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ORIGINAL RESEARCH
PEDIATRICS

Radiomics of Pediatric Low-Grade Gliomas: Toward a
Pretherapeutic Differentiation of BRAF-Mutated and

BRAF-Fused Tumors
M.W. Wagner, N. Hainc, F. Khalvati, K. Namdar, L. Figueiredo, M. Sheng, S. Laughlin, M.M. Shroff, E. Bouffet,

U. Tabori, C. Hawkins, K.W. Yeom, and B.B. Ertl-Wagner

ABSTRACT

BACKGROUND AND PURPOSE: B-Raf proto-oncogene, serine/threonine kinase (BRAF) status has important implications for progno-
sis and therapy of pediatric low-grade gliomas. Currently, BRAF status classification relies on biopsy. Our aim was to train and vali-
date a radiomics approach to predict BRAF fusion and BRAF V600E mutation.

MATERIALS AND METHODS: In this bi-institutional retrospective study, FLAIR MR imaging datasets of 115 pediatric patients with
low-grade gliomas from 2 children’s hospitals acquired between January 2009 and January 2016 were included and analyzed.
Radiomics features were extracted from tumor segmentations, and the predictive model was tested using independent training
and testing datasets, with all available tumor types. The model was selected on the basis of a grid search on the number of trees,
opting for the best split for a random forest. We used the area under the receiver operating characteristic curve to evaluate
model performance.

RESULTS: The training cohort consisted of 94 pediatric patients with low-grade gliomas (mean age, 9.4 years; 45 boys), and the
external validation cohort comprised 21 pediatric patients with low-grade gliomas (mean age, 8.37 years; 12 boys). A 4-fold cross-val-
idation scheme predicted BRAF status with an area under the curve of 0.75 (SD, 0.12) (95% confidence interval, 0.62–0.89) on the in-
ternal validation cohort. By means of the optimal hyperparameters determined by 4-fold cross-validation, the area under the curve
for the external validation was 0.85. Age and tumor location were significant predictors of BRAF status (P values ¼ .04 and ,.001,
respectively). Sex was not a significant predictor (P value ¼ .96).

CONCLUSIONS: Radiomics-based prediction of BRAF status in pediatric low-grade gliomas appears feasible in this bi-institutional
exploratory study.

ABBREVIATIONS: AUC ¼ area under the curve; JPA ¼ juvenile pilocytic astrocytoma; NPV ¼ negative predictive value; pLGG ¼ pediatric low-grade glioma;
PPV ¼ positive predictive value; ROC ¼ receiver operating characteristic

Pediatric low-grade gliomas (pLGGs) are the most common
brain tumors in children, accounting for approximately 40%

of central nervous system tumors in childhood.1 pLGGs comprise
a heterogeneous variety of tumors classified by the World Health
Organization as grades I or II and include juvenile pilocytic astro-
cytoma (JPA), ganglioglioma, dysembryoplastic neuroepithelial
tumor, pleomorphic xanthoastrocytoma, and diffuse low-grade

glioma.2 A mainstay of pLGG therapy is surgical excision when
possible, which may be curative in case of total resection.2 When
total resection is not possible, pLGGs become a chronic disease
with protracted reduction in the quality of life.2,3 While death
from these tumors is rare with standard chemotherapy and radia-
tion, 10-year progression-free survival is ,50%.4,5 Thus, many
patients will have multiple recurrences requiring multimodal
therapy, leading to considerable morbidity.

In addition to patients with neurofibromatosis type 1 who de-
velop pLGG, molecular characterization of sporadic pLGG has
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also identified frequent alterations in the mitogen-activated pro-
tein kinas pathway, most commonly fusions or mutations in the
B-Raf proto-oncogene, serine/threonine kinase (BRAF) gene. The 2
major BRAF gene alterations are BRAF fusion and BRAF V600E
point mutation (p.V600E) The chromosomal alteration in BRAF
fusion involves the duplication of the BRAF oncogene, followed
by its insertion into one of several fusion targets, most often the
K1AA1549 gene.6 The transcript of this duplication/fusion con-
tains the kinase terminus of the BRAF protein but lacks the auto-
regulatory domain, resulting in constant up-regulation of several
downstream pathway elements. BRAF V600E point mutations
constitutively activate BRAF, causing a deregulation in the mito-
gen-activated p.V600E protein kinase pathway.7

Lassaletta et al8 recently demonstrated that patient prognosis
differed in pLGGs on the basis of the underlying molecular alter-
ation. Patients with BRAF fusion and neurofibromatosis type 1
have a favorable outcome, while those with the BRAF V600E
mutation, particularly in association with cyclin dependent kinase
inhibitor 2A (CDNK2A) deletion, are at increased risk of progres-
sion and transformation.8,9 This finding has led to clinical trials
using mitogen-activated protein kinase pathway–targeted agents
such as mitogen-activated protein kinase enzyme inhibitors and
BRAF V600E inhibitors for patients with molecular evidence of
BRAF alterations. These new therapies seem promising, and
many pLGGs that were refractory to traditional chemotherapy
have had meaningful responses to these targeted agents.10,11

In the past decade, radiomics has emerged as an imaging-
based method to link quantitative features extracted frommedical
images to outcomes, such as cancer genotype or survival.12,13

Radiomic signatures have been extensively investigated for differ-
ent cancer sites including liver cancer,14 bone tumors,15 and adult
brain tumors including glioblastoma,16 medulloblastoma,17 and
midline high-grade glioma.18,19 To our knowledge, no prior study
has investigated radiomic approaches to subtype pLGGs.

Using a bi-institutional cohort, we aimed to develop and vali-
date a radiomic signature that is predictive of the BRAF status of
pLGGs.

MATERIALS AND METHODS
Patients
This retrospective study was approved by the institutional review
board or research ethics board of the 2 participating academic
institutions: The Hospital for Sick Children (Toronto, Ontario,
Canada) and the Lucile Packard Children’s Hospital (Stanford
University, Palo Alto, California). Because of the retrospective na-
ture of the study, informed consent was waived by the local
research ethics boards. An interinstitutional data-transfer agree-
ment was obtained for data-sharing. All patients were identified
from the electronic health record data base at Toronto and
Stanford from January 2009 to January 2016. Patient inclusion
criteria were the following: 1) 0–18 years of age, 2) availability of
molecular information on BRAF status in histopathologically
confirmed pLGG, and 3) availability of preoperative brain MR
imaging with a non-motion-degraded FLAIR sequence. Patients
with histone H3 K27M mutation were excluded. Spinal cord
tumors were also not considered for this study.

Molecular Analysis
BRAF fusion status was determined using an nCounter Metabolic
Pathways Panel (NanoString Technologies) or fluorescence in
situ hybridization, while the BRAF p.V600E mutation was deter-
mined using immunohistochemistry or droplet digital polymerase
chain reaction as previously described.20 For most patients, molec-
ular analysis was performed with formalin-fixed paraffin-embed-
ded tissue that was obtained at the time of the operation. Nineteen
patients had molecular subtyping based on frozen tissue.

MR Imaging Acquisition, Data Retrieval, and Image
Segmentation
All patients from The Hospital for Sick Children, Toronto,
underwent brain MR imaging at 1.5T or 3T across various ven-
dors (Signa, GE Healthcare; Achieva, Philips Healthcare;
Magnetom Skyra, Siemens). Sequences acquired included 2D
axial and coronal T2 FLAIR (TR/TE, 7000–10,000/140–170ms;
3- to 6-mm section thickness; 3- to 7.5-mm gap), 2D axial T2-
weighted fast spin-echo, 3D axial or sagittal precontrast, and 3D
axial gadolinium-based contrast agent–enhanced T1-weighted
turbo or fast-field echo. Patients from the Lucile Packard
Children’s Hospital, Stanford, underwent brain MR imaging at
1.5T or 3T from a single vendor (Signa or Discovery 750; GE
Healthcare). MRIs were performed using the brain tumor proto-
col of the institution, which included 2D axial T2-weighted fast
spin-echo, 2D axial or sagittal precontrast T1-weighted spin-
echo, 2D axial T2 FLAIR (TR/TE, 7000–10,000/140–170ms; 4- to
5-mm section thickness; 1- to 1.5-mm gap), and 2D axial gadolin-
ium-based contrast agent–enhanced T1-weighted spin-echo
sequences. All MR imaging data were extracted from the respec-
tive PACS and were de-identified for further analyses.

Tumor segmentation was performed by a fellowship-trained
pediatric neuroradiologist with 6 years of neuroradiology research
experience (M.W.W.) using 3D Slicer (Version 4.10.2;21 http://
www.slicer.org). The scripted loadable module SlicerRadiomics
extension was used to obtain access to the radiomics feature-cal-
culation classes implemented in the pyradiomics library (http://
pyradiomics.readthedocs.io/). This extension selects all available
feature classes and ensures isotropic resampling under “resampled
voxel size” when extracting 3D features. The bin width was set to 25
(ie, default), and symmetric gray level co-occurrence matrix was
enforced. Semiautomated tumor segmentation on FLAIR images
was performed with the level tracing-effect tool. This semiau-
tomatic approach had been found superior to multiuser man-
ual delineation with regard to the reproducibility and
robustness of results.17 Final and proper placement of ROIs
was confirmed by a board-certified neuroradiologist (B.B.E.-
W., with 15 years of postfellowship experience).

Radiomic Feature-Extraction Methodology
A total of 851 MR imaging–based radiomic features were
extracted from the ROIs on FLAIR images. Radiomic features
included histogram, shape, and texture features with and without
wavelet-based filters. Features of Laplacian of Gaussian filters
were not extracted. All features are summarized in the Online
Supplemental Data. Bias field correction before z score normal-
ization was used to standardize the range of all image
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features.22,23 Once the features were extracted, we applied z score
normalization again followed by L2 normalization to the features
of cohort 1 and used the distribution of the features in cohort 1
(training data) to normalize cohort 2 (test data). Details of pre-
processing and radiomic feature extraction in 3D Slicer and other
software have been described elsewhere.12,16,24

Statistical Analysis
Feature Selection, Radiomics, and Machine Learning Approach.
We used random forest as the classification model25 and per-
formed both internal cross-validations using cohort 1 data (n ¼
94) as well as external validation using cohort 2 (n ¼ 21) with the
molecular subtype as the end point.

Internal Cross-Validation. First, we used cohort 1 in k-fold cross-
validation to find the best hyperparameter for the random forest
model, namely the number of trees in the random forest. Once
the optimal number of trees was found, it was used to perform 4-
fold internal cross-validations using cohort 1.

External Validation. Next, using the optimal number of trees
found in the previous step, the entire dataset in cohort 1 was used
to train a random forest model, which was then tested on cohort
2. Cohort 2 was never used in any stage of the training of the ran-
dom forest model and was only used for external validation.

Next, the area under the receiver operating characteristic
(ROC) curve (AUC) was calculated for both internal and external
validations. In addition, the top 10 features that contributed the
most to the random forest model were extracted.

Clinical Factors. For clinical factors (age, sex, anatomic location
of tumor), logistic regression was performed to determine the
predictive power of each factor in determining the molecular
subtypes.

RESULTS
Patients
A total of 115 patients were included (The Hospital for Sick
Children, n ¼ 94, Lucile Packard Children’s Hospital, n ¼ 21)
comprising 57 boys; mean age, 9.21 (SD, 10.81) years (Table 1).
Patient demographic and pathologic information consisted of age
at diagnosis, sex, histologic diagnosis, molecular diagnosis regard-
ing the BRAF status, and anatomic location of the tumor (supra-
versus infratentorial). We used the patient data from The Hospital
for Sick Children (cohort 1, n ¼ 94) for internal validation using
cross-validation. We then used cohort 1 to train an optimized
model and tested it (external validation) on the patient data from
the Lucile Packard Children’s Hospital (cohort 2, n¼ 21).

Radiomics Model Evaluation
Internal Validation. The number of trees, best-performing fea-
tures, AUC, and other classification metrics for the 4-fold cross-
validation are shown in Tables 2 and 3. For the internal valida-
tion, only data from cohort 1 were used. The ROC curve with a
4-fold cross-validation scheme to predict BRAF status is shown
in Fig 1. The internal validation yielded an AUC of 0.75 (SD, 0.1)
(95% CI, 0.62–0.89) for the 4-fold cross-validation. The mean
sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (NPV) were 0.72, 95% CI, 0.60–0.84;
0.86, 95% CI, 0.76–0.95; 0.73, 95% CI, 0.60–0.87; and 0.85, 95%
CI, 0.80–0.91, respectively.

External Validation. By means of the optimal hyperparameters
obtained from 4-fold internal validation, the AUC for external
validation was 0.85 (Fig 2). The Youden J statistic26 was used to
determine the optimal threshold on the external ROC curve to
calculate sensitivity, specificity, PPV, and NPV, which are listed
in the Online Supplemental Data.

Identification of Discriminative Clinical Factors
Clinical Factors. The distribution of infratentorial and supraten-
torial tumors is shown in Table 1. Predictive clinical factors for
BRAF status were analyzed on cohort 1 (Table 4). Older age was
a predictor of BRAF V600E mutation (P value ¼ .04; OR, 1.14;
95% CI, 1.008–1.30) and as expected, supratentorial tumor
location was a very strong predictor of BRAF V600E (P value,
.001; OR, 18.80; 95% CI, 4.96–94.6). Sex was not a predictor
(P value ¼ .96).

Combined Clinical and Radiomics Model Evaluation
Internal Validation.We appended the 2 predictive clinical factors
for BRAF status (age and tumor location) to the radiomics model
outlined above. For the internal validation, only data from cohort
1 were used. The internal validation yielded an AUC of 0.77 (SD,
0.10) (95% CI, 0.65–0.88) for 4-fold cross-validation. The mean
sensitivity, specificity, PPV, and NPV were 0.72, 95% CI, 0.60–
0.84; 0.86, 95% CI, 0.78–0.93; 0.73, 95% CI, 0.63–0.83; and 0.86,
95% CI, 0.80–0.91, respectively. The improvement of our internal
cross-validation compared with the radiomics-only model was
not statistically significant (P value. .05).

Table 1: Patient demographics

Institutional Cohort

Toronto Stanford
No. of patients 94 21
Age (mean) (yr) 9.4 8.37
Male sex (No.) (%) 45 (48) 12 (57)
Histologic diagnosis (No.)

JPA 54 12
GG 14 7
LGA 11
PMA 4 2
PXA 5
DNET 2
DA 2
GC 1
ODG 1

Molecular subgroup (No.) (%)
BRAF fusion 62 (66) 14 (66)
BRAF mutation 32 (34) 7 (34)

FLAIR availability (No.) 94 21
Supratentorial (No.) (%) 43 (46) 6 (28)
Transtentorial (No.) (%) 0 1 (5)
Infratentorial (No.) (%) 51 (54) 14 (67)

Note:—GG indicates ganglioglioma; LGA, low-grade astrocytoma; PMA, pilomyx-
oid astrocytoma; PXA, pleomorphic xanthoastrocytoma; DNET, dysembryoplastic
neuroepithelial tumor; DA, diffuse astrocytoma; GC, gangliocytoma; ODG,
oligodendroglioma.

AJNR Am J Neuroradiol 42:759–65 Apr 2021 www.ajnr.org 761



External Validation. After we appended the 2 predictive clinical
factors to the radiomics model, the AUC for external validation
decreased to 0.67. The Youden J statistic26 was used to determine
the optimal threshold on the external ROC curve to calculate sen-
sitivity, specificity, PPV, and NPV, which are listed in the Online
Supplemental Data.

DISCUSSION
In this bi-institutional study, we generated and validated a radio-
mic signature predictive of the BRAF status of pLGGs. The opti-
mal random forest model achieved an AUC of 0.85 on the
external validation dataset.

Currently, the molecular signature of pLGG is assessed
through analysis of the tumor tissue. To that end, patients with
nonresectable tumors are submitted to surgical procedures.
Prognostication and targeted therapy depend on the mutational
status. In this context, imaging could play a pivotal role if it allows
identification of pLGG molecular subgroups. However, to date,
we lack accurate imaging biomarkers that may facilitate this task.

Although genetic alterations of pLGGs are well-analyzed,8,20,27

little is known about the correlation between molecular markers
and imaging characteristics. While many studies investigated the
use of qualitative and quantitative features derived from conven-
tional and advanced sequences to differentiate high- and low-grade
pediatric brain tumors,28-38 only a few studies tried to link imaging
characteristics to molecular markers.18,19,39-44 Ho et al39 described
different MR imaging patterns based on 15 cases of BRAF V600-
mutated diencephalic PLGGs and 25 cases of BRAFV600 wild-type
JPA/pilomyxoid astrocytomas. Among their findings, which were
based on analysis of T2WI and contrast-enhanced T1 sequences,
they reported that BRAF V600 wild-type JPA/pilomyxoid astrocy-
toma presented predominantly as a solitary solid mass with homo-
geneous or heterogeneous contrast enhancement, whereas the
mutated pLGG appeared multiloculated or multinodular following
contrast administration.39 Quantitative imaging features differenti-
ating pLGG molecular subgroups were studied in only 1 small case

Table 2: Performance of radiomic features

No. of
Folds

No. of
Trees

AUC (SD)
(95% CI)

Mean Sensitivity
(95% CI)

Mean Specificity
(95% CI)

Mean PPV
(95% CI)

Mean NPV
(95% CI)

Top 10 Predictive
Features on the
External Dataset

4 25 0.75 (SD, 0.12)
(0.62–0.89)

0.72 (0.60–0.84) 0.86 (0.76–0.95) 0.73 (0.60–0.87) 0.85 (0.80–0.91) (585, 374, 761, 22, 17, 560,
344, 258, 148, 108)

Note:—SD indicates Standard Deviation; PPV, Positive Predictive Value; NPV; Negative Predictive Value.

Table 3: Predictive radiomic featuresa

No. Source Feature Category Feature
585 3D wavelet transform Gray-level difference matrix Small dependence low gray-level emphasis
374 3D wavelet transform Gray-level size zone matrix Zone percentage
761 3D wavelet transform Gray-level difference matrix Dependence entropy
22 Original Gray-level difference matrix Dependence nonuniformity normalized
17 Original Gray-level difference matrix Dependence entropy
560 3D wavelet transform Gray-level size zone matrix Zone percentage
344 3D wavelet transform Histogram Entropy
258 3D wavelet transform Gray-level run-length Gray-level variance
148 3D wavelet transform Histogram Uniformity
108 3D wavelet transform Gray-level difference matrix Gray-level variance

a Radiomic features are ranked from top to bottom according to their importance.

FIG 1. Receiver operating characteristic curve with a 4-fold cross-vali-
dation scheme to predict BRAF status using radiomics of FLAIR MR
images. Std. dev. indicates standard deviation.

FIG 2. Receiver operating characteristic curve of the external validation
using the optimal hyperparameters obtained by 4-fold cross-validation.
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series of 7 patients.44 Ishi et al44 found a lower T2WI signal and a
larger T2WI/contrast-enhanced FLAIR mismatch to be indicative
of BRAF V600E mutation in optic pathway gliomas. In their study,
T2WI/contrast-enhanced FLAIR mismatch was defined as a mis-
match of a tumor region with high signal intensity on T2WI or
FLAIR sequences with enhancement on contrast-enhanced T1WI
sequences.

In our study, we trained and validated radiomic features of
FLAIR MR images to predict BRAF fusion or mutation status in
pLGG. As expected, the location of the tumor and age at pre-
sentation significantly predicted the mutational status.
Histologically and radiomorphologically, pLGGs are largely het-
erogeneous.6 On the FLAIR sequence alone, tumors display a
variety of qualitative differences, including the volume of their
cystic and solid components, sharp and indistinct borders, pres-
ence or absence of hemorrhage, location, and volume at initial
presentation. Our training cohort reflected the large spectrum
of pLGGs with regard to the prevalence of tumor types and
imaging characteristics on the FLAIR sequence (Fig 3).
However, the independent external validation cohort comprised
JPA, gangilioma, and pilomyxoid astrocytoma only. This feature
may explain the difference between the internal and external
prediction of our model (best model; internal AUC ¼ 0.75,
external AUC ¼ 0.85) and warrants further investigation. A less
comprehensive approach with prediction of BRAF status either
restricted to 1 or a few pLGG subtypes or anatomic location
such as the optic pathway or cervicomedullary junction may
further improve prediction accuracy. Future studies could adopt
a more restrictive approach and analyze molecular markers
within a given pLGG type or anatomic location. Due to the
need for a large sample size and the low prevalence of these
tumors, radiomic studies may be limited to large multinational
and multi-institutional collaborations.

Another factor that may further improve our model pre-
diction is the incorporation of patient demographic informa-
tion such as age at presentation and qualitative radiographic
features such as tumor location. This may be particularly
helpful for the BRAF V600E mutation, which is known to be
strongly associated with supratentorial location as seen in our
study.45

Our study has limitations. Due to the retrospective and bi-
institutional nature of the study, there was heterogeneity in the
FLAIR sequence acquisition, including the use of different scan-
ner vendors, field strengths, and imaging parameters. However,
because the heterogeneity in image acquisition reflects clinical
practice, a robust and predictive model needs to incorporate these
technical variations. In addition, our exploratory study used only
FLAIR images for feature discrimination and model develop-
ment. Incorporating additional MR imaging sequences such as

T2WI, DWI, and contrast-enhanced T1WI sequences could fur-
ther increase random forest model performance.

CONCLUSIONS
We present the exploratory results for the application of radio-
mics and machine learning for the prediction of BRAF status in
pLGGs using independent bi-institutional training and validation
sets based on FLAIR images. The optimal random forest model
achieved an AUC of 0.85 in the validation cohort. Future investi-
gations with a larger sample size for all histologic tumor types are
warranted to further improve BRAF classifier training and valida-
tion. The use of other imaging sequences, including DWI, T2WI,
and contrast-enhanced T1WI, and patient age and tumor loca-
tion, may also help improve prediction accuracy.
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BRAF V600E-mutated JPA. B, A 12-year-old boy. Supratentorial intra-
ventricular, BRAF-fused ganglioma. C, A 7-year-old boy. Left temporal
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