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ORIGINAL RESEARCH
ADULT BRAIN

Tissue at Risk and Ischemic Core Estimation Using Deep
Learning in Acute Stroke

Y. Yu, Y. Xie, T. Thamm, E. Gong, J. Ouyang, S. Christensen, M.P. Marks, M.G. Lansberg, G.W. Albers, and
G. Zaharchuk

ABSTRACT

BACKGROUND AND PURPOSE: In acute stroke patients with large vessel occlusions, it would be helpful to be able to predict the
difference in the size and location of the final infarct based on the outcome of reperfusion therapy. Our aim was to demonstrate
the value of deep learning–based tissue at risk and ischemic core estimation. We trained deep learning models using a baseline MR
image in 3 multicenter trials.

MATERIALS AND METHODS: Patients with acute ischemic stroke from 3 multicenter trials were identified and grouped into minimal
(#20%), partial (20%-80%), and major ($80%) reperfusion status based on 4- to 24-hour follow-up MR imaging if available or into unknown
status if not. Attention-gated convolutional neural networks were trained with admission imaging as input and the final infarct as ground
truth. We explored 3 approaches: 1) separate: train 2 independent models with patients with minimal and major reperfusion; 2) pretraining:
develop a single model using patients with partial and unknown reperfusion, then fine-tune it to create 2 separate models for minimal and
major reperfusion; and 3) thresholding: use the current clinical method relying on apparent diffusion coefficient and time-to-maximum of
the residue function maps. Models were evaluated using area under the curve, the Dice score coefficient, and lesion volume difference.

RESULTS: Two hundred thirty-seven patients were included (minimal, major, partial, and unknown reperfusion: n ¼ 52, 80, 57, and
48, respectively). The pretraining approach achieved the highest median Dice score coefficient (tissue at risk ¼ 0.60, interquartile
range, 0.43–0.70; core ¼ 0.57, interquartile range, 0.30–0.69). This was higher than the separate approach (tissue at risk ¼ 0.55; inter-
quartile range, 0.41–0.69; P ¼ .01; core ¼ 0.49; interquartile range, 0.35–0.66; P¼ .04) or thresholding (tissue at risk ¼ 0.56; interquar-
tile range, 0.42–0.65; P¼ .008; core ¼ 0.46; interquartile range, 0.16–0.54; P, .001).

CONCLUSIONS: Deep learning models with fine-tuning lead to better performance for predicting tissue at risk and ischemic core,
outperforming conventional thresholding methods.

ABBREVIATIONS: AUC ¼ area under the curve; DSC ¼ Dice score coefficient; iCAS ¼ Imaging Collaterals in Acute Stroke; IQR ¼ interquartile range;
Tmax ¼ time-to-maximum of the residue function

As demonstrated in recent Endovascular Therapy following
Imaging Evaluation for Ischemic Stroke 3 (DEFUSE 3) and

Extending the Time for Thrombolysis in Emergency Neurological
Deficits (EXTEND) trials,1,2 perfusion imaging can be used to tri-
age patients with acute ischemic stroke to reperfusion therapy in
addition to the original “time window.” The DWI/PWI mismatch
paradigm is the most common way of triaging patients,3 especially
in those exceeding 6hours of stroke onset.

The tissue at risk, sometimes called the penumbra, reflects
the maximal extent of infarct if only minimal reperfusion is

achieved, defined by time-to-maximum of the residue function
(Tmax). 6 seconds region using standard clinical software.
Likewise, the ischemic core reflects the minimal ischemic lesion
if major reperfusion is achieved, which has been defined by an
ADC value, 620� 10�6mm2/s.4 Despite the simplicity and
ease of use of single-value thresholds to identify salvageable tis-
sue, such approaches have difficulty distinguishing benign
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hypoperfusion from tissue at risk5 and may fail to capture the
complexity of the disease evolution.

Machine learning is a class of algorithms that automatically
learn from data and provide predictions. Studies have shown
that machine learning can be used to predict final stroke lesions
from acute imaging data.6-13 Convolutional neural networks are
a subtype of machine learning that do not require humans to
define relevant features, instead extracting features automati-
cally from images using many hidden layers (giving rise to the
term “deep learning”).14-16 One type of deep convolutional neu-
ral network known as a U-net has shown much promise for seg-
mentation tasks in medical imaging.17

The most obvious approach to define the ischemic core and
tissue at risk is to train 2 separate models using patients with
complete or no reperfusion. However, such patients account only
for a small subgroup of all patients who undergo reperfusion
therapy, and the performance of deep learning models improves
with increased sample size.18 Therefore, the aim of this study was
to explore whether deep learning could provide a more accurate
estimation of tissue at risk and ischemic core, and what is the
most efficient and accurate approach with limited clinical data.

We evaluated 2 different approaches: training using targeted
cases (patients with minimal and major reperfusion) only (separate
training approach); or pretraining on a much wider cross-section
of cases (including those with partial reperfusion) followed by fine-
tuning on the targeted cases (pretraining approach). We hypothe-
sized that the pretraining approach is superior to separate training
and that both methods outperform the current clinical standard
thresholding method based on the DWI/PWI mismatch.

MATERIALS AND METHODS
Patient Population
Patients with acute ischemic stroke were enrolled from 3 prospec-
tive, multicenter stroke trials: Imaging Collaterals in Acute Stroke

(iCAS) from April 2014 to August 2017 (n¼ 128), DEFUSE from
April 2001 to April 2005 (n¼ 74), and DEFUSE 2 from July 2008
to October 2011 (n¼ 140). iCAS19,20 is a multicenter observational
study that enrolled patients with clinical acute ischemic stroke
symptoms attributable to the anterior circulation, an NIHSS score
of $ 5, and onset-to-imaging time of #24hours. The DEFUSE
and DEFUSE 2 protocols enrolled similar patients within a shorter
time window (#12hours) and results have been reported.21,22

We excluded patients on the basis of the following criteria: 1)
no confirmed ischemic stroke on follow-up DWI; 2) no PWI or
DWI at arrival, or poor PWI quality; 3) no follow-up T2 FLAIR
images within 3–7 days after stroke onset for iCAS and DEFUSE
2, or within 30 days for DEFUSE; or 4) complete reperfusion on
initial PWI (no Tmax. 6 seconds lesion) (Fig 1).

iCAS (NCT02225730) and DEFUSE (NCT01349946) were
approved by the institutional review boards of the participating
institutions, and written consent was obtained for each partici-
pant. This study has been approved for retrospective analysis by
the institutional review boards.

Imaging Protocol
All images were acquired at either 1.5T or 3T. Patients underwent
MR imaging, including DWI (b=0 and b=1000 s/mm2) and
dynamic susceptibility contrast-enhanced PWI using gadolinium-
based contrast agents according to the standard protocol of each
site. Postprocessing software (RAPID; iSchemaView) was used to
reconstruct perfusion parameter maps: Tmax, MTT, CBV, and
CBF. This software also automatically generates ADC segmentation
with a threshold of,620� 10�6mm2/s and Tmax segmentation
with a threshold of.6 seconds. Most patients underwent a follow-
up PWI study within 24hours, which was used to classify patients
into minimal, partial, and major reperfusion as described below.

Patients with T2 FLAIR obtained at 3–7 days after stroke
onset were used to evaluate the model performance; DEFUSE

FIG 1. Flow diagram of the study. According to the reperfusion rate calculated from baseline and 4- to 24- hour perfusion-weighted imaging,
patients are grouped into major reperfusion ($80%), partial reperfusion (20%–80%), minimal reperfusion (#20%), and unknown reperfusion sta-
tus (if 4- to 24-hour perfusion imaging was not performed). D1 indicates DEFUSE study; D2, DEFUSE 2 study.
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cases with DWI obtained at 4–8hours and/or T2 FLAIR at 30 days
after stroke treatment (because 24-hour and 3- to 7-day images
were not part of the study protocol) were only used to train the
deep learning algorithms but were not used for testing (Fig 2).

Imaging Analysis
Investigators at a core laboratory reviewed all studies.
Neuroradiologists who were blinded to clinical information seg-
mented the final infarct lesion on the follow-up studies. The seg-
mented infarct lesions were used as ground truth for the deep
learning model.

Patients were classified into 4 reperfusion categories based on
the baseline and the 4- to 24-hour PWI study. We relied on the

reperfusion rate rather than the TICI recanalization score to clas-

sify patients because it reflects the tissue reperfusion and predicts

outcome better than recanalization.23,24 Reperfusion status was

calculated as
Reperfusion Rate ¼ 100% � (1 – [Tmax24hr . 6 seconds

lesion / Tmaxbaseline. 6 seconds lesion]).
Patients with reperfusion rates of #20% and$80% were clas-

sified as having minimal and major reperfusion, respectively.25,26

Otherwise, they were classified as having partial reperfusion (if 4-

to 24-hour PWI was available) or with unknown reperfusion (if

not). Patients with minimal reperfusion were used to define tissue

at risk, while those with major reperfusion were used to define is-

chemic core.

FIG 2. Illustration of 3 approaches to define tissue at risk and ischemic core and detailed case distribution during 5-fold cross-validation. The
pretraining deep learning approach (A), the separate deep learning approach (B), and the thresholding approach (C). For the pretraining, 94
patients with partial/unknown reperfusion were used in the training set, and 11 patients were in the validation set. D, Cases without 3- to 7-day
follow-up were used only in training (A and B), while patients with 3- to 7-day follow-up were used in training, validation, and testing. Patients
with 3- to 7-day follow-up were divided randomly into 5 sets and used in training, validation, and testing with a ratio of 3:1:1. For each fold of the
tissue-at-risk model, 37 cases were used for fine-tuning on the pretrained model, 6 for validation, and 6–7 for testing. For each fold of the ische-
mic core model, 48 cases were used for the fine-tuning; 13, for validation; and 13–14, for testing.
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Imaging Preprocessing
All images were coregistered and normalized to the Montreal
Neurological Institute template space using Matlab 2016b
(MathWorks) and SPM 12 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm12). Of note, the spatial coverage of perfusion
imaging was usually smaller than that of diffusion imaging, and
only voxels with both diffusion and perfusion information were
included in the model.

For input to the deep learning model, DWI (b=1000 s/mm2

images), ADC, Tmax, MTT, CBV, and CBF were normalized by
the mean of their parenchymal tissue value. To preserve impor-
tant information from the absolute value of Tmax and ADC, we
created 2 masks separately for Tmax. 6 seconds and ADC,

620� 10�6mm2/s using simple thresholding.

Training Approaches
A neural network called attention-gated U-net was used in this
study and was reported in previous literature12 (Online
Supplemental Data and Online Fig 1). In short, the model takes
5 consecutive slices of DWI, ADC, Tmax, MTT, CBF, CBV, and
masks of Tmax and ADC as input and gives a probability map
of infarct segmentation with voxel values that ranged from 0 to
1 as output. A value close to 1 indicates that the voxel is more
likely to be infarcted, while a value close to 0 indicates that the
voxel is likely to be spared. The consecutive slices provided the
model with more context than a single section of an image.

We explored the pretraining, separate, and thresholding
approaches to test which one performed best (Fig 2). In the pre-
training approach, a single model was first trained using patients
with partial and unknown reperfusion status. Then, starting from
these weights, 2 separate models were generated by fixing the
weights in the encoder layers but fine-tuning the decoding layers,
one using patients with minimal reperfusion to create a tissue-at-
risk model and the other using patients with major reperfusion to
create an ischemic core model. In the separate approach, 2 separate
models were trained from scratch with patients with either mini-
mal or major reperfusion. Because there were relatively fewer sub-
jects who fell into these extreme cases, there was less data for each
of the separate models for training. In the thresholding approach,
the clinically used Tmax and ADC segmentations from RAPID
were used. The union of Tmax. 6 seconds and ADC,

620� 10�6mm2/s was used to define tissue at risk. Tissue with
ADC, 620� 10�6mm2/s was used to define the ischemic core.27

During the pretraining phase, 10% of the cases were used as a
validation set and the rest were used for training. Five-fold cross-
validation was performed for the separate approach and the fine-
tuning part of the pretraining approach to reduce bias (Fig 2).
Given the multicenter, multivendor nature of the dataset, this sys-
tem represented the best test of the generalizability of the model.

Performance Evaluation
The area under the curve (AUC) was calculated for both the deep
learning models and the Tmax and ADC thresholding method.
The AUC was calculated for each case within the ipsilateral stroke
hemisphere, except in 1 case for which there were bilateral
strokes.

To calculate the Dice score coefficient (DSC) and lesion vol-
ume difference between prediction and ground truth, we set a
threshold probability of .5 for all deep learning models. To calcu-
late the mismatch ratio predicted by the models, we also applied
the tissue-at-risk model to patients with major reperfusion, and
the ischemic core model, to those with minimal reperfusion.

Statistical Analysis
Statistical analysis was performed using STATA (Version 15.0;
StataCorp). The x 2 or Fisher exact test and the Kruskal-Wallis
equality-of-populations rank test were performed for demo-
graphic and clinical information. Paired-sample Wilcoxon tests
were performed to compare AUC, DSC, lesion volume difference,
and absolute lesion volume differences between the pretraining
approach and separate approach, as well as the pretraining
approach and the Tmax/ADC thresholding methods. The con-
cordance correlation coefficient (r c) was used to analyze the
lesion volume predictions. Because infarct volumes were not nor-
mally distributed, cubic root transformation was performed for
the r c calculation. The correlation was considered excellent with
r c . 0.70, moderate when r c was between 0.50 and 0.70, and
low with r c , 0.50.28 All tests were 2-sided, and P# .008 was
considered statistically significant after adjustment by the
Benjamini-Hochberg method.

RESULTS
We reviewed 342 patients from DEFUSE 1, DEFUSE 2, and iCAS
and eventually included 237 patients (Fig 1). Fifty-two patients
were classified as having minimal reperfusion; 57, as partial
reperfusion; 80, as major reperfusion; and 48, as unknown reper-
fusion. Clinical and imaging information is summarized in the
Table. The time for training a model was 5 hours, and the time
for generating prediction for each patient was 30 seconds with
our current workstation. Figure 3 shows several examples of pre-
dictions using the 3 approaches. Online Supplemental Data show
the effect of the attention map at each level in the U-net.

Prediction of Tissue at Risk
The evaluations were performed in 33 patients with minimal
reperfusion with T2 FLAIR follow-up at 3–7 days. As shown in
Online Supplemental Table 2, the pretraining approach achieved
the highest AUC (0.92; interquartile range [IQR], 0.89–0.95) and
DSC (0.60; IQR, 0.43–0.70) compared with the separate approach
and thresholding method. There was no statistical difference in
the volume difference or the absolute volume difference among
the 3 approaches. However, the volume of tissue at risk predicted
by the pretraining approach showed excellent concordance (r c=
0.822; 95% CI, 0.725–0.919) with the true infarct volume com-
pared with the separate (r c = 0.685; 95% CI, 0.517–0.852) and
thresholding (r c = 0.657; 95% CI, 0.511–0.804) approaches. The
volumetric agreement between the pretraining approach and the
true lesion volume and the percentage volume difference are
shown in the Online Supplemental Data and the Table.

Prediction of Ischemic Core
The evaluations were performed in 67 patients with major reper-
fusion with T2 FLAIR follow-up at 3–7 days. The pretraining
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Clinical and imaging information of patients includeda

All Patients
(n = 237)

Minimal
Reperfusion (n = 52)

Major
Reperfusion

(n = 80)

Partial
Reperfusion

(n = 57)
Unknown

Reperfusion (n = 48)
P

Value
Male 108 (46) 27 (52) 39 (49) 25 (44) 17 (35) .3
Age (yr) 66 [SD, 16] 64 [SD, 16] 66 [SD, 16] 69 [SD, 14] 64 [SD, 17] .4
Hypertension 159 (67) 39 (75) 50 (63) 39 (68) 31 (65) .3
Diabetes 58 (25) 14 (27) 18 (23) 15 (26) 11 (23) .8
Dyslipidemia 97 (41) 24 (46) 30 (38) 30 (53) 13 (28) .6
Atrial fibrillation 73 (31) 12 (23) 27 (34) 21 (37) 13 (28) .4
Treatment methods .004
IV tPA only 79 (33) 25 (48) 18 (22) 21 (37) 15 (31)
Direct thrombectomy 62 (26) 8 (15) 29 (36) 16 (28) 9 (19)
Bridging therapy 77 (32) 13 (25) 31 (39) 16 (28) 17 (35)
No treatment 19 (8) 6 (12) 2 (3) 4 (7) 7 (15)

Onset-to-treatment
time (hr)

5.7 (4.7–7.4) 5.8 (5.2–6.3) 5.8 (4.6–7.8) 5.4 (4.6–6.4) 5.8 (4.9–7.7) .9

Baseline DWI lesion
volume (mL)

22 (8–57) 20 (6–63) 17 (6–43) 31 (16–83) 31 (13–61) .01

Baseline Tmax lesion
volume (mL)

115 (68–173) 98 (48–158) 115 (71–160) 126 (66–188) 123 (80–171) .3

PWI/DWI mismatch
ratiob

3.8 (1.9–8.6) 2.9 (1.4–6.8) 5.4 (2.3–13.9) 3.3 (2.0–5.8) 3.2 (1.6–6.6) .006

Baseline NIHSS 14 (10–19) 13 (8–19) 15 (9–19) 16 (10–19) 14 (11–19) .3
Symptomatic
hemorrhage

27 (11) 7 (13) 8 (10) 8 (14) 4 (8) .1

Reperfusion rate (%) 69 (15–97) 0 (0–9) 100 (92–100) 55 (37–68) NA ,.001
Final infarct volume
(mL)

49 (14–108) 59 (28–204) 19 (8–62) 77 (33–149) 57 (22–112) ,.001

90-day mRS 3 (1–4) 3 (2–4) 2 (1–3) 4 (2–5) 3 (1–4) ,.001

Note:—NA indicates not applicable.
aData are expressed as No. (%), median (IQR), or mean [SD].
bThe upper limit of the mismatch ratio was set to 20 if a small or no ischemic core lesion presented at baseline.

FIG 3. Two representative cases of predictions from the pretraining, separate, and thresholding approaches. Upper row: A 71 -year-old man
treated with IV tPA only, which achieved 0% reperfusion. Of note, only voxels with both diffusion and perfusion information are included in the
model. His true lesion is used to define tissue at risk. Lower row: A 45-year-old man treated with IV tPA and thrombectomy, which achieved
100% reperfusion. His true lesion is used to define ischemic core. The pretraining approach had more accurate prediction than either the sepa-
rate approach or the thresholding method, both visually, with DSC analysis, and volumetrically (Online Supplemental Data). Green areas overlaid
on the FLAIR image represent true-positive, blue represents false-negative, and red represents false-positive.
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approach again achieved the highest AUC (0.94; IQR, 0.89–0.97)
and DSC (0.57; IQR, 0.30–0.69) compared with the sepa-
rate approach and the thresholding method. The pretraining
approach also showed less biased volume prediction compared
with the thresholding approach and achieved excellent concord-
ance (r c¼ 0.756; 95% CI, 0.651–0.860) with the true infarct vol-
ume compared with the separate approach (r c ¼ 0.657; 95% CI,
0.519–0.795) and thresholding (r c ¼ 0.625; 95% CI, 0.489–0.762).
The volumetric agreement between the pretraining approach and
the true lesion volume and the percentage volume difference are
shown in the Online Supplemental Data and the Table.

Mismatch Patterns Predicted from the Deep Learning
Models
The median mismatch ratio yielded by the pretraining approach
was 2.0 (IQR, 1.5–4.2) for patients with minimal reperfusion and
2.7 (IQR, 2.0–5.4) for patients with major reperfusion, compared
with 2.9 (IQR, 1.4–6.8; P¼ .07) and 5.4 (IQR, 2.3–13.9; P, .001)
given by the thresholding approach. Examples of mismatch pre-
dicted by the 2 different approaches are shown in Fig 4.

DISCUSSION
By analyzing data from 3 multicenter clinical trials, this study
showed that a pretraining approach using deep learning in which a
large heterogeneous population is used to first train a common
model, which is then bifurcated into models for minimal and
major reperfusion, performs better than using separate training in
a smaller group of patients with extreme reperfusion. Furthermore,
it outperformed current clinically available prediction methods
based on a threshold of the DWI/PWI mismatch for identifying
tissue at risk and ischemic core in acute ischemic stroke.

Currently, Tmax. 6 seconds and ADC, 620 � 10�6mm2/s
are the state-of-the-art estimations for tissue fate with no reperfu-
sion and complete reperfusion.1,22,27 However, these thresholds
are derived from linear analysis and have not been validated in
large cohorts.29 Factors such as collateral status and gray/white
matter content may result in different susceptibilities to ische-
mia.30 This study suggested that the single-valued thresholding
approach could be outperformed using a nonlinear analysis
method such as deep learning. While we have shown the capabil-
ities of deep learning using MR imaging as the initial imaging
study, we recognize that CT is becoming increasingly used for
stroke triage. Similar methods could likely be used with CT data,
and this MR imaging–based approach using pretraining could act
as a starting point for training a CT-based triaging system, given
the wide availablity of CT scanners and the ability to extract simi-
lar perfusion parameters.

Previous traditional and machine learning studies used only
patients with minimal and major reperfusion to generate the cri-
teria of tissue at risk and ischemic core.6,25,26 In patients with is-
chemic stroke who received reperfusion therapy using the latest
devices, .50% of patients have partial reperfusion when the
reperfusion rate at 24 hours is intermediate (20%–80%) or the
TICI score is between 2a and 2b.1,31,32 Our results show that an
approach that trained models separately in patients with minimal
and major reperfusion had only moderate correlation with true
lesion volume and had only a minor advantage compared with

conventional thresholding methods. This finding is likely because
the separate approach “wastes”many cases that could potentially be
used to improve the network prediction. If we wanted to use the
separate approach to achieve the same level of predictive accuracy
as the pretraining approach, it likely requires a much larger training
set, which is challenging for clinical studies. For example, in the cur-
rent study, the pretrained model ultimately had access to approxi-
mately 2–3 times more individual cases for training than the
separate models. Therefore, the pretraining approach (fine-tuning
on a pretrained model) is a promising approach to maximally use
all available stroke data to improve the performance.

Fine-tuning techniques have been discussed in previous litera-
ture.33 Fine-tuning on the last layer is preferred when the predic-
tion task is within the pretrained model, while fine-tuning on the
last several layers is preferred for a more specific task as in this
study. Previous studies have shown that using models pretrained
on nonmedical image data may also perform well in medical
imaging data.34 However, medical images such as MR imaging
and CT are often quantitative or semiquantitative and in gray-
scale, differing from nonmedical photos. Complicated network
structure, filters, and pre-extracted features for regular photos
may be resource-consuming and redundant for MR imaging and
CT data and may not offer much performance benefit.35 This
study showed that pretraining using medical imaging data of the
same category and same cohort achieved excellent performance.
In the future, establishing pretrained models exclusively for medi-
cal imaging may help translate deep learning models into clinical
workflow application most efficiently.

Compared with previous studies that used machine learning
and deep learning to predict tissue fate,6,7,12 the accuracy and visual
reliability of our model are promising. Some may argue that if
more cases are used in the training set, they will always benefit the
model performance. A previous study that trained prediction mod-
els in all patients with stroke regardless of reperfusion status 12

showed good accuracy but had biased prediction in patients with
minimal and major reperfusion, with under- and overestimations
in lesion size, respectively. The current study shows that refining
the training strategy to specifically include patients with extreme
reperfusion states as a fine-tuning step will provide less biased pre-
dictions. McKinley et al6 trained 2 random forest classifiers on 15
cases with TICI 3 (ischemic core classifier) and 10 cases with TICI
0 (penumbra classifier). They reported a mean DSC of 0.32 [SD,
0.23] in cases with TICI grades 1 and 2a and 0.34 [SD, 0.22] in
cases with TICI grades 2b and 3. The models presented in this
study appear to perform better, though it is difficult to compare
metrics across studies that used different models and datasets.
Therefore, validating our models in the same dataset is an impor-
tant step for translation to clinical practice in the future.

After careful validation in a separate cohort and further
improvement in predictive accuracy, the models can be applied
to the triaging system in emergency departments. Similar to the
current commercial software and workstations that apply 2
thresholds (Tmax. 6 seconds and ADC, 620 � 10�6 seconds/
mm2), patients’ images could be fed separately into the 2 models,
which then generate predictions of tissue at risk and ischemic
core. A larger mismatch ratio between tissue at risk and ischemic
core indicates more benefit from reperfusion treatment, which
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can facilitate the timely clinical decision-making for patient triag-
ing (Fig 4). However, new criteria for the cutoff of the mismatch
ratio would be required because the current target mismatch cri-
teria4,21 were established solely with the thresholding approach.

There are several limitations to this study. Treatment varied

with respect to the use of thrombectomy and thrombolysis.

Although we considered the most important factor, reperfusion

status, in this study, clinical factors such as age, onset time to

imaging, or other risk factors were not included in the analysis. It

is our future aim to incorporate such clinical factors into the deep

learning models and test whether it can further improve perform-

ance. The patient cohort in this study mainly had onset-to-imaging

time exceeding 4.5 hours, which may affect the association between

baseline imaging and tissue fate. However, no consensus has been

reached on whether the perfusion profile is time-dependent,36,37

and patients presenting with prolonged symptoms represent the

most important cohort for a clinical imaging triaging system.

The model may not be directly applicable to images in the origi-

nal space because the training data were in the Montreal

Neurological Institute template space. However, the template

space may help reduce the model overfitting and provide im-

portant spatial information. The model may be further fine-

tuned with data in the original space to reduce the processing

time in real clinical settings.
We did not perform outcome analysis because the dataset was

not ideal for this purpose. Further studies are required to investigate
whether using the model prediction improves clinical outcome, but

it stands to reason that given the choice,
a method that more accurately identifies
dead and at-risk tissue would allow
clinicians to make better decisions about
thrombectomy. The data processing
and model parameters were chosen on
the basis of previous experience, and we
did not extensively search all combina-
tions of hyperparameters or fine-tuning
techniques, given time and computa-
tional constraints. Although better com-
binations could provide improvement,
our study demonstrated the feasibility
of using pretraining for stroke imag-
ing prediction and can be used as a
jumping-off point for future studies
seeking even better performance.
Further studies are also warranted
investigating whether prediction directly
from source perfusion images will
improve the performance.

CONCLUSIONS
This multicenter study showed that an
attention-gated deep convolutional
neural network can be used to identify
tissue at risk and core in acute ische-
mic stroke at levels superior to the
current clinical state of the art. Further

clinical validation is required for these methods to be incorpo-
rated as a deep learning acute stroke triaging system.
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