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ORIGINAL RESEARCH
PEDIATRICS

Automatic Localization of the Pons and Vermis on Fetal
Brain MR Imaging Using a U-Net Deep Learning Model

Farzan Vahedifard, Xuchu Liu, Jubril O. Adepoju, Shiqiao Zhao, H. Asher Ai, Kranthi K. Marathu, Mark Supanich,
Sharon E. Byrd, and Jie Deng

ABSTRACT

BACKGROUND AND PURPOSE: An MRI of the fetus can enhance the identification of perinatal developmental disorders, which
improves the accuracy of ultrasound. Manual MRI measurements require training, time, and intra-variability concerns. Pediatric neurora-
diologists are also in short supply. Our purpose was developing a deep learning model and pipeline for automatically identifying ana-
tomic landmarks on the pons and vermis in fetal brain MR imaging and suggesting suitable images for measuring the pons and vermis.

MATERIALS AND METHODS: We retrospectively used 55 pregnant patients who underwent fetal brain MR imaging with a HASTE
protocol. Pediatric neuroradiologists selected them for landmark annotation on sagittal single-shot T2-weighted images, and the
clinically reliable method was used as the criterion standard for the measurement of the pons and vermis. A U-Net-based deep
learning model was developed to automatically identify fetal brain anatomic landmarks, including the 2 anterior-posterior landmarks
of the pons and 2 anterior-posterior and 2 superior-inferior landmarks of the vermis. Four-fold cross-validation was performed to
test the accuracy of the model using randomly divided and sorted gestational age–divided data sets. A confidence score of model
prediction was generated for each testing case.

RESULTS: Overall, 85% of the testing results showed a $90% confidence, with a mean error of,2.22mm, providing overall better
estimation results with fewer errors and higher confidence scores. The anterior and posterior pons and anterior vermis showed
better estimation (which means fewer errors in landmark localization) and accuracy and a higher confidence level than other land-
marks. We also developed a graphic user interface for clinical use.

CONCLUSIONS: This deep learning–facilitated pipeline practically shortens the time spent on selecting good-quality fetal brain
images and performing anatomic measurements for radiologists.

ABBREVIATIONS: AI ¼ artificial intelligence; AP ¼ anterior-posterior; DL ¼ deep learning; GA ¼ gestational age; SI ¼ superior-inferior

CNS abnormalities are relatively common in fetuses, ranging
from 0.1% to 0.2% in live births and 3% to 6% in stillbirths.1

A diagnosis of fetal brain abnormalities at an early stage is essential.
Fetal sonography is considered the criterion standard of anatomic

measurements. MR imaging is often performed when sonography
is inconclusive to provide additional information for assessing fetal
anatomy during all phases of gestation.2 MR imaging provides
superior soft-tissue contrast and spatial resolution for differentiat-
ing highly variable fetal brain tissue.3 Fetal MR imaging combined
with fetal sonography increases confidence in the early detection of
perinatal disorders of development.

Manual measurements have several disadvantages, including
clinicians’ training requirements, time commitment, and inter-
and intraobserver variability.4 Radiologists must choose the highest
quality image series without motion artifacts or missing anatomy
and then identify and measure various anatomic structures.5 Small
measurement errors may result in misdiagnosis and misguided
pregnancy management.5 Accurate measurements of fetal brain
anatomy are critical to differentiate hypoplastic, absent, or mal-
formed brains from normal brain structures.6 Measurement errors
can have significant consequences in clinical practice because they
can lead to misdiagnosis and misguided pregnancy management.
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Fetal MR imaging interpretation also requires specialized
training. However, there is a shortage of pediatric neuroradiolo-
gists, resulting in limited availability.

During the past decade, artificial intelligence (AI) algorithms,
specifically deep learning (DL), have significantly advanced
image-recognition tasks.7 The machine learning approaches have
the potential to aid in the early detection of these issues, thereby
enhancing the diagnostic and follow-up processes.

By means of AI, processing of fetal brain MR imaging has
investigated models that automatically predict specific landmarks
and segmentation. Various AI models (primarily convolutional
neural networks and U-Net) were used.8,9 Some models achieved
an accuracy of $95%. AI could aid in the pre- and postprocess-
ing10 and reconstruction,11 predicting gestational age (GA) (with
an accuracy of 1 week),12 fetal brain extraction,13 and fetal brain
segmentation.11,14 AI could also help in GA prediction, fetal
motion detection, motion tracking, pose estimation,15 and super-
resolution reconstruction.11 Recently, several publications devel-
oped AI models for automatic fetal brain anatomic measurements
in a biparietal diameter,16 which were derived from identified
landmarks after several preprocessing steps such as computation
of an ROI, reference section selection, segmentation, midsagittal
line and fetal brain orientation, and, finally, measurements.

In this work, we focused on identifying 2 anterior-posterior
(AP) landmarks of the pons and 2 AP and 2 superior-inferior (SI)
landmarks of the vermis. All the landmarks on each structure
were predicted simultaneously using U-Net multisegmentation
features. We exploited U-Net17 to determine imaging features
surrounding a landmark point and calculated the probability of
any image pixel being the defined landmark point.

In addition, the image pixel with the highest probability
within the output Gaussian distribution mask was predicted as
the landmark point by the U-Net model. Finally, we developed a
tool that could be extended to clinical use on the basis of the pre-
diction model to help radiologists select the best image series for
interpretation and perform fetal brain anatomic measurements
more efficiently.

MATERIALS AND METHODS
Database
This retrospective study, approved by the institutional review
board with a waiver of consent, included 55 fetal MR imaging stud-
ies at different GAs. The studies were selected from a database of
pregnant women who underwent routine clinical fetal screening
at Rush University Medical Center, Chicago, Illinois, between
2007 and 2020. All the selected studies confirmed normal fetal
brain development based on radiology reports. Expert pediatric
neuroradiologists performed image-quality screening and land-
mark annotation on the exported sagittal T2-weighted HASTE
images. Of these 55 patients, some patients had.1 image series,
so the total number of image series was 100. We added image
series for data augmentation, increasing the data set.

Six landmarks, including AP landmarks on the pons and AP/SI
landmarks on the vermis (drawn by the radiologist), served as the
ground truth. In addition, manual biometric measurements on the
pons and vermis were performed according to the standard clinical
recommendations.18

MR Imaging Protocol
Fetal MR images were obtained at our institution using Siemens
1.5T MR imaging scanners (Siemens, Erlangen, Germany), with-
out sedation. Single-shot HASTE images were acquired in the
axial, coronal, and sagittal planes with the following parameters:
TR¼ 1400ms, TE¼ 120ms, FOV¼ 230� 230 mm2, and section
thickness/gap¼ 3/0mm, under free breathing. The fetal age range
was 20–39weeks, and the cases did not involve twins or significant
maternal risk factors.

Image Preprocessing
All images were resized to 512� 512 and augmented through
rotating, flipping, adding Gaussian noise, motion blurring, median
blurring, contrast-limited adaptive histogram equalization, sharp-
ening, embossing, random brightness contrast adjustment, and
random hue saturation adjustment using an open-source library
(albumentations.ai; https://albumentations.ai/) with default param-
eter settings.

The study used original MR images without super-resolution
reconstruction or other quality-selection preprocessing. A prese-
lection process ensured suitable images for the study, focusing on
landmark visibility and differentiation from neighboring struc-
tures. Exclusion criteria included motion artifacts, which hin-
dered landmark identification and blurred anatomic borders.
Consistency was maintained using midsagittal planes for pons
and vermis measurements, avoiding oblique planes. Clinicians
selected the data set for pons and vermis annotations, which
underwent independent verification by radiologists and AI engi-
neers for accuracy and consistency.

An innovative aspect of our research lies in the use of U-Net
for landmark predictions. Rather than using the conventional bi-
nary segmentation output of 0/1, we modified the final output
layer to generate a distribution map indicating the probability of
landmark locations. This novel approach allowed us to extract
valuable information from the U-Net model and precisely predict
the positions of the landmarks, further enhancing the significance
of our article.

Model Performance Validation
The U-Net model was used to fit the Gaussian distribution func-
tion. After the radiologist provided specific landmarks, the AI
model calculated the distribution probability of these landmarks
on the image by collecting the image features.

Model performance evaluation focuses on the probability rela-
tionship between image features and landmarks. Given an unsuit-
able image for labeling the vermis, AI will try to determine where
the most likely landmark point will be. However, confidence in
this point may be low due to differences in the features learned
by image and AI.

With this probability distribution, we feed all the images into
the pipeline and filter out the most suitable images for the physi-
cian’s annotation.

U-Net Model as a Transforming Function
The encoding path of the U-Net model incorporates convolu-
tional and max-pooling layers for feature extraction and dimen-
sion reduction, while the decoding path uses up-sampling and
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concatenation for restoring spatial resolution and creating seg-
mentation maps.

A U-Net model was built to transform an input MR image
into a gray-scale image mask with its vertex representing the loca-
tion of the predicted landmark point (Fig 1).

The transforming function f x; yð Þ can be expressed as the
impact of an arbitrary point x; yð Þ within the mask on the pre-
dicted landmark point x0; y0ð Þ (Equation 1).

Equation 1 f x; yð Þ ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q� �
¼ f rð Þ;

where r represents the radial distance. The gray-scale mask is a
rotationally symmetric function (radius of a circle: R) with a
Gaussian distribution centered on the annotated landmark point
(Fig 2), where R is proportional to the fronto-occipital radius of
the fetal brain (Fig 3). We chose the Gaussian distribution func-
tion f r;m;sð Þ as f rð Þ and simplified it by setting the mean and
SDs ¼ R=2ffiffiffiffiffi

2p
p as in Equation 2:

Equation 2 f r;m;sð Þ ¼ 1

s
ffiffiffiffiffiffiffi
2p

p e�
r�mð Þ2
2s2 ¼ 2

R
e�

4pr2

R2 :

In practical applications, we removed the coefficient 2
R and

replaced it in Equation 1.

Equation 3 f rð Þ ¼ e�
4pr2

R2 ; r 2 0; R½ �; f rð Þ ¼ 0; r.R;

r
R
2 ½0; 1�:

We customized the U-Net for landmark-prediction reliability
by implementing a Gaussian output. This step permits AI to con-
sider landmark-location uncertainty. The probability of a pre-
dicted point being the desired landmark was represented using
this Gaussian function. The confidence score for each landmark
was based on this probability. The model was trained to detect
multiple landmarks simultaneously by generating separate masks
representing the Gaussian probability of each landmark.

We balanced model complexity and computational efficiency
by optimizing the hyperparameters of the model. We used a 3 �
3 kernel size to capture local contextual information efficiently.
The channel depth gradually doubled after each max-pooling
operation to learn more complex representations at different lev-
els. The number of layers was chosen considering the task com-
plexity and available computational resources, finding a suitable
balance for the model.

Our study demonstrated that splitting the DL model outputs
into separate models for pons and vermis landmarks resulted in
improved accuracy. This approach allowed fine-tuned adjust-
ments and enhanced detection of each landmark. By focusing on
specific imaging features, the individual models improved the
identification of anatomic structures. Compared with predicting
all landmarks at once with a single model, this approach achieved
superior performance and increased accuracy in detecting land-
marks in fetal brain MR imaging.

Model Training
In the training process, a normalized weighted binary mean
squared error loss function was used to compensate for the data
imbalance. Other model parameters included batch size ¼ 15 for
both training and validation and epoch ¼ 100 with an early stop
after 10 epochs of loss increasing.

We used the Adam optimizer to update model weights effi-
ciently, the EarlyStopping strategy to prevent overfitting, and the
ModelCheckpoint callback to save weights of the best-performing
model, ensuring reproducibility. The entire training process on
the graphics processing unit Nvidia GeForce RTX 2080 Ti 11Gb
(NVIDIA GeForce RTX 2080 Ti 11Gb) took,2 hours.

K-Fold cross-validation
Two 4-fold cross-validation methods were implemented for
model training and testing (Fig 4). In the first method, the data
set was divided into 4 groups by a sorted range of GAs (ie, 20–
26weeks, 27–29weeks, 30–33weeks, and 34–39weeks) (Fig 4A).
In the second method, the data set was randomly divided with

FIG 1. The architecture of the U-Net model for landmark detection. The U-Net converts a sagittal fetal brain image into gray-scale masks in
which the vertex represents the locations of different landmark points. Up-conv indicates up-sampling operation; conv, convolutional layer;
ReLU, Rectified Linear Activation.
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mixed GAs without overlapping among all groups (Fig 4B). In
each cross-validation fold, 3 groups of patient images were used
as the training data set, and the other group, as the testing data
set.

RESULTS
Model Performance
The randomly divided mixed GA method outperformed the
sorted GA-divided method by providing smaller prediction
errors (P, .001) with higher confidence scores (P, .001).

In the first cross-validation method, in which the data set was
divided by sorted GA weeks, the prediction error distribution with
associated confidence scores for 6 predicted landmarks in 100
image series (ie, the number of total landmarks: 6� 100¼ 600) is
shown in Fig 5 (A, scatterplot; B, contour line plot). Among all
600 predicated landmark locations, 73% (440/600) showed a confi-
dence score of.90%, with a mean prediction error of,2.25mm.
Among the 6 landmarks, the anterior vermis and anterior and
posterior pons were best predicted with fewer errors and higher
confidence scores (Online Supplemental Data). The anterior
and posterior pons and anterior vermis had significantly fewer
errors compared with the posterior vermis (P, .01, P, .01,
and P, .001, respectively). Additionally, the anterior pons had
a significantly higher confidence score than the superior/

inferior/posterior vermis (P, .05, P, .05, and P, .01, respec-
tively), while the posterior pons had a significantly higher confi-
dence score than the superior/posterior vermis (P, .05 and
P, .01, respectively).

In the second cross-validation method, in which the data set
was randomly divided with mixed GA weeks, the prediction
error distribution with an associated confidence score for the
600 predicted landmarks is shown in Fig 6 (A, scatterplot; B,
contour line plot). Among all 600 predicated landmarks, 85%
(511/600) showed a confidence score of.90%, with a mean pre-
diction error of ,2.22mm. Among the 6 landmarks, the poste-
rior pons was the best-predicted landmark, with the smallest
error and highest confidence score (Online Supplemental Data).
The posterior pons had significantly lower error compared with
all other landmarks (P, .05 for the anterior pons and anterior
vermis, and P, .001 for the superior/inferior/posterior vermis).
Additionally, the posterior pons had significantly higher confi-
dence scores than the superior, inferior, and posterior vermis
(P, .05, P, .05, and P, .01, respectively).

Automatic Landmark Detection
We evaluated the differences between manual landmark localiza-
tion performed by a radiologist and an expert pediatric neuroradi-
ologist, as shown in the Table. The variations between their

FIG 2. The cut surface of a 3D rotationally symmetric Gaussian distribution function with the radius (R), and the top represents the landmark
point position.
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manual measurements ranged from a mean of 0.42 (SD, 0.59)mm
for vermis1 to 1.87 (SD, 1.81)mm for vermis2. These disparities
emphasize the presence of interrater variability and the possibility
of measurement inconsistencies with manual assessments.

By automating landmark identification and using DL capabil-
ities, our AI model consistently provides more reliable and con-
sistent measurements.

Figure 7 shows examples of model-predicted landmark loca-
tions with biometric measurements between each pair demon-
strated and compared with manual detections performed by the
radiologist.

Despite variations in image quality and white noise levels, the
AI system maintained accuracy, highlighting its robustness and
adaptability. Figure 7 shows the precision and confidence of our
AI model in 1 case. The left picture has a pixel spacing of 0.41,
resulting in a relatively low resolution. The middle and right
images have a pixel spacing of 0.35, which means better resolu-
tion. However, the right image has significantly more white noise
points. The Online Supplemental Data show confidence and
measurements in these 3 different series. The predictions of AI
had an error rate below 0.5mm and provided confidence scores
for each prediction, enhancing trust in its outputs. (The AI pro-
vided confidence scores for each prediction and selected the opti-
mal predictions with an error rate below 0.5mm, thereby
enhancing the trust of its outputs). Therefore, this AI model
offers a reliable, accurate, and consistent tool for measurements.

Distance Measurement. The Online Supplemental Data illustrate
the “distance measurements” of the pons and vermis, comparing

manual and AI measurements and the corresponding errors. The
error-to-total measurement ratio is reasonable. For instance,
when the confidence threshold is set above 90%, the pons dis-
tance from the average is 10.81mm, with an error of 1.12mm.

Statistical Analysis
Data were transformed to achieve a normal distribution before
we conducted statistical testing. The prediction errors of the 6
landmarks and confidence scores were compared using paired t
tests across the two 4-fold cross-validation methods. The Tukey
Honest Significant Difference test was used to compare and rank
the prediction errors and confidence scores for each landmark
among all 6 landmarks. All statistical analyses were performed
using R Studio (http://rstudio.org/download/desktop). A signifi-
cance level of P, .05 was used.

Clinical Pipeline with Graphic User Interface
An interactive tool was developed on the basis of our developed
model. This graphic user interface was created to help radiolog-
ists identify the landmarks of the pons and vermis and obtain bi-
ometric measurements on fetal MR imaging more efficiently
(Fig 8). This graphic user interface will also provide confidence
for each suggested image. To accept, reject, or modify the land-
mark prediction, the clinicians can judge according to the AI-
provided confidence.

DISCUSSION
We proposed a novel U-Net DL model that automatically detects
anatomical landmarks on the “pons” and “vermis” in fetal brain

FIG 3. Fronto-occipital radius of the fetal brain determines the radius of Gaussian distribution function in a patient at GA week 20 (A–D) and
another at GA week 33 (E–H). The left 2 columns are MR images with a fronto-occipital radius (A and E) and annotated landmark points on the
vermis (B and F). The third column (C and G) shows the image mask with the Gaussian distribution used in model training. The fourth column
shows the image area surrounding the landmark (D and H) determined by the Gaussian distribution function, with an added white circle indicat-
ing the radius range.
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MR imaging. Using these landmark locations, we predicted im-
portant fetal biometric parameters, including vermis diameter
and height, and pons diameter. The critical component of our
model was using U-Net as a transformational function to gener-
ate a gray-scale image mask with a Gaussian distribution by
extracting the imaging features adjacent to the center of the
mask. Although we only tested this model for landmarks on the
pons and vermis with promising results, it may also be applied to
detect landmarks on other brain structures with asymmetric
image features.

This study initially used a 2-stage anisotropic 3D U-Net to
detect fetal brain ROIs. A reference image section on which the
landmarks were identified using a Fetal Measurement by
Landmarks was used. A Gaussian Mixture Model estimated the
landmark measurement reliability. Compared with fetal MR
imaging radiologists, the model yielded a 95% confidence interval
agreement of 3.70mm for cerebral biparietal diameter, 2.20mm
for biparietal bone diameter, and 2.40mm for transcerebral di-
ameter. Our study is the first to automatically detect landmarks
on the pons and vermis on fetal MR imaging using a U-Net as a
function with very few training parameters, reducing the compu-
tational complexity and shortening the training time.

The accuracy of our model depends on learning imaging fea-
tures around landmarks. Given the varying fetal brain size and
appearance at different GAs, we set the mask size proportional to

the fronto-occipital diameter of each brain for adequate feature
extraction. Among the 6 landmarks, 2 on the pons and 4 on the
vermis, the anterior-posterior pons and anterior vermis had bet-
ter accuracy, possibly due to distinctive adjacent image features
like the fourth ventricle, aiding model learning.

We built a pipeline for automatic batch processing of multiple
image series for landmark prediction. It selected the reference
section on the basis of the highest confidence score and skipped
poor-quality images. The reference section was presented to the
radiologists for review, and they were alerted to manually adjust
any landmark prediction with a confidence score of,0.8.

In model training and validation, we implemented 3 schemes
for 4-fold cross-validation (dividing folds by GA weeks versus
dividing folds by mixed weeks). The model trained and validated
with mixed GA weeks provides overall better accuracy compared
with the sorted GA week–divided approach, suggesting that a large
number of imaging features extracted from fetal MR images with
various white/gray matter contrast and anatomic details during fe-
tal brain development are essential to include in model training.

In similar studies, Dovjak et al19 conducted manual studies
on cerebellar vermian lobulation and vermis/brainstem–specific
markers using prenatal MR images. Their research improved
hindbrain malformation classification and provided insights
into vermian growth patterns. In contrast, our study introduces
a DL model for automated identification and measurement of

FIG 4. Two 4-fold cross-validation methods for DL-model training and testing. Method 1 divided the data sets by sorting the ranges of GA
weeks (A). Method 2 divided the data sets randomly with mixed GA weeks (B).
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pons and vermis landmarks in fetal MR imaging. Our approach
enhances efficiency, reduces errors, and offers confidence scores
for predictions.

Advantages of Our Model

1) The benefit of automated landmark localization: The U-Net algo-
rithm offers the advantage of automated landmark localization
and provides associated confidence scores. This feature allows us
to process all sagittal sequences of a patient and automatically
identify the top 5 fetal brain MR image series with the highest
confidence for physicians to choose from ormanually adjust.

2) Time efficiency of the U-Net algorithm: Although the ini-
tial implementation and training of the U-Net algorithm
require time and resources, its application on new fetal
brain MR images is quick and efficient. The model can
automatically identify landmarks and provide measure-
ments without manual intervention. On our hardware
(GeForce RTX 2080 Ti 12G), the average processing time
for our U-Net model to predict 6 markers for an image is as
low as 0.23 seconds, which is negligible compared with the
time required by a physician for manual screening and
measurements.

FIG 5. The scatterplot (A) and contour line plot (B) of the prediction error distribution with associated confidence scores in the sorted GA
week validation method. The x-axis represents the distance (millimeters) between the predicted landmark and the ground truth, and the y-axis
represents the confidence score of the prediction.

FIG 6. The scatterplot (A) and contour line plot (B) of the distribution of prediction error with associated confidence scores in the randomly
mixed GA week validation method. The x-axis represents the distance (millimeters) between the predicted landmark and the ground truth, and
the y-axis represents the confidence score of the prediction.
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3) Consistency and reduced interobserver variability: The U-Net
algorithm offers consistent landmark identification across dif-
ferent images and cases, reducing interobserver variability.
This standardized approach leads to more reliable and repro-
ducible measurements.

4) Accommodation of different resolutions and image quality:
Our U-Net model robustly handles variations in resolution
and evaluates image quality. It assigns confidence scores to
each image slice, prioritizing high-quality images for accurate
measurements and increased diagnostic confidence, resulting
in errors of , 0.5 mm, regardless of resolution and image-
quality differences.

5) Potential of the U-Net algorithm: The model demonstrates
promising accuracy levels, potentially matching or exceeding
human expert annotations. Further validation and optimiza-
tion can enhance its reliability for posterior fossa biometry
quantification.

6) Choosing linear measurements: Our study prioritized using
linear measurements, specifically the diameter of the pons
and vermis, due to their well-established clinical relevance
and diagnostic utility. These measurements have been widely
adopted in clinical practice and have demonstrated their
effectiveness in detecting various brain abnormalities, includ-
ing vermian hypoplasia, Dandy-Walker malformation, and
pontocerebellar hypoplasia. Moreover, monitoring changes
in the pons and vermis offers valuable insights into the neuro-
logic development of the fetus, identifying potential issues
and evaluating posterior fossa lesions.

The Run Algorithm on a Public Data Set
For an additional test, we ran the algorithm on the larger, publicly
available Fetal Tissue Annotation and Segmentation Challenge

(https://feta.grand-challenge.org/), resulting in good accuracy.
Please see Online Supplemental Data, more codes and examples
are provided.

Limitations
This study had some limitations: First, the sample size in each
GA week range was small, possibly leading to insufficient model
training. We used several strategies to enhance the accuracy and
generalizability of our AI model to address the limitation of a
limited number of cases. The MR imaging selection was con-
ducted by experienced medical professionals, ensuring a high-
quality training, validation, and testing data set. We used “trans-
fer learning,” enabling the model to identify distinctive features
across a wider image range, thereby increasing its applicability
in diverse clinical scenarios. Despite the size of our data set, the
promising performance of the model in this pilot study suggests
adaptability across different institutional settings. It provides
landmark coordinates and confidence values, giving clinicians
flexibility in MR image selection.

Second, this study did not assess fetal brain biometry in path-
ologic cases because of a paucity of cases with abnormal pons and
vermis structures across different GA weeks. The study was lim-
ited to a single scanner platform and could potentially be re-
stricted to a single cohort due to the limitation in the cohort. As a
result, the generalizability of this study and its utility on large-
scale data platforms may be limited. We recognize the need for
further validation with larger, diverse data sets to ascertain the
robustness and generalizability of our model in varied clinical
environments.

Ensemble learning is a valuable option for future studies if
additional data are available. This technique involves using all
models obtained through 4-fold cross-validation and selecting

Compared manual landmark localization conducted by a radiologist and an expert pediatric neuroradiologist

Pons1 Pons2 Vermis1 Vermis2 HVermis1 HVermis2
Mean (mm) 1.41 0.79 0.42 1.87 1.28 1.51
SD (mm) 1.12 0.76 0.59 1.81 1.38 1.68

Note:—Pons1 indicates Anterior landmark of Pons; Pons2, Posterior landmark of Pons; Vermis1, Anterior landmark of Vermis; Vermis2, Posterior landmark of Vermis;
Hvermis1, Superior landmark of Vermis (height of vermis); Hvermis2, Inferior landmark of Vermis (height of vermis).

FIG 7. Representative image examples of model-predicted landmark locations with biometric measurements. (The white line is manual annota-
tions by radiologists, and the purple line is DL-model predicted measurements). Three patients (A, 22weeks; B, 22weeks; C, 27weeks) with accu-
rate model-predicted landmarks compared with radiologists.
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the landmark with the highest confidence, though it comes at the
cost of increased processing time.

CONCLUSIONS
A U-Net model was developed to detect AP landmarks on the
pons and AP/SI landmarks on the vermis. Our pipeline includes
image series screening and selection, landmark prediction that
improves radiologists’ efficiency and time in identifying land-
marks, performing anatomic measurements, and screening high-
quality images. Using a U-Net-based DL model, we achieved a
mean error of ,2.22mm and a $90% confidence score in 85%
of the testing cases, resulting in improved estimation accuracy
with reduced errors.

While manual measurements by radiologists often yield ro-
bust results, our AI model brings value by significantly reducing
interrater variability and measurement errors. It accurately iden-
tifies high-confidence landmarks and optimizes image selection,
even in instances in which blurred margins due to motion arti-
facts are present.

We also established a pipeline, graphic user interface, consist-
ing of imaging selection and landmark prediction, followed by an
interactive second check tool to help radiologists quickly locate,
confirm, or adjust the landmarks on the autoselected image slices.

Using U-Net as a transformational function, our model
accurately extracts imaging features around landmarks, par-
ticularly for the anterior and posterior pons and anterior
vermis.

We validated this algorithm on a public data set, demonstrat-
ing good accuracy. The AI model addresses interrater variability,
reduces measurement errors, and saves time, presenting advan-
tages over manual measurements. Implementing AI-driven auto-
mation enables comprehensive and efficient fetal brain MR
imaging assessment, potentially enhancing radiologists’ efficiency
and diagnostic accuracy and improving patient outcomes in fetal
brain MR imaging analysis.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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