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ORIGINAL RESEARCH
HEAD & NECK

Cone-beam CT versus Multidetector CT in Postoperative
Cochlear Implant Imaging: Evaluation of Image Quality and

Radiation Dose
R.A. Helal, R. Jacob, M.A. Elshinnawy, A.I. Othman, I.M. Al-Dhamari, D.W. Paulus, and T.T. Abdelaziz

ABSTRACT

BACKGROUND AND PURPOSE: Cone-beam CT is being increasingly used in head and neck imaging. We compared cone-beam CT
with multidetector CT to assess postoperative implant placement and delineate finer anatomic structures, image quality, and radia-
tion dose used.

MATERIALS AND METHODS: This retrospective multicenter study included 51 patients with cochlear implants and postoperative imaging
via temporal bone cone-beam CT (n¼ 32 ears) or multidetector CT (n¼ 19 ears) between 2012 and 2017. We evaluated the visualization
quality of single electrode contacts, the scalar position of the electrodes, cochlear walls, mastoid facial canal, metallic artifacts (using a 4-
level visual score), and the ability to measure the insertion angle of the electrodes. The signal-to-noise ratio and radiation dose were also
evaluated.

RESULTS: Cone-beam CT was more sensitive for visualizing the scalar position of the electrodes (P¼ .046), cochlear outer wall
(P¼ .001), single electrode contacts (P, .001), and osseous spiral lamina (P¼ .004) and had fewer metallic artifacts (P, .001).
However, there were no significant differences between both methods in visualization of the modiolus (P¼ .37), cochlear inner wall
(P. .99), and mastoid facial canal wall (P¼ .07) and the ability to measure the insertion angle of the electrodes (P. .99). The cone-
beam CT group had significantly lower dose-length product (P, .001), but multidetector CT showed a higher signal-to-noise ratio
in both bone and air (P¼ .22 and P ¼ .001).

CONCLUSIONS: Cone-beam CT in patients with cochlear implants provides images with higher spatial resolution and fewer metallic
artifacts than multidetector CT at a relatively lower radiation dose.

ABBREVIATIONS: CBCT ¼ cone-beam CT; CI ¼ cochlear implant; MDCT ¼ multidetector CT

Acochlear implant (CI) as a treatment option for profound
sensorineural hearing loss has increased remarkably in recent

years. This increase can be partly attributed to the innovative diag-
nostic radiologic procedures. These procedures facilitate preopera-
tive and intraoperative processes and enhance postoperative
outcomes.1 Preoperative assessment of the temporal bone and
inner ear structures is crucial to check the feasibility of implanta-
tion and predict the outcome. Usually both MR imaging and mul-
tidetector CT (MDCT) are used for assessment.2 Intraoperative
imaging is usually reserved for cases with severe anatomic abnor-
malities and during minimally invasive procedures to guide the

electrode placement and reduce the duration of the operation
using fluoroscopy or mobile radiography.3

As in most cases, the use of MR imaging after a CI must be lim-

ited, so the electrode position is usually assessed using conventional

x-ray or MDCT.3 An important postoperative assessment is to

ensure the proper positioning of the electrode inside the cochlea and

check its insertion depth (which are important factors for the first

activation and follow-up) as well as to assess the scalar position (the

proper location being in the scala tympani near the nerve endings),

distance of the first contact from the round window (optimal, 3–

4mm), and distance from the electrode to the modiolus or lateral

wall. Any complications such as electrode kinking, looping, or dislo-

cation; presence of extracochlear electrodes; inner ear trauma; or os-

seous spiral lamina injury should be also assessed.4-6

These assessments post-CI require optimal imaging techniques.
Conventional x-ray can localize the implant position but does not
provide much detail and is, therefore, inadequate. MDCT provides
more anatomic details; however, it has remarkable metallic artifacts.3
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Cone-beam CT (CBCT) is becoming increasingly popular for head
and neck imaging despite its low contrast resolution, which pre-
cludes the examination of soft-tissue pathology, because of its high
spatial resolution and relatively low radiation dose. In the field of
CIs, the importance of CBCT is increasing due to its provision of
more accurate details and fewer metallic artifacts.7-14

CBCT involves a rotating gantry to which an x-ray source (with
a divergent cone-shaped radiation) and flat panel detector are
fixed. During complete/partial rotation of the gantry, multiple se-
quential planar projection images of the FOV are obtained, which
differ from the helical progression of the fan-shaped radiation used
inMDCT devices. Thus, CBCT imaging requires a relatively longer
duration compared with MDCT, which increases the overall risk
of motion artifacts.15

The accuracy of radiologic implant assessment is also impor-
tant for improving surgical skills (correct electrode positioning)
and CI fitting procedures. Auditory outcome depends on the cor-
rect scalar position of the electrode in the scala tympani, without
scalar translocation. Furthermore, these data help in the develop-
ment of new devices, more accessible surgical techniques, and
better follow-up of patients.16 Recently, the combination of post-
operative CBCT with preoperative MR imaging has shown very
good results in the assessment of electrode position.17

The purpose of this study was to compare CBCT with MDCT
post-CI for radiologic evaluation of important finer anatomic details
around the implant, electrode radiologic assessment, and assessment
of metallic artifacts, signal-to-noise ratio, and radiation doses used.

MATERIALS AND METHODS
Study Design and Population
This was a retrospective multicenter study approved by Ain Shams
University institutional review board (approval number MD237/
2017). We conducted a retrospective review from January 2012 to
December 2017 using our institution’s CI data base and a public
human cochlea data base to retrieve the postoperative imaging data
of patients who underwent CI surgery and postoperative MDCT
(from our institution) or CBCT (from the public data base).
Exclusion criteria were the presence of a morphologically abnormal
cochlea, severe motion artifacts distorting the image quality, and
inadequate data about the type of electrode inserted. For patients
undergoing bilateral CI, only the right ear was included (for statisti-
cal reasons). Fifty-one patients were identified and included, regard-
less of their age or sex. Patients’ demographic data and data about
the types of electrodes inserted were collected.

Radiologic Examination and Analysis
CBCT Group. This group was scanned using the CBCT 3D
Accuitomo 170 (J. Morita). Each ear was imaged separately using
90-kV tube voltage and 5-mA current, with a high-resolution
mode (Hi-Res J.Morita) with a rotation of 180°. A voxel size of
0.125mm and an ROI of 80� 80� 80mm were used. Images
were reconstructed with filtered back-projection using the G_001
reconstruction algorithm.

MDCT Group. The MDCT group was scanned using the
MDCT Somatom Definition Flash (dual-source 64–detector
row scanner; Siemens) with single-energy automated tube-

voltage selection (CARE kV; Siemens). The quality reference
tube voltage was 120kV, providing an acquisition of 100 kV.
Automated tube modulation (CARE Dose4D; Siemens) was used,
with a quality reference tube current of 375mAs. Images were
obtained using a beam collimation ¼ 0.5mm, rotation time ¼ 1
second, FOV ¼ 240mm, section thickness ¼ 0.6mm, section
interval¼ 0.3mm, and pitch¼ 0.8. Reconstruction was performed
using the Hr60 kernel.

The obtained images were anonymized and examined by 2
experienced neuroradiologists with 5 and 15 years of experience
until consensus was reached. The images were processed in the
coronal, sagittal, and cochlear views. The window width and level
were 3500 and 500, which were adjusted according to the observ-
ers’ preferences for optimal visualization of the cochlear struc-
tures near the metallic artifacts.

Qualitative Image Analysis and Analysis of Electrode Positions
mage sharpness was defined by identification of important ana-
tomic details, such as the cochlear inner and outer walls, osseous
spiral lamina, modiolus, and the mastoid facial nerve canal wall.
Each image was also evaluated for the precise scalar localization of
the inserted electrode, its insertion angle, and visualization of single
electrode contacts. The electrode insertion angle was measured
using the method suggested by Pearl et al18 (Fig 1). Its measurement
ability was categorized into a 2-level score (0¼ not measurable;
1¼measurable). The quality of visualization of the other details
was reported according to a 4-level score (0 ¼ not visualized, 1 ¼
barely visualized, 2 ¼ well-visualized, 3 ¼ perfectly visualized).
Scoring of metallic artifacts was also performed (ranging from 0 ¼
markedly affecting the diagnosis to 3¼minimal metallic artifacts).

Quantitative Image-Quality Analysis
The signal-to-noise ratio was calculated for each group; for calcula-
tion, 2 ROIs measuring approximately 4mm2 were used. One was
at the bone surrounding the cochlea (posterior-medial to the basal
turn), and the other was in the air in the external auditory canal.
The signal was defined as the mean ROI value, while the SD was
defined as image noise; the signal-to-noise ratio was calculated as
the mean ROI signal value divided by the SD.19

Patient Dose Analysis. The dose-length product was analyzed;
the calculation was according to the manufacturer-specific proto-
cols, and the output was via the device. Separate measurements
were not performed.

Statistical Analysis. Data were coded and processed using the
Statistical Package for the Social Sciences (SPSS Statistics for
Windows, Version 23.0; IBM). Quantitative data were pre-
sented mainly as medians with interquartile ranges, when not
normally distributed. Qualitative variables were presented as
numbers and percentages. The x 2 test was used for compari-
son of $2 groups of categoric variables. The Monte Carlo test
was used as correction for the x 2 test when .20% of the cells
had a count of ,5 in the tables. For comparison of the dose
measurements and signal-to-noise ratio (quantitative data
with nonparametric distribution), the Mann-Whitney test
was used. A P value# .05 was considered statistically signifi-
cant, with a confidence interval of 95%.
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RESULTS
A total of 51 ears that received CIs were included in the final anal-
ysis. Thirty-two patients underwent postoperative CBCT
(females¼ 13 [40.6%], males¼ 19 [59.4%] with median
age¼ 56 years [interquartile range, 46–0.5 years] and
range¼ 13–84 years), and 19 patients underwent postopera-
tive MDCT (females¼ 11 [57.9%], males = 8 [42.1%] with
median age ¼ 4 years [interquartile range, 3–6 years] and
range¼ 1–17 years). The average exposure time for the
CBCT protocol was 15.8 seconds, while that for MDCT was
4 seconds. Details of the implanted electrodes are shown in
Table 1.

Qualitative Image Analysis and
Analysis of Electrode Positions
The results of comparison between both
groups regarding visualization of the finer
anatomic details and electrode position-
ing are shown in Tables 2 and 3 (Fig 2).
Scalar positioning of electrodes inside the
cochlea was identified in both groups,
except for 1 ear in the MDCT group
(strong metallic artifacts). In the
CBCT group (n¼ 32), electrodes in
63% of ears (n¼ 20) were inserted in
the scala tympani (2 were barely
visualized), 9% (n¼ 3) were in the
scala vestibuli (1 was barely visual-
ized), and 28% (n¼ 9) had scalar dis-
location (1 was barely visualized),
whereas in the MDCT group
(n¼ 19), 79% (n¼ 15) were inserted
in the scala tympani (1 was barely
visualized), 11% (n¼ 2) were in the
scala vestibuli (1 was barely visualized),
5% (n¼ 1) had scalar dislocation, and
5% were nonassessable (n¼ 1). The elec-
trodes with widely spaced contacts
showed perfectly visualized contacts
(n¼ 3) in the MDCT group, despite the
higher metallic artifacts and were
perfectly to well-visualized (n¼ 7
and n¼ 2, respectively) in the CBCT
group. The narrowly spaced con-
tacts were barely visualized (n¼ 6)
and were not visualized (n¼ 10) in
the MDCT group compared with
those in the CBCT group: well-
visualized (n = 9), barely visualized
(n¼ 13), and not visualized (n¼ 1).
The barely-to-nonvisualized elec-
trodes in the CBCT group were
mainly Cochlear CI532 and CI512.

Quantitative Image-Quality
Analysis
The results of comparison of the sig-
nal-to-noise ratio between both

groups are shown in Table 4.

Dose Analysis
There was a statistically significant `difference between both
groups in terms of the dose-length product values. The me-
dian (interquartile range) in the CBCT group was 93 (47.6–
93) with a range of 47.6–93 mGy*cm, while in the MDCT
group, the median was (interquartile range) = 387.5 (206–
527.75) with a range of 179–650 mGy*cm (P, .001). The dif-
ference between the maximum doses encountered in both
groups was 557 mGy*cm, representing 85.7% of the maxi-
mum dose encountered in the MDCT group.

FIG 1. Coronal oblique (cochlear view with thick MPR = 5mm) CBCT image showing the mea-
surement of the angle of insertion between the deepest electrode and the reference line joining
the insertion point (round window/cochleostomy center) (a) and the center of a circle formed
by the 3 most apical electrodes (b). The insertion angle¼ 360°- (c). The cochlear lateral wall is
also well-visualized in this thick MPR coronal view (white arrows).

Table 1: Different electrodes with intercontact distancing

Electrodes
Intercontact

Distancing (mm)
CBCT Group
(n= 32)

MDCT Group
(n= 19)

Widely spaced contacts
FLEX28a 2.1 3 0
FLEX-Synchrony-Mediuma 1.9 2 2
HiRes MIDSCALAb 0.975 3 1
CI422*c 0.85–0.95 1 0

Narrowly spaced contacts
CI24RE-CAc Nonuniform 0.4–0.8 9 0
CI512-CAc Nonuniform 0.4–0.8 3 0
CI532-CAc 0.6 11 1
CI24RE-STc 0.75 0 15

Note:—CA indicates contour advance; ST, straight electrode.
aMED-EL.
b Advanced Bionics.
c Cochlear.
All distances were obtained from the portfolios of the electrodes (* except for CI422 cited from Bennink et al.29)
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DISCUSSION
The number of CI operations has increased notably in recent years;
however, there is still a wide spectrum of postoperative outcomes.
Hence, more improvement in the electrode design, surgical
approaches, and evaluation of the related detailed cochlear anatomy
is necessary.5,20 Conventional radiography and MDCT have long
been used for postoperative evaluation. CBCT imaging is a rela-
tively new technique in the imaging of CIs and is reported to have a
better spatial resolution than MDCT, with fewer metallic artifacts
affecting the implant evaluation.3,21

High-resolution images are neces-
sary for the proper visualization of sin-
gle electrode contacts. Verbist et al22

compared 4 different MDCT devices
in the evaluation of CIs. They used an
in-plane resolution (x and y axis) of
0.48–0.68mm and a longitudinal reso-
lution (z-axis) of 0.7–0.98mm, obtain-
ing images with the high resolution
necessary to adequately discriminate
among the different electrode con-
tacts. However, the use of flat panel
detectors in CBCT devices provides
images with higher isotropic resolu-
tion using a submillimeter detector
size ranging from 0.09 to 0.4mm.15 In
the current study, the voxel size used
in the CBCT group was 0.125mm (in
all dimensions), which provided an
isotopic image with high spatial reso-
lution, thus allowing good-to-perfect
visualization of single electrode con-
tacts in 56% of patients (including
widely spaced and narrowly spaced
electrode contacts) compared with
only 16% in the MDCT group (includ-
ing only widely spaced contacts).

The metallic artifacts were also sig-
nificantly lower in the CBCT group
than in the MDCT group (P, .001).
However, some of the patients under-
going CBCT implanted with CI532
(intercontact distance of 0.6mm) and
CI512 (nonuniform intercontact dis-
tance ranging from 0.4 to 0.8) had
high to-moderate metallic artifacts,
leading to poor visualization of elec-
trode contacts. The signal-to-noise ra-
tio was significantly lower in the
CBCT group; this finding can be
explained by the higher scattered radi-
ation of CBCT, which is one of its
main disadvantages, which decreases
the contrast resolution and increases
image noise.8 The other disadvantage
of CBCT was the relatively longer ex-
posure time, which may increase the
risk of motion artifacts. However, in

patients with dizziness, shortened techniques with slightly lower
resolution can be used to overcome this.

Some studies have examined the role of CBCT in the assessment
of postoperative CIs in vitro.12,13 These studies compared the results
of image analysis, including scalar positioning of the electrode, the
presence of kinking, the number of intracochlear electrode contacts,
and proper overall insertion using CBCT with those of histopatho-
logic examinations in temporal bone specimens and concluded that
CBCT as a noninvasive approach yielded results comparable with

Table 2: Qualitative image scoring results for fine anatomic structures and metallic
artifacts

Scale Points CBCT Group (n= 32) MDCT Group (n= 19) P Value
Cochlear inner wall
Not visualized (0) 1 (3%) 0 (0%) ..99
Barely visualized (1) 3 (9%) 2 (10.5%)
Well-visualized (2) 6 (19%) 3 (15.8%)
Perfectly visualized (3) 22 (69%) 14 (73.7%)

Cochlear lateral wall
Not visualized (0) 0 (0%) 1 (5%) .001
Barely visualized (1) 0 (0%) 0 (0%)
Well-visualized-(2) 2 (6%) 8 (42%)
Perfectly visualized (3) 30 (94%) 10 (53%)

Modiolus
Not visualized (0) 0 (0%) 0 (0%) .37
Barely visualized (1) 2 (6%) 0 (0%)
Well-visualized (2) 5 (16%) 1 (5%)
Perfectly visualized (3) 25 (78%) 18 (95%)

Osseous spiral, lamina
Not visualized (0) 18 (56%) 19 (100%) .002
Barely visualized (1) 10 (31%) 0 (0%)
Well -visualized (2) 4 (13%) 0 (0%)
Perfectly visualized (3) 0 (0%) 0 (0%)

Mastoid facial, canal wall
Not visualized (0) 4 (13%) 4 (21%) .07
Barely visualized (1) 10 (31%) 6 (32%)
Well-visualized (2) 9 (28%) 9 (47%)
Perfectly visualized (3) 9 (28%) 0 (0%)

Metallic artifacts
Very strong artifact (0) 0 (0%) 0 (0%) ,.001
Strong artifacts (1) 6 (18.8%) 14 (74%)
Moderate artifacts (2) 22 (68.8%) 5 (26%)
Weak artifacts (3) 4 (12.5%) 0 (0%)

Table 3: Qualitative image scoring results for electrode evaluation
Scale Points CBCT Group (n= 32) MDCT Group (n= 19) P Value

Electrode scalar position
Not visualized (0) 0 (0%) 0 (0%) .046
Barely visualized (1) 4 (13%) 3 (16%)
Well-visualized (2) 3 (9%) 7 (37%)
Perfectly visualized (3) 25 (78%) 9 (47%)

Single electrode contact
visibility

Not visualized (0) 1 (3%) 10 (52.6%) ,.001
Barely visualized (1) 13 (41%) 6 (31.6%)
Well-visualized (2) 11 (34%) 0 (0%)
Perfectly visualized (3) 7 (22%) 3 (15.8%)

Insertion angle of electrode
Not measurable (0) 0 (0%) 0 (0%) ..99
Measurable (1) 32 (100%) 19 (100%)

Mean, 437.7° [SD, 120.8°] Mean, 329.4° [SD, 80°]
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those of histopathologic analyses, encouraging its clinical use.
Razafindranaly et al14 compared the role of CBCT with that of
MDCT in 9 patients in terms of scalar localization, insertion depth,
and radiation doses. They concluded that there was good agreement
between the 2 modalities in the evaluation of insertion depth; how-
ever, CBCT could be superior to MDCT in determining the scalar
location of electrodes with lower doses.

Our results are in line with these previous studies because perfect
visualization of the scalar position of the electrode was successful in
78% of cases in the CBCT group compared with 47% in the MDCT
group. There was no statistically significant difference between both
groups in the ability to measure the electrode insertion angle.
Nevertheless, Jia et al23 had difficulty in assessing the scalar position
of electrode or interscalar translocation using the mobile intraopera-
tive CBCT device compared with previously obtained images using
MDCT in the same patients; however, this issue could be attributed
to the differences between mobile and fixed CBCT devices and the
lack of specialized neuroradiologists during the operation.

The assessment of cochlear walls is essential for electrode
localization, scalar position, and evaluation of postimplant
inner ear trauma. Verbist et al22 concluded that the outer
(lateral) cochlear wall could be better evaluated than the
inner wall, a result attributed to the thick outer wall being a
part of the otic capsule (dense bone), which provides a

better contrast with the cochlear
lumen, unlike the inner wall, which
contains neural elements with
lower density.

Our study revealed a statistically sig-
nificant difference between the 2 groups
regarding the visualization of the coch-
lear outer wall (P, .001), with it being
perfectly visualized in 94% of the
patients of the CBCT group compared
with 53% in theMDCT group; however,
there was no significant difference in the
visualization of the cochlear inner wall
(P. .99) and the modiolus (P¼ .37).
Perfectly visualized cochlear inner walls
and modioli were reported in 69% and
78% of patients in the CBCT group,
respectively, compared with 73.7% and
95% in the MDCT group. This finding
could be attributed to the larger number
of lateral wall electrodes used in the
MDCT group compared with the more
perimodiolar and midscalar electrodes
used in the CBCT group in our study
population. The proximity of the elec-
trode to the lateral cochlear wall or the
modiolus can degrade the image quality
by metallic artifacts. Furthermore, the
osseous spiral lamina could be identified
in only the CBCT group, in which 31%
were barely visualized and 13% were
well-visualized. The visualization of the
spiral lamina could be further used for

better evaluation of electrode translocation and inner ear trauma af-
ter CI.

The facial nerve canal, though an extracochlear anatomic
structure, is an important surgical landmark in the CI field.24 In
the current study, the good-to-perfect visualization of the facial
canal bony wall was higher in the CBCT group than in the
MDCT group. Although the difference was nonsignificant, this
finding might allow a better radiologic evaluation of postopera-
tive complications such as facial nerve injury or stimulation.

Many studies have compared the radiation dose of MDCT
and CBCT in the assessment of CIs.25 Guberina et al26 compared
CBCT with MDCT with 3 different machines (128-, 256-, and
384-multislice CT scanners) by imaging 4 temporal bone speci-
mens and concluded that the dose-length product of a CBCT ex-
amination was 9%–15% of the dose-length product used during
MDCT. In another study, this mean value was 200 [SD, 53.4]
mGy*cm for CBCT compared with 605 [SD, 57.2]
mGy*cm for MDCT.21 Our results also revealed significant radia-
tion dose differences between the 2 groups. The dose-length
product for the CBCT group ranged from 47.6 to 93 mGy*cm,
while it was 179–650 mGy*cm for the MDCT group, indicating a
reduction of about 85.7% of the maximum dose with CBCT com-
pared with MDCT. However, the low radiation dose is associated
with a decreased signal-to-noise ratio, which makes CBCT

Table 4: SNR comparison

CBCT Group MDCT Group P Valuea

SNR in bone (median) (IQR) 8.31 (3.8) 10.77 (4.25) .02
SNR in air (median) (IQR) 6.58 (3.85) 11.97 (5.53) .001

Note:—IQR indicates interquartile range.
aMann-Whitney U test.

FIG 2. CBCT group. A, Midmodiolar view (cochlea) shows the modiolus (white arrow), the per-
fectly visualized cochlear lateral wall (black arrow), and the scalar translocation from ST to SV at
the pars ascendens (dashed arrow). B, Axial view (cochlea) shows good visualization of single
electrode contacts, C, Sagittal oblique view shows good visualization of the facial nerve canal
wall (arrow). D, In the MDCT group, the midmodiolar view (cochlea) shows the modiolus (white
arrow), nonvisualized cochlear lateral wall (artifacts) (black arrow), and the difficult scalar local-
ization of the electrode (mostly ST). E, Axial view (cochlea) shows difficult identification of single
electrode contacts and the osseous spiral lamina. F, Sagittal oblique view shows difficult identifi-
cation of the facial nerve canal wall (arrow). ST indicates scala tympani; SV, scala vestibuli.
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unsuitable for soft-tissue imaging and limits its use for visualizing
bone details.7

Other studies examined the possibility of using low-dose CT
in the cadaveric lamb model for assessment of the electrode posi-
tion.27,28 They succeeded in evaluating the electrode position
using a reduced tube current of 50% without an increase in the
artifacts. They stated that the use of low-dose CT protocols might
have results comparable with those of CBCT, both in terms of
image quality and radiation dose. However, further prospective
studies are needed to substantiate this possibility.

The main limitations of our study were the heterogeneity in the
age, the differences in the types of implanted electrodes, and the 2
imaging modalities not being compared in the same group of
patients because of the risk of radiation exposure.

CONCLUSIONS
CBCT imaging in postoperative patients with CIs can provide
images with high spatial resolution and fewer metallic artifacts com-
pared withMDCT, with a relatively lower radiation dose.

Disclosures: Ibraheem M. Al-Dhamari—UNRELATED: Employment: Koblenz University.
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