Data). Other causes of hypophysitis unrelated to
anti-CTLA-4 mAbs may be considered, including polyglandular
autoimmune syndromes and immunoglobulin G–related sys-
temic disease, secondary hypophysitis due to local inflammation
of the pituitary as a reaction to sellar disease, or systemic diseases
(infectious or inflammatory disorders, eg, Wegener granulomato-
sis, sarcoidosis, tuberculosis, or syphilis).12,13

Immunosuppresive mAbs: Natalizumab
Natalizumab (NTZ) is a humanized monoclonal antibody directed
against the a4b 1 and a4b 7 integrins. It prevents inflammatory
cells from binding to cerebrovascular endothelial cells, thereby pre-
venting them from crossing the BBB,14 resulting in CNS immuno-
suppression. It is mainly used for relapsing-remitting MS but has
also proved efficacy in Crohn disease and ankylosing spondylitis.15

The overall incidence of AEs associated with NTZ is low.
However, 3 associated phenomena need to be kept in mind

FIG 1. Hypophysitis induced by anti-CTLA-4 mAbs. This 61-year-old woman with metastatic mela-
noma underwent adjuvant treatment with ipilimumab. A, Sagittal T1 fast-spoiled gradient recalled
image cut through the midline, postgadolinium, at initiation of treatment in the patient with a
normal-for-age pituitary gland. MR imaging 6months later (B–D) demonstrates a markedly thick-
ened, densely enhancing pituitary gland in keeping with ipilimumab-induced hypophysitis.
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because early recognition of their spectrum of clinical and imag-
ing findings is crucial to limit morbidity: The primary AE is pro-
gressive multifocal leukoencephalopathy (PML). Secondarily,
on clearance of NTZ, a PML-associated immune reconstitution
inflammatory syndrome (PML-IRIS) may occur, resulting in a
paradoxical worsening of symptoms. Third, on cessation of
NTZ, an exuberant rebound of MS may be observed.16

PML
The cause of PML is the neurotrophic polyoma JC virus. By caus-
ing lytic infection of brain oligodendrocytes and, to a lesser extent,
astrocytes, widespread CNS demyelination ensues. Clinical signs
and symptoms of PML vary. The most common symptoms in
PML are confusion, hemiparesis, incoordination, speech disturb-
ance, and visual problems.17

On MR imaging, PML presents with preferentially peripheral,
variably sized and shaped white matter T2/FLAIR hyperinten-
sities, classically involving subcortical U-fibers, which do not con-
form to cerebrovascular territories and do not enhance (Fig 2).
They are bilateral, with an asymmetric distribution, growing larger
and becoming confluent as the disease progresses, with no or only
mild mass effect. Involvement of the overlying cortex, while origi-
nally thought to be rare, has been increasingly reported.18,19

With time, lesions become increasingly hypointense on T1WI
as irreversible white matter destruction occurs, and they may
demonstrate a “microcyst” or “granular” pattern,20 which may
represent small areas of demyelination in the immediate vicinity
of infected oligodendrocytes.18 These will lead with time to pro-
gressive brain atrophy (Online Supplemental Data).

Superficial and deep gray matter involvement (more com-
monly the thalami) has been reported in conjunction with white
matter lesions in up to 5%–31% of patients.21 Posterior fossa

involvement is most commonly in the cerebellum and middle
cerebellar peduncles, but the brainstem can also be involved with
crescent-shaped lesions.22 The optic nerve and spinal cord are
spared, and hemorrhage is a rare finding of PML but has been
reported in patients with HIV taking NTZ.23,24

Enhancement in NTZ-associated PML may indicate a worse
prognosis and may be patchy, linear, nodular, or peripheral.25

The DWI and DTI appearance of PML lesions varies depend-
ing on the stage of the disease. Early on, when lesions are rela-
tively small, infected oligodendrocytes swell and die, resulting in
high signal on DWI.16 Fractional anisotropy values are reduced,
compatible with myelin injury. As the lesions enlarge, the signal
on DWI remains high within the periphery as new oligodendro-
cytes become infected.26 When lesions become quiescent, the rim
loses its DWI hyperintensity. In later phases of tissue destruction,
a relatively free diffusion of water within the irreversibly damaged
tissue is observed.9

A confirmed diagnosis of PML is based on histologic exami-
nation or CSF polymerase chain reaction.

Differential diagnoses of PML include other opportunistic viral
infections, including varicella zoster encephalomyelitis and herpes
simplex encephalitis and various bacterial and fungal infections.
Varicella zoster myelitis may demonstrate T2-hyperintense signal
and enhancement in the spinal cord,27 differentiating it from
PML. Herpes zoster encephalitis demonstrates rapidly progressive
cortical and subcortical T2 hyperintensity, swelling, and occa-
sional enhancement involving the limbic regions.28

MS relapse is presumably the most important differential for
new lesions. New MS lesions tend to be small, focal, and well-
delineated, favoring the periventricular and juxtacortical white
matter and are typically round or ovoid.20,21 MS lesions may
enhance homogeneously or peripherally, whereas PML generally

FIG 2. NTZ-induced PML. PML in a 52-year-old male patient with Crohn disease treated with NTZ. FLAIR (A and F), enhanced T1 (B and G), SWI
(C and H), DWI (D and I), and ADC maps (E and J) at ganglionic (A–E) and supraganglionic (F–J) levels demonstrate the typical imaging features of
PML with subcortical U-fiber involvement, lack of enhancement, and asymmetric involvement of the white matter.
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does not. MS lesions generally restrict diffusion only in the hyper-
acute phase (,1week).29 Both tumefactive demyelinating and
PML lesions demonstrate large areas of T2 hyperintensity and T1
hypointensity; however, mass effect is usually greater with the
former, and T1 hypointensity improves with time in tumefactive
lesions due to remyelination,30 while improvement does not
occur in PML.

Acute disseminated encephalomyelitis can appear similar to
PML, with large areas of T2 signal abnormality in the white mat-
ter and deep gray structures, with minimal enhancement and
variable mass effect.31

Posterior reversible encephalopathy syndrome (PRES) can
appear similar to PML on initial examination, but lesions tend to
be more symmetric than those in PML and predominantly
involve the posterior aspects of the brain, and lesions typically
resolve with treatment of the inciting etiology. In addition, PRES-
associated T2/FLAIR hyperintensities classically present with
facilitated diffusion.

The goal of treatment for NTZ-associated PML is the restora-
tion of immune function by rapid removal of the drug, typically
achieved with plasma exchange or immunoadsorption, to clear
the drug from the a4b 1 receptors.32

PML-IRIS
Once NTZ is cleared by plasma exchange, many (�70%)33

patients with prior PML will experience rapid progression of neu-
rologic symptoms, thought to be due to an exuberant immune
response to viral Ags resulting in inflammation-mediated damage
to infected and noninfected neuronal and glial tissue.

PML-IRIS may also occur following discontinuation of NTZ,
usually �90 days after the last dose, reflecting the longer time
necessary to clear the drug without plasma exchange.16

On imaging, pseudoprogression of the PML imaging abnor-
malities with active inflammation and new peripheral and open
rim enhancement is seen (Fig 3). Existing PML lesions may
increase in size or coalesce as more white matter becomes
involved, accompanied by increasing cerebral swelling and mass
effect. Contrast enhancement develops or increases (variable pat-
terns: patchy, punctate, irregular, and hazy, ill-defined).18 Across
time, T1 hypointensity increases, indicating irreversible white
matter damage with long-term atrophy of the overlying cortex
due to retrograde neuronal degeneration. The therapy for PML-
IRIS is high-dose corticosteroids.34

NTZ Rebound
Discontinuation of NTZ therapy may be necessary for a vari-
ety of reasons, including fear of contracting PML after long-
term usage, JC virus seroconversion, disease progression
despite treatment, pregnancy or the intention to become preg-
nant, Abs to NTZ, or allergy.35 In these patients, rebound of the
primary disease (MS) may be encountered in 22%, with an
unusually robust inflammatory response greater than a patient’s
typical relapse severity before starting NTZ therapy on MR
imaging.36

On MR imaging, the appearance of the rebound phenomenon
is new enhancing and/or nonenhancing lesions, and the number
of these lesions may be greater than in a typical relapse and can

FIG 3. PML-IRIS after cessation of NTZ treatment. PML-IRIS in the same patient as depicted in Fig 2 following cessation of NTZ. The condition
of the patient deteriorated clinically, prompting additional imaging that now demonstrates a “leading edge” of demyelination toward the white
matter, mild enhancement, and DWI hypersignal, in keeping with cellular infiltration.
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be quite severe. Development of enhancement at the margins of
old lesions has also been reported.37

Other immunosuppressive mAbs such as efalizumab, rituxi-
mab, brentuximab vedotin, alemtuzumab, and eculizumab share
with NTZ potential primary and secondary AEs and are dis-
cussed in greater detail in the Online Supplemental Data.

Amyloid-Segregating mAbs: Aducanumab
Aducanumab is a human mAb that selectively targets amyloid b

aggregates, including soluble oligomers and insoluble fibrils. It is
used in the treatment of mild cognitive impairment and mild
Alzheimer disease.38 Even with the FDA approval of this drug,
there is debate regarding its clinical efficacy in treating mild cog-
nitive impairment and Alzheimer disease, to a certain extent due
to the termination of the 2 pivotal Phase 3 clinical trials,
221AD301 Phase 3 Study of Aducanumab (BIIB037) in Early
Alzheimer’s Disease (ENGAGE) and 221AD302 Phase 3 Study of
Aducanumab (BIIB037) in Early Alzheimer’s Disease, following a
futility analysis.39 Despite the early termination of both trials,
both demonstrated a favorable treatment effect of aducanumab at
low doses, but they were discordant at the highest dose because
the ENGAGE trial showed no beneficial treatment outcome com-
pared with a placebo, while the EMERGE clinical trial showed a
decrease in the rate of cognitive and functional decline. When the
final 2 data sets were compared with their respective futility data
sets, an improved treatment effect was evident in both studies as
additional data were collected. The FDA cited EMERGE as hav-
ing “substantial evidence of effectiveness to support approval.”40

Nonetheless, at best, the treatment may
only slow cognitive and functional decline
—raising the question of what pathologies
drive continued functional decline as
amyloid burden diminishes.

There has been a high rate of imag-
ing-related abnormalities observed in
patients treated with Aducanumab. These
have been coined amyloid-related imag-
ing abnormalities (ARIA) and occurred
in .40% of individuals in the aducanu-
mab 10mg/kg group.39 Clinically, new
signs or symptoms suggestive of ARIA
were present in a large number of
patients, including headaches in 13%,
dizziness in 4%, confusion/altered men-
tal status in 5%, visual disturbance/eye
disorders in 2%, and nausea in 2%.39

In September 2022, the American
Journal of Neuroradiology published a
white paper on ARIA,41 focusing on
imaging abnormalities and how to
report these. In brief, the current hy-
pothesis of ARIA formation is based
on the assumption that amyloid depo-
sition in vessel walls (cerebral amyloid
angiopathy [CAA]) may result in loss
of vascular integrity and reduced peri-
vascular clearance and may be related

to spontaneously occurring microhemorrhages.42 When antia-
myloid mAb therapy is initiated, antibody-mediated breakdown
of amyloid plaque and mobilization of parenchymal and vascu-
lar Ab increase the load of perivascular drainage.43 This over-
load of the perivascular clearance pathways, ie, the glymphatic
system, transiently increases amyloid deposition in the arterial
wall, while at the same time, antibody-mediated inflammation
and breakdown of amyloid occur in the vessel wall, all causing
loss of vascular integrity and BBB breakdown.44 As a result, pro-
teinaceous fluid and/or red blood cells leak into the parenchyma
and/or leptomeningeal space, and this issue results in edema/
effusion (ARIA-E) or microhemorrhages/superficial siderosis
(ARIA-H). High-risk factors for ARIA are the following: 1) ini-
tial treatment period, 2) higher drug doses, 3) ApoE4 genotype
—with ApoE4 homozygotes having the highest risk,45 and 4)
pretreatment microhemorrhages most consistent with CAA, lo-
bar microhemorrhages, and superficial siderosis.46,47

ARIA-E
The E in ARIA-E stands for edema, effusion, and exudate that
may be present, either parenchymal, sulcal, or both. The imaging
appearance of parenchymal edema is similar to that of vasogenic
edema, ie, absent diffusion restriction, and is best depicted on T2
FLAIR (Fig 4). It occurs mainly in the white matter, with some
gray matter involvement. There may be associated local mass
effect and gyral swelling. When the leak occurs in the leptome-
ningeal space, the result is a sulcal effusion or exudate, appreci-
ated on T2 FLAIR sequences within the sulci/subpial spaces.48

FIG 4. ARIA-E on follow-up. T2-weighted FLAIR scans at baseline (A and D), after 7months of
aducanumab treatment (B and E), and on follow-up 2 months later (C and F) demonstrate, in this
81-year-old patient who remained clinically stable, new development of edematous changes in
the left occipital and parietal cortical and subcortical regions (arrows), which spontaneously
resolved, in keeping with ARIA-E.
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ARIA-E is most often found in dependent (posterior) brain
regions—in the following order: occipital, parietal, frontal, and
temporal lobes, and, least frequently, the cerebellum. Variable
lesion intensity and size ranging from single subtle to multifocal
and near-hemispheric46 generally have ill-defined margins and
infrequently have circumscribed margins.

ARIA-E is transient and typically persists on MR imaging for
about 4–12weeks, with self-limiting clinical symptoms lasting about
4weeks after interruption or discontinuation of antiamyloid therapy
and has even been reported to resolve under continued dosing.49

Differential diagnoses of ARIA-E include CAA, especially its
inflammatory subtype (CAA-RI), PRES, sarcoidosis, or neo-
plasms, for example, angiocentric lymphoma.

The similarity of ARIA-E to PRES and inflammatory CAA,
both on clinical presentation and MR imaging findings, is
thought to be related to a similar CNS vascular endothelial dys-
function.46 Differentiating these entities on the basis of imaging
alone may, therefore, be difficult, and obtaining the clinical his-
tory of treatment with mAbs is crucial in making the diagnosis.

ARIA-H
ARIA-H, particularly in the form of microhemorrhages, is com-
mon in untreated, older individuals, and increases in incidence
with age. Most cases of ARIA are asymptomatic, with the

incidence of symptomatic ARIA in the 10mg/kg group being
7.5%. Overall, the incidence of ARIA-H was lower than that of
ARIA-E, and ApoE4 carriage has an increased risk.39

The H in ARIA-H is hemorrhage, which includes microhemor-
rhages and superficial siderosis detected on heme-sensitive sequences,
ie, T2* gradient recalled-echo and SWI (Fig 5). Intraparenchymal
heme leakage results in microhemorrhages that are punctate and
rounded, with markedly hypointense foci on T2* sequences, meas-
uring,10 mm in diameter. A leak of heme products into the lepto-
meningeal or subpial space results in superficial siderosis, which
manifests as curvilinear hypointensity along the brain surface.

Lobar macrohemorrhage (focus of hemorrhage identifiable
on T1- or T2-weighted imaging, and usually .10 mm in diame-
ter on gradient recalled-echo) rarely occurs with antiamyloid
agents, and when it does, it may be the result of an underlying
disease process such as CAA.50 The location of the microbleeds
(superficial rather than deep), the type of bleeds (microbleeds as
well as siderosis), and their occurrence in conjunction with mAb
treatment will help the radiologist differentiate ARIA-H from
other causes of microbleeds such as hypertensive angiopathy.

Clinical management is based on patient symptomatology
and imaging criteria, with the radiologist playing a major role in
the evaluation of patients treated with these new drugs as out-
lined by the white paper of Cogswell et al41 and summarized in
the Online Supplemental Data.

In recent clinical trials, the incidence of ARIA was higher with
mAbs that bind the N- (aducanumab, bapineuzemab, ganteneru-
mab) versus C-terminal (ponezumab) and target aggregated-versus-
soluble (ponezumab) forms of amyloid b .41 Newer FDA-approved
mAbs such as lecanemab that target amyloid b soluble protofibrils
appear to have a lower risk of ARIA (approximately 12%).51

Tumor Necrosis Factor–Inhibiting mAbs: Adalimumab
Adalimumab is a human mAb that inhibits tumor necrosis fac-
tor-a (TNF-a) by binding to TNF-a and blocking its interaction
with surface TNF receptors, thus suppressing inflammation.52 It
is used to treat inflammatory conditions including rheumatoid
arthritis (RA), psoriasis, psoriatic arthritis, ankylosing spondylitis
(AS), inflammatory bowel diseases, juvenile idiopathic arthritis,
and hidradenitis suppurativa.52

A variety of immune-mediated AEs have been reported and may
manifest clinically as urticaria, psoriasis, lupus-like syndrome, and
diabetes mellitus type 1.53 In addition, numerous reports of neuro-
logic AEs, including new development or exacerbation of demyeli-
nating diseases, optic neuritis (Online Supplemental Data), chronic
inflammatory demyelinating polyneuropathy, mononeuritis multi-
plex, Guillain-Barré syndrome, and others have been published.54,55

The incidence of demyelinating disease in patients treated
with TNF-a inhibitors is estimated to be 0.02%–0.2% of patients
receiving this medication (Fig 6).56

The relationship between the occurrence of demyelinating
disease and TNF-a antagonists is poorly understood, though sev-
eral theories have been proposed. One hypothesis is that TNF-a
antagonists do not penetrate the BBB but peripherally prevent
the destruction of autoreactive T cells. Thus, by increasing the
number and activity of T cells, more will penetrate into the CNS

and increase the autoimmune responses. Another hypothesis

FIG 5. ARIA-H. In this 80-year old woman treated for amnestic mild
cognitive impairment with aducanumab, serial imaging demonstrates,
in the asymptomatic patient, new foci of blooming artifacts within
the left frontal sulcus compared with the baseline scan (A and B;
FLAIR and T2 gradient echo sequences). On follow-up 3months later
(C and D), note T2-weighted FLAIR hypersignal surrounding the left
superior frontal sulcus (arrow in C), where mild pial siderosis is seen
(arrow in D), in keeping with ARIA-H.
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states that the inability of TNF-a antagonists to enter the CNS

would prevent the inhibition of TNF-a-mediated demyelination
in MS. Third, as TNF-a antagonists decrease TNF-a levels sys-

temically but not within the CNS, this could cause an upregula-
tion of TNF-a expression in the CNS, further exacerbating

TNF-a-mediated demyelination. Fourth, TNF-a antagonists
may inhibit TNF-a-induced interleukin-10 and prostaglandin

E2 production, resulting in upregulation of IL-12 and IFN-g ,
which are associated with demyelinating disease processes. Fifth,

down-regulation of TNF receptor 2 may occur. These receptors are

necessary for the proliferation of oligodendrocytes and damage

repair. Finally, TNF-a antagonists may unmask a latent infection or

neurologic disease, inciting an autoimmune demyelinating process.56

Treatment requires discontinuation of mAb treatment, steroids, and,

in severe cases, immunosuppressive drugs.57

CONCLUSIONS
MAbs are currently and will in the future be increasingly used for the
management of a wide variety of diseases including neoplastic, autoim-
mune, and degenerative processes. Knowledge of the type of treatment

the patient is undergoing is as important
as understanding the potential pathologic
mechanism involved in the development
of imaging and neurologic sequelae.

While immunostimulating anti-
cancer mAbs such as ipilimumab can
lead to proinflammatory conditions
such as hypophysitis, immunosuppres-
sive drugs such as NTZ used in a vari-
ety of inflammatory conditions and
severe MS forms can lead to activation
of underlying opportunistic infections
(with associated treatment-related IRIS
and rebound phenomena). Amyloid-
segregating mAbs can lead to amyloid-
related imaging abnormalities in which
the radiologist plays an instrumental
role in patient management. The fourth
group of mAbs that is frequently associ-
ated with neurologic and neuroradiologic
findings is TNF-inhibiting mAbs that
cause a higher incidence of demyelinat-
ing abnormalities both in the central and
peripheral nervous system (Table).
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FIG 6. Demyelinating lesions after anti-TNF-a AE. This 36-year-old female patient with ankylos-
ing spondylitis was treated with adalimumab and had cognitive decline. MR imaging (A–D: T2
weighted FLAIR, E: DWI, F: Contrast enhanced T1) demonstrates multiple demyelinating plaques
with very subtle contrast enhancement (arrow, F).

Monoclonal antibody therapies and their use in neurologic diseases
Drug Target Mechanism of Action Condition Used Adverse Effects

Ipilimumab,
tremelimumab

CTLA-4 Anti-CTLA-4 selectively
blocking CTLA-4

Metastatic melanoma,
several types of
advanced malignancy

Immune-related AEs such
as hypophysitis, colitis,
uveitis, dermatitis, and
arthritis

Aducanumab Amyloid b aggregates,
including soluble
oligomers and
insoluble fibrils

Decrease CNS amyloid
burden

MCI and mild Alzheimer
disease

ARIA

Adalimumab TNF-a Blocks TNF-a interaction
with p55 and p75 cell
surface TNF receptors

RA, PsA, AS, IBD, JIA, and
HS

Neurologic AEs including
demyelinating
diseases, ON, CIDPN,
MNM, and GB

NTZ a4b 1 Integrin Blocks entry of T cells
into the CNS

Multiple sclerosis (RRMS) PML, PML-IRIS, NTZ
rebound

Note:—ON indicates optic neuritis; CIDPN, chronic inflammatory demyelinating polyneuropathy; MNN, mononeuritis multiplex; GB, Guillain-Barré syndrome; RRMS,
relapsing-remitting MS; AS, ankylosing spondylitis; MCI, mild cognitive impairment; RA, rheumatoid arthritis; PsA, psoriatic arthritis; IBD, inflammatory bowel diseases; JIA,
juvenile idiopathic arthritis, HS, hidradenitis suppurativa.
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