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BRIEF/TECHNICAL REPORT
ADULT BRAIN

Intracranial Vessel Segmentation in 3D High-Resolution T1
Black-Blood MRI

S. Elsheikh, H. Urbach, and M. Reisert

ABSTRACT

SUMMARY: We demonstrate the feasibility of intracranial vascular segmentation based on the hypointense signal in non-contrast-
enhanced black-blood MR imaging using convolutional neural networks. We selected 37 cases. Qualitatively, we observed no degra-
dation due to stent artifacts, a comparable recognition of an aneurysm recurrence with TOF-MRA, and consistent success in the
differentiation of intracranial arteries and veins. False-positive and false-negative results were observed. Quantitatively, our model
achieved a promising Dice similarity coefficient of 0.72.

ABBREVIATIONS: BBMRI ¼ black-blood compressed-sensing MRI; CNN ¼ convolutional neural networks; DSC ¼ Dice similarity coefficient

Automated segmentation techniques of the cerebral vascula-
ture are an area of interest, with numerous previous publica-

tions.1 Currently, convolutional neural networks (CNN) are the
criterion standard for medical image segmentation.2 Publications
applying CNN segmentation of the cerebral vessels were largely
based on TOF-MRA.3

Recently, a black-blood compressed-sensing MRI (BBMRI)
sequence was introduced. It allows isotropic voxels of 0.5 mm3,
suppression of signal within the vessels, and covering a large vol-
ume. These advantages are useful in diverse clinical applications.4

We aimed to test the feasibility of intracranial vascular segmenta-
tion based on the hypointense signal in BBMRI using CNN.

Technical Report
After obtaining institutional review board approval, we retrospec-
tively searched our PACS for examinations including BBMRI. We
selected 37 (training, 26; testing, 11 randomly assigned [repeat
examinations of the same patients were manually assigned to the
training data set]) cases. The imaging indication was post-coiling ex-
amination in 34 cases, vasculitis in 2 cases, and dissection in 1 case.

All images were scanned on a 3T MR imaging (Magnetom
Prisma; Siemens).4 The image matrix was 384� 384� 256; voxel
size, 0.55� 0.55� 0.6 mm3.

We limited the volume of interest to cover the proximal
course of the intracranial vessels and to extend beyond the
circle of Willis (Online Supplemental Data). A binary mask
was manually created in the Montreal Neurological Institute
space (Online Supplemental Data) and then transformed to
the individual patient space; this was used to define the
cropped volume. Ground truth annotation was performed by a
neuroradiologist (S.E.) with 15 years of experience in neuro-
vascular imaging.

We used a hierarchic, multiscale, 3D CNN motivated by Yu
et al.5 Four scales of nested patches with a matrix size of 323

voxels were used. Scale sizes ranged from 105.6 � 105.6 � 76.8
mm3 to 17.6 � 17.6 � 19.2 mm3. The 2 intermediate scales
were exponentially interpolated. The scales were randomly
selected but with a 50% probability that the scale center lay
within the target label. In each scale, a UNET-type architecture
similar to that in Ronneberger et al2 was used. The feature
dimensions were 8, 16, 16, 32, 64. Max pooling in the encoding
layers and transposed convolutions in the decoding layers
were used. The input to the network was the BBMRI contrast
normalized by the global signal mean. The output channels of
each scale were forwarded as the input to the next scale
(Online Supplemental Data). We trained the network using
the Adam optimizer,6 with a rate of 0.001 and binary cross-
entropy. The network application used a random patching
scheme, in which in each layer, only the highest probability
(50%) daughter patches were further processed (https://
bitbucket.org/reisert/patchwork/).

For evaluation of our test results, we measured the overlap
and spatial distance metrics7,8 using the Deepmind library
(https://github.com/deepmind/surface-distance).
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Illustrative Findings in Testing Data Set
Segmentation of the vessel lumen following stent-assisted coiling
of a ruptured dissecting aneurysm of the right vertebral artery was
possible. The corresponding contrast-enhanced MRA showed sig-
nal degradation in the corresponding segment (Fig 1A–C). In
another example, a small recurrence following coiling of a ruptured
right posterior communicating artery aneurysm was successfully
segmented. The segmentation was comparable with that in the
TOF-MRA and the contrast-enhanced MRA (Fig 1D–F; overview,
Fig 2). We observed a consistent true-positive and true-negative
segmentation of intracranial arterial and venous structures in the
volume of interest (Online Supplemental Data).

False-negative results were encountered in small-diameter
vessels and in the distal vertebral arteries. They were rarely

encountered in larger-diameter vessels.
False-positive results were seen in areas
showing low signal intensity in close
proximity to the vessels, eg, metal arti-
facts following aneurysm clipping and
in nearby bony structures (Online
Supplemental Data).

Our model achieved Dice similarity
coefficients (DSCs) of 0.77 and 0.72 in
the training and testing data sets, respec-
tively. The average evaluation metrics
and corresponding plot are available in
the Online Supplemental Data.

DISCUSSION
In this preliminary work, we demon-
strate the feasibility of automated seg-
mentation of the cerebral vasculature
based on the negative contrast of the
vessels in the non-contrast-enhanced
BBMRI sequence. To our knowledge,
this has not been previously attempted.

Qualitatively, vascular evaluation in
the BBMRI is feasible. Differentiation
between arterial and venous structures
as well as recognition of morphologic
changes (eg, aneurysm recurrence)
were possible. Signal degradation fol-
lowing intracranial stent placement
was not encountered (Fig 1 and Online
Supplemental Data). The segmentation
of smaller vessels and the distal vertebral
arteries as well as the differentiation
between vessels and nearby structures of
low signal intensity (bony structures and
aneurysm clips) were less accurate
(Online Supplemental Data).

Quantitatively, our model achieved
promising DSCs of 0.77 and of 0.72 in
the training and testing data sets, respec-
tively, indicating negligible overfitting.
Our results are comparable with those
of other TOF-based published works

using CNN or thresholding techniques (DSC, 0.73–0.78). A more
complex segmentation pipeline achieved a better DSC, reaching
0.93.3,9,10

A morphologic, flow-independent visualization of the cerebral
vessels in the BBMRI has potential advantages. It avoids the flow-
related artifacts and the stent-related signal degradation in TOF-
MRA.11,12 The large FOV and the high resolution4 could allow
segmentation of a large volume of interest. Furthermore, no
application of contrast medium is required. Future prospects
include further optimization of the machine learning parameters
using a larger and more diverse data set, expanding the volume of
interest, and testing performance in various intracranial
pathologies.

FIG 1. Sample images of advantageous findings. Identification of the vessel lumen following stent
placement during treatment of a ruptured, dissecting aneurysm of the right vertebral artery in a
test subject. A, 3D-rendering of rotational DSA in a lateral oblique projection following stent-
assisted coiling (arrow, distal stent markers). B, Volume-rendering of the BBMRI model prediction
(arrow, vessel lumen within the stent). C, Contrast-enhanced MRA shows partial signal degradation
within the stent (arrows). D–F, Correct identification of a small recurrence (arrows) 6months fol-
lowing coiling of a ruptured right posterior communicating artery aneurysm in a test subject.
Volume-rendering in a coronal, oblique view of the BBMRI model prediction (D), of the TOF-MRA
(E), and of the contrast medium–enhanced MRA (F).

FIG 2. Anterior-posterior 3D-rendering of the intracranial vessel tree. A, BBMRI model prediction.
B, TOF-MRA. C, Contrast-enhanced MRA.
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CONCLUSIONS
CNN segmentation of the arteries of the circle of Willis and its
branches in non-contrast-enhanced BBMRI with accuracy com-
parable with that of TOF-based segmentation techniques is fea-
sible and promising.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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