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ORIGINAL RESEARCH
ADULT BRAIN

Investigating Simultaneity for Deep Learning–Enhanced
Actual Ultra-Low-Dose Amyloid PET/MR Imaging
K.T. Chen, O. Adeyeri, T.N. Toueg, M. Zeineh, E. Mormino, M. Khalighi, and G. Zaharchuk

ABSTRACT

BACKGROUND AND PURPOSE: Diagnostic-quality amyloid PET images can be created with deep learning using actual ultra-low-
dose PET images and simultaneous structural MR imaging. Here, we investigated whether simultaneity is required; if not, MR imag-
ing–assisted ultra-low-dose PET imaging could be performed with separate PET/CT and MR imaging acquisitions.

MATERIALS AND METHODS: We recruited 48 participants: Thirty-two (20 women; mean, 67.7 [SD, 7.9] years) were used for pre-
training; 328 (SD, 32) MBq of [18F] florbetaben was injected. Sixteen participants (6 women; mean, 71.4 [SD. 8.7] years of age) were
scanned in 2 sessions, with 6.5 (SD, 3.8) and 300 (SD, 14) MBq of [18F] florbetaben injected, respectively. Structural MR imaging was
acquired simultaneously with PET (90–110minutes postinjection) on integrated PET/MR imaging in 2 sessions. Multiple U-Net–based
deep networks were trained to create diagnostic PET images. For each method, training was done with the ultra-low-dose PET as
input combined with MR imaging from either the ultra-low-dose session (simultaneous) or from the standard-dose PET session
(nonsimultaneous). Image quality of the enhanced and ultra-low-dose PET images was evaluated using quantitative signal-processing
methods, standardized uptake value ratio correlation, and clinical reads.

RESULTS: Qualitatively, the enhanced images resembled the standard-dose image for both simultaneous and nonsimultaneous con-
ditions. Three quantitative metrics showed significant improvement for all networks and no differences due to simultaneity.
Standardized uptake value ratio correlation was high across different image types and network training methods, and 31/32
enhanced image pairs were read similarly.

CONCLUSIONS: This work suggests that accurate amyloid PET images can be generated using enhanced ultra-low-dose PET and ei-
ther nonsimultaneous or simultaneous MR imaging, broadening the utility of ultra-low-dose amyloid PET imaging.

ABBREVIATIONS: CNN ¼ convolutional neural network; NS ¼ nonsimultaneous; S ¼ simultaneous; SUVR ¼ standard uptake value ratio

PET allows the interrogation of amyloid deposition in the
brain, a hallmark of Alzheimer disease neuropathology,1-3

while MR imaging with its exquisite soft-tissue contrast allows

imaging morphology–based features such as cortical atrophy,
representative of neurodegeneration.4 These complementary
strengths allow MR imaging to assist in PET image-processing
and enhancement.5,6

While the absolute quantification of radiotracer concentra-
tions is a strength in PET, radioactivity associated with the radio-
tracers will also present a risk to participants, especially in
vulnerable populations. This will affect the scalability of large-
scale clinical longitudinal PET studies.

With the advent of deep learning–based machine learning
methods such as convolutional neural networks (CNNs), it is
possible to generate diagnostic-quality amyloid PET images using
an actual ultra-low injected radiotracer dose and simultaneously
acquired MR imaging inputs.7

Because most patients with dementia undergo MR imaging
routinely as part of their work-up to exclude a focal cause, a
single PET/MR imaging examination provides a “one-stop
shop” for functional and structural information.8 In terms of
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logistics, a single scan also provides convenience and cost-effec-
tiveness for both the imager and the imaged. However, there are
still limitations to its widespread use because simultaneous PET/
MR imaging scanners remain relatively uncommon, and multi-
center imaging studies such as the Alzheimer’s Disease
Neuroimaging Initiative collect data on stand-alone PET/CT and
MR imaging scanners.9 Therefore, any multimodal deep learn-
ing–based solution that will attain widespread use must be com-
patible with the more common practice of acquiring PET and
MR imaging images separately. On the other hand, changes in
the spatial distribution of amyloid are expected to be minimal
within a short time interval (eg, 1 month).10 Thus, we have begun
investigating whether similar results can be obtained when MR
imaging is performed separately from PET, testing the hypothesis
that the multimodal images collected within this short time inter-
val will still be representative of the condition of the imaged par-
ticipant. A secondary objective of this work was to investigate the
effect of different deep learning training methods in relation to
these inputs.

MATERIALS AND METHODS
Patient Characteristics
Forty-eight participants (32 for the pretrained network presented
in Chen et al11 and 16 scanned with the true ultra-low-dose pro-
tocol presented in Chen et al;7 diagnoses can be found in Table 1)
were recruited for this study. The study was approved by the
Stanford University institutional review board, and written
informed consent for imaging was obtained from all participants
or an authorized surrogate decision-maker.

Data from 32 (20 women; mean, 67.7 [SD, 7.9] years of age)
participants were used for pretraining the network. They received
334 (SD, 30) MBq of the amyloid radiotracer [18F] florbetaben
(Life Molecular Imaging) with the PET acquisition between 90
and 110 minutes after injection. Sixteen (6 women; mean, 71.4
[SD, 8.7] years of age) different participants were scanned with
the ultra-low-dose protocol. These participants were scanned in 2
PET/MR imaging sessions, with 6.5 [SD, 3.8] and 300 [SD, 14]
MBq injections of [18F] florbetaben, respectively (2.2% [SD,
1.3%] dose compared with the corresponding standard-dose ses-
sions), representing an approximately 50-fold reduction in radia-
tion dose.

Imaging Acquisition
In all participants, the T1, T2, and T2 FLAIR-weighted MR images
(acquisition details in Chen et al11) were acquired simultaneously
with PET (90–110minutes after injection) on an integrated PET/
MR imaging scanner (Signa PET/MR; GE Healthcare) with TOF
capabilities (Fig 1). For the 16 participants scanned with the true
ultra-low-dose protocol, 7 were scanned on the same day (ultra-
low-dose protocol followed by the standard-dose protocol), while
the 9 others were scanned on separate days (1- to 42-day interval;
mean, 19.6 days). Identical MR imaging acquisitions were per-
formed across the 2 scanning sessions for all except 4 T2-weighted
sequences (4/96 planned acquisitions) for which the same image
from the other scan would be used as a substitute. For PET, TOF
ordered subsets expectation maximization with 2 iterations and 28
subsets and accounting for randoms, scatter, dead time, and
attenuation (vendor’s atlas-based method relying on 2-point
Dixon imaging12 for the 32 data sets used for network pretraining
and the zero-TE-based method for the remaining 16 data sets) was
used for all PET image reconstructions.

The standard-dose PET images (yellow-bordered images in
Fig 1) in their native space were used as a reference to which all
other images were coregistered. The MR images acquired during
the standard-dose session were coregistered (to account for resid-
ual motion) to the PET images using the software FSL (http://
www.fmrib.ox.ac.uk/fsl)13 with 6 df and correlation ratio (cost
function). All images were resliced to the PET dimensions: 89 sli-
ces (2.78 -mm section thickness) with 256� 256 (1.17� 1.17
mm2) voxels. Similarly, for the data set with the true ultra-low-
dose protocol, the MR imaging and PET images were also sepa-
rately coregistered to their corresponding standard-dose PET
images to account for differences among scans. The voxel inten-
sities of the PET and MR images were normalized by their
Frobenius norm, and a head mask, derived from the T1-weighted
image through intensity-thresholding and hole-filling, was
applied to the volumes, which were used as input to the CNN.

CNN Implementation
The CNN structure proposed in Chen et al (Fig 2)11 was used.
Briefly, the structure is based on the popular U-Net,14 in which the
encoder portion is composed of layers that perform 2D convolu-
tions (using 3� 3 filters), batch normalization, and rectified linear
unit activation operations. We used 2 � 2 max pooling to reduce
the dimensionality of the data. A residual connection was used in
the central layers to connect its input and output. In the decoder
portion, the data in the encoder layers were concatenated with
those in the decoder layers. Linear interpolation was performed to
restore the data to its original dimensions. We used 1� 1 convolu-
tions and hyperbolic tangent activation in the final layer to obtain
the output, which was then added with the input low-dose image
to obtain the enhanced PET image. The network was trained with
an initial learning rate of 0.0002 and a batch size of 4 over 100
epochs. The L1-norm was selected as the loss function, and adapt-
ive moment estimation as the optimization method.15

In this work, the inputs to the network are the multicontrast
MR images (T1, T2, and T2 FLAIR-weighted) and the true ultra-
low-dose PET image, with the standard-dose PET image used as
the ground truth. Three approaches were taken with network

Table 1: Participants recruited in this study and their clinical
diagnoses

Diagnosis No.
Pretrained network
Alzheimer disease 6
Mild cognitive impairment 2
Dementia with Lewy bodies 1
Parkinson disease 12
Healthy control 11
Subtotal 32

Ultra-low-dose protocol
Alzheimer disease 3
Mild cognitive Impairment 5
Healthy control 8
Subtotal 16

Total 48
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training: In the first, training was from scratch on the 16 cases in
the actual ultra-low-dose study (method 1), while the other
approaches were fine-tuned on the basis of the pretrained net-
work presented in an earlier work, in which case for the ultra-
low-dose PET channel, a sampled 1%-dose PET image (used to
simulate ultra-low-dose acquisitions) was used. During tuning,
either all layers (method 2) of the U-Net were fine-tuned using
the true ultra-low-dose data sets or just the last layer (method 3).
Eight-fold cross-validation was used to efficiently use all data sets
(14 for training, 2 for testing per fold). For all methods, the train-
ing was performed twice: once using PET/MR imaging input
from the same scanning session (simultaneous [S]) and once
using PET and MR imaging from different sessions (nonsimulta-
neous [NS]) (Fig 1).

Data Analysis
By means of the software FreeSurfer (http://surfer.nmr.mgh.
harvard.edu),16,17 a brain mask derived from the T1 images was

used for voxel-based analyses. For each axial section, the image
quality of the enhanced and low-dose PET images within the brain
was compared with the standard-dose image using peak SNR,
structural similarity,18 and root-mean-square error. Absolute rela-
tive change values within the brain were also calculated for the
enhanced and low-dose images with the equation 100 � j PETi –
PETFD |/PETFD, with PETFD denoting the full-dose images and
PETi denoting the other images. Paired t tests were performed at
the P= .05 level to test for the significance of the metrics derived
from NS versus S input, with Bonferroni corrections for multiple
comparisons. FreeSurfer-derived cortical parcellations and cerebral
segmentations based on the Desikan-Killiany Atlas19 were used to
form 4 larger ROIs (Online Supplemental Data). The whole cere-
bellum was used as a reference region for calculating the standard
uptake value ratio (SUVR). To assess tracer uptake agreement
between images derived from NS versus S input, we took the aver-
age of the 4 larger regional (frontal, lateral temporal, parietal, cin-
gulate) SUVR values to obtain a composite “global” SUVR value of

FIG 2. Ultra-low-dose CNN structure. The arrows denote computational operations, and the tensors are denoted by rectangles with the num-
ber of channels indicated above each rectangle. Input, output, and the ground truth of the network are also indicated. The network was trained
either from scratch (method 1), from a pretrained network using the same structure with all layers trainable (method 2), or with just the last layer
(red box) trainable (method 3). BN indicates batch normalization; Conv, convolution; Max, maximum; ReLU, rectified linear unit; tanh, hyperbolic
tangent.

FIG 1. Example of the ultra-low-dose protocol. The participants were scanned in 2 sessions (could be scanned on separate days or back-to-back
on the same day) and the 2 sets of MR images obtained from the sessions were used in separate neural network training to test the effect of S
versus NS input.
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the association cortex correlated across participants. The 2 types of

enhanced (using method 3) PET images from each participant

were also anonymized and presented in random order to 2 clini-

cians (G.Z., M.Z.) who had been certified to read amyloid PET

imaging to further confirm our results. The amyloid uptake status

(positive, negative) of each image (16 participants, 2 image types)

was determined, and the agreement of the readings between image

types was assessed.

RESULTS
Qualitatively, all enhanced images showed marked improvement
in noise reduction compared with the ultra-low-dose image (Fig
3). The uptake patterns of the enhanced images resembled the
ground truth and followed the morphology shown by the MR
images, a result in accordance with the previous work.11 The 3
metrics, peak SNR, structural similarity, and root-mean-square
error, showed significant image-quality improvement (Fig 4) from
the ultra-low-dose images compared with the enhanced images
(P, .001), and the metrics between the images enhanced from the
S versus NS input were not statistically significant using paired t

tests (Table 2); when we subdivided the data according to diagnosis
(8 controls versus 8 with mild cognitive impairment or Alzheimer
disease) or by time between scanning sessions (0/1days versus 81
days), the difference in the metrics was not statistically significant.
The absolute relative changes also showed great improvement after
enhancement (Table 3 and Online Supplemental Data).

The SUVRs in the global region ranged between 0.9 and 2.3
for all participants and image types, indicating the presence of
participants positive and negative for amyloid in our data set
(cutoff value used at our institution= 1.19). The correlation of
SUVRs between different image types was high (Fig 5 and Table
4), showing the quantitative accuracy of the CNN-enhanced
images for both enhanced image types compared with the stand-
ard-dose ground truth.

The clinical reads from the 2 readers showed high agreement
among the image types; only 1 pair of images of 64 total reads
was interpreted differently.

DISCUSSION
In this study, we aimed to show that S and NS MR imaging yields
similar performance in providing morphologic information for

FIG 3. Representative amyloid PET images (upper section: negative for amyloid; lower section: positive for amyloid) with the corresponding MR
images. All sets of CNN-enhanced ultra-low-dose PET images show greatly reduced noise compared with the ultra-low-dose PET image and
resemble the standard-dose PET image.

AJNR Am J Neuroradiol 43:354–60 Mar 2022 www.ajnr.org 357



enhancing ultra-low-dose amyloid PET images. With the develop-

ment of ultra-low-dose PET scanning, this technique provides the

opportunity for more efficient workflow (potentially splitting doses

among patients and subjects to be scanned) and providing the op-

portunity for more frequent follow-up under current radiation

safety thresholds. However, because morphologic information is

advantageous for the accuracy of the image enhancement11 and

PET/MR imaging scanners are relatively uncommon for wide-

spread use of this technology, it must be possible to use data

acquired nonsimultaneously (such as that obtained with PET/CT

and coregistered with MR imaging close to the time of the PET

scan).
We also aimed to assess whether the pretrained network

affects the need for simultaneity. Because the pretrained network

was trained with simultaneous acquisitions, the inherent bias

might possibly affect the training results using the new data set.

Therefore, we tried 3 different network training methods and

analyzed their results. The 3 methods represent different levels of

constraint imposed on the network: For method 1, in which the

networks were trained from scratch, no effect of the pretrained

network was found. For method 2, while the network was pre-

trained, the weights of the network only served as a starting point

for further training because all layers were trainable. Method 3,

with the use of the pretrained network and with only the final

layer of the network trainable, represented the most constraint

imposed on network training.
From the statistical analysis of the image metrics, no signifi-

cant differences were found between the images enhanced with

NS or S input. The absolute relative change of the uptake within

the brain shown in both types of enhanced images was also closer

to the full-dose images. SUVR values were also shown to correlate
very well between image types. All 3 network training methods

also yielded similar results. Clinical reads also showed that the 2

types of enhanced images were interpreted similarly. This shows

that for this population, our interval between scanning sessions,

and the morphologic MR images used as input to the network,

simultaneity is not a strict requirement for MR imaging–assisted

ultra-low-dose PET enhancement. However, we have also

observed that higher P values were obtained when using the pre-

trained network to initialize training. This observation implies

that the network, pretrained with simultaneous PET/MR imaging

data, further constrains the training process to yield more similar

results than when the network is trained from scratch.
While we found no significant performance differences using

either the NS or S data as input and achieved encouraging quanti-
tative results, there are several limitations to this study. First, due
to the slowdowns in research scans associated with the coronavi-
rus disease 2019 (COVID-19) pandemic, we have only acquired
16 amyloid data sets. Although data augmentation and the use of
a 2D network mitigate the shortcomings of having a low number
of participants, in the future our goal is to acquire a larger,

FIG 4. Image quality metrics comparing the ultra-low-dose (LD) PET and the CNN-enhanced images with the corresponding ground truth stand-
ard-dose PET images. PSNR indicates peak SNR; RMSE, root-mean-square error; SSIM, structural similarity.

Table 2: P values for image-quality metric comparisons
between images enhanced with S and NS inputa

Method/Metric PSNR SSIM RMSE
Method 1 0.27 0.26 0.15
Method 2 0.99 0.62 0.83
Method 3 1.00 0.79 0.67

Note:—PSNR indicates peak SNR; SSIM, structural similarity; RMSE, root-mean-
square error
a The metrics across subjects are graphed in Fig 4.

Table 3: Means of absolute relative change (%) within the brain
Ground Truth ver-
sus Low-Dose

Ground Truth
versus NS

Ground Truth
versus S

26.06 (SD, 4.95) Method 1 16.35 (SD, 5.34) 17.06 (SD, 5.08)
Method 2 15.95 (SD, 5.01) 17.49 (SD, 5.49)
Method 3 16.92 (SD, 5.31) 16.43 (SD, 4.93)
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representative sample size using a variety of different PET radio-
tracers, to test our hypothesis and to gather more cases for net-
work training. Second, in this study, we have assessed the results
only through the use of quantitative metrics. We aim to perform
reader studies to evaluate the diagnostic value of the CNN-
enhanced images. Third, in terms of acquisition, because all data
sets were collected on the PET/MR imaging, MR imaging–based
attenuation correction was used during reconstruction. Given the
similarities in PET uptake between images reconstructed with CT
attenuation correction and MR imaging attenuation correc-
tion,20,21 we do not anticipate this to be a major issue. However,
confirmation with separate ultra-low-dose and standard PET/CT
and separate coregistered MR imaging would be valuable.

On the MR imaging side, investigating the effects of how
sequences acquired using different protocols or scanners would
affect network performance is also worthy of further investigation
and could lead to not just increased generalizability of our results
but also the ability to pool MR images across scanners or proto-
cols. Finally, the question of the length of time between the 2
studies that would invalidate these conclusions was not explored
because the time interval between the 2 studies in our cases
ranged only up to 42days and was limited to patients with cogni-
tive issues. Simultaneous PET/MR imaging is likely still prefera-
ble for disease entities in which changes would be expected to
occur more quickly.

CONCLUSIONS
This work has shown that accurate amyloid PET images in
patients with cognitive decline can be generated using trained U-
Nets with both S and NS multimodal ultra-low-dose PET/MR
images, and the training can be done either from scratch or from
a pretrained network. The ability to use NS PET and MR images
for ultra-low-dose imaging would broaden the utility of this deep
learning technique to data acquired from stand-alone PET/CT
and MR imaging machines.
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