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PRACTICE PERSPECTIVES

Qualifying Certainty in Radiology Reports through Deep
Learning–Based Natural Language Processing

F. Liu, P. Zhou, S.J. Baccei, M.J. Masciocchi, N. Amornsiripanitch, C.I. Kiefe, and M.P. Rosen

ABSTRACT

BACKGROUND AND PURPOSE: Communication gaps exist between radiologists and referring physicians in conveying diagnostic
certainty. We aimed to explore deep learning–based bidirectional contextual language models for automatically assessing diagnostic
certainty expressed in the radiology reports to facilitate the precision of communication.

MATERIALS AND METHODS: We randomly sampled 594 head MR imaging reports from an academic medical center. We asked 3
board-certified radiologists to read sentences from the Impression section and assign each sentence 1 of the 4 certainty categories:
“Non-Definitive,” “Definitive-Mild,” “Definitive-Strong,” “Other.” Using the annotated 2352 sentences, we developed and validated a
natural language-processing system based on the start-of-the-art bidirectional encoder representations from transformers (BERT),
which can capture contextual uncertainty semantics beyond the lexicon level. Finally, we evaluated 3 BERT variant models and
reported standard metrics including sensitivity, specificity, and area under the curve.

RESULTS: A k score of 0.74 was achieved for interannotator agreement on uncertainty interpretations among 3 radiologists. For
the 3 BERT variant models, the biomedical variant (BioBERT) achieved the best macro-average area under the curve of 0.931 (com-
pared with 0.928 for the BERT-base and 0.925 for the clinical variant [ClinicalBERT]) on the validation data. All 3 models yielded
high macro-average specificity (93.13%–93.65%), while the BERT-base obtained the highest macro-average sensitivity of 79.46% (com-
pared with 79.08% for BioBERT and 78.52% for ClinicalBERT). The BioBERT model showed great generalizability on the heldout test
data with a macro-average sensitivity of 77.29%, specificity of 92.89%, and area under the curve of 0.93.

CONCLUSIONS: A deep transfer learning model can be developed to reliably assess the level of uncertainty communicated in a ra-
diology report.

ABBREVIATIONS: AUC ¼ area under the receiver operating characteristic curve; BERT ¼ bidirectional encoder representations from transformers; BioBERT ¼
biomedical variant of BERT; ClinicalBERT ¼ clinical variant of BERT; NLP ¼ natural language processing; QC-RAD ¼ qualifying certainty in radiology reports

The American College of Radiology has stressed a critical need
for “precision communication” in radiologic reports,1,2 and

clarity has also been recognized by referring physicians as a key
quality metric of radiologic reports.3 However, there are commu-
nication gaps when the referring physician may interpret the

radiologist’s textual expressions that convey diagnostic uncer-
tainty as different from what was intended.4-6

A standardized lexicon for diagnostic certainty7 has been pro-
posed to address this challenge. However, using a restricted lexicon
can only help with lexion-level “one word at a time” interpretation,
while diagnostic uncertainty in the radiology report is typically
context-dependent. It means that the same term may have different
interpretations based on how differential diagnoses are reported in
the context. For instance, “likely to be Arnold Chiari I malforma-
tion” indicates a mildly certain diagnosis, while “likely differential
considerations include demyelinating/inflammatory processes”
indicates uncertainty in the diagnosis. Additionally, standardized
lexicons will not mitigate the problem of overusing “hedge” words
when the diagnosis could be more certain.8

Natural language processing (NLP), an artificial intelligence
technology that analyzes free texts to understand underlying
semantics, has been widely applied to radiology research for
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automatic identification and extraction of clinically important in-
formation.9 However, little work has been done on applying NLP
to assess the diagnostic certainty in radiology reports beyond the
lexicon level (eg, hedging cue terms). NegBio (https://github.
com/ncbi-nlp/NegBio)10 was developed to detect negation and
uncertainty in radiology reports, but the rule-based system highly
depends on identifying relevant hedging terms only, without con-
sidering linguistic contexts. It only performs binary identification
regarding whether a finding is uncertain or not. Other research
has attempted to analyze the certainty of scientific statements
in the biomedical literature through conventional machine learn-
ing methods (eg, conditional random fields,11 support-vector
machines12-14), but the ground truth annotation used to train
these systems is based on which hedging expressions appear in
the sentence, and these hedging expressions do not provide a reli-
able metric in diagnostic radiology reporting.

Recent innovations in deep learning technology provide
improved NLP performance in radiology-related research.15

Exploring state-of-the-art deep learning approaches to develop a
reliable NLP system to qualify the context-aware certainty in radiol-
ogy reporting has great potential to facilitate communications
between radiologists and referring physicians. The goal of this study
is to investigate the potential of deep learning NLP techniques for
qualifying the certainty expressed in the Impression sections of radi-
ology reports (QC-RAD). Specifically, our goal is the following:

1. Establish an NLP system for capturing contextualized cer-
tainty semantics at the sentence level in radiology reports and
build the first annotated data of its kind

2. Develop a deep transfer learning approach so that knowledge
representation learned from a very large universal textual
data set can be transferred through fine-tuning the pretrained
neural networks

3. Conduct experiments with 3 variants of bidirectional encoder
representations from transformers (BERT) models with dem-
onstrated promising results.

MATERIALS AND METHODS
Figure 1 shows the overview of the QC-RAD system, and we will
describe each component in the following subsections.

Data Annotation
In this institutional review board–exempt quality improvement
project, we initially randomly selected 1500 brain MRIs per-
formed at a single academic medical center (UMass Memorial
Medical Center). During the data-cleaning process, we trans-
formed the reports into plain texts and extracted the Impression
sections, which contain free-form texts written by the radiolog-
ists. We then loaded them into the extensible Human Oracle
Suite of Tools (eHOST; https://github.com/chrisleng/ehost)16 for
context-aware certainty annotation. The eHost is versatile for
annotation tasks and has been used by several institutions and
projects for a variety of tasks, including i2b2: Informatics for
Integrating Biology & the Bedside17 and the Consortium for
Health Care Informatics Research18 projects.

We asked 3 board-certified radiologists (S.J.B., M.J.M., and
N.A.) to read sentences from the Impression sections and to assign
each sentence 1 of the 4 certainty categories shown in Table 1. We
define “diagnostic findings” as a diagnostic opinion regarding a spe-
cific disease or other condition.19 The certainty category is not only
dependent on the hedging terms used but is also based on the holis-
tic context expressed in the sentence. In contrast to previous stud-
ies, we did not try to distinguish different hedging terms or phrases
from their different levels of certainty because they are perceived so
differently by physicians, radiologists, and patients.5,6 In our anno-
tation guideline, we compiled a list of hedging terms (Online
Supplemental Data), and using any of them is considered one of
the factors contributing to uncertainties (defined in Table 1).

Initially, the 3 annotators each reviewed 30 head MR imaging
reports and then went through an iterative process of adjusting
the guideline and amending the annotations to reach consensus.
Each annotator then independently annotated an additional 24

FIG 1. Overview of the QC-RAD system workflow.

Table 1: Diagnostic certainty of diagnosis in the Impression section of a radiology report—categories for annotation
Certainty Categories Interpretation Examples
Non-Definitive Describing differential diagnoses without

indicating any confidence or only findings
without any diagnosis

“Less likely differential considerations
include demyelinating/inflammatory
processes”

Definitive-Strong Describing discrete diagnostic findings
without hedging words

“Stable right sphenoid intraosseous lipoma”

Definitive-Mild Describing discrete diagnostic findings with
hedging words

“Findings suggestive of Arnold Chiari I
malformation”

Other Describing recommendations, imaging
techniques, prior studies

“Another follow-up is recommended”
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MR imaging reports according to the finalized annotation guide-
line (derived from the consensus review of the initial 30 reports).
The interrater agreement was calculated (0.74) by mean pair-wise
Cohen k statistics, which showed substantial strength of agree-
ment across annotators.20 Finally, each annotator annotated 180
reports, resulting in a total of 594 reports.

The annotated data were then analyzed for certainty qualifica-
tion, as follows: We performed word tokenization and sentence
boundary identification on all the sentences from the Impression
section of the radiology reports. We then removed sentences that
contained fewer than 4 words (76 sentences) because these short
sentences are typically noise caused by sentence-splitting errors,
resulting in 2352 sentences in total for further analysis; 88.7% of
the sentences were ,25 words in length, with a mean of 14 (SD,
9.5). We then split the annotated certainty data into training data
(80%), validation data (10%), and testing data (10%). The training
and validation data were used for fine-tuning, and the test data
were used as heldout (unseen) data to evaluate the final perform-
ance of the system. The data statistics on 3 datasets are shown in
Table 2.

Deep Transfer Learning
We formulated the certainty assessment task into a multiclass
sentence-classification problem and exploited NLP techniques to
capture fine-grained semantics for classifying each sentence into
1 of the 4 categories defined in Table 1. Recent progress in NLP
has been driven by using deep learning approaches,21 and differ-
ent deep learning architectures have been applied for text classifi-
cation, which typically can be grouped into 2 model families:
Convolutional neural networks are good at extracting local and
position-invariant pattern features,22 while recurrent neural

networks are shown to perform better in modeling long depend-
encies among texts.23 All those approaches require large amounts
of labeled data to reliably estimate the numerous model parame-
ters; however, compared with general domains, annotated data
are more difficult and expensive to obtain in clinical domains
because they require subject matter expertise for high-quality
annotation.

Deep transfer learning24 makes it possible to harness the
power of deep neural architecture when only limited labeled data
are available. In this study, we explored the state-of-the-art NLP
transferring learning model BERT,25 which was developed by
Google Artificial Intelligence and demonstrated breakthrough
performance improvement in a variety of NLP tasks. BERT is a
contextualized word-representation model based on a masked
language model and pretrained using bidirectional transform-
ers,26 and it can take into account sequential dependencies
among words in a sentence for a semantically meaningful repre-
sentation. More information about the BERT can be found in the
Online Supplemental Data.

Preprocessing. We extracted data from the annotation tool and
performed sentence segmentation using the Natural Language
Toolkit (https://www.nltk.org/)27 so that each sentence was paired
with a certainty label described in Table 2. We then used the
WordPiece tokenizer (https://www.paperswithcode.com/method/
wordpiece)28 for tokenization. It breaks each word down into its
prefix, root, and suffix (subwords) in order to mitigate the out-of-
vocabulary issue. For instance, “infarction” will be tokenized as 3
subwords: “in,” “##far,” and “##ction.” To be compatible with
BERT input format, we added the “[CLS]” token at the beginning
of each sentence, and the “[SEP]” token at the end of each sentence.

Model Training (Fine-tuning). To address our sentence-
classification problem, we added a drop-out regularization29 and
a softmax classifier layer on top of the pretrained BERT layer. In
our work, we adopted 3 variants of pretrained BERT models: 1)
The BERT-base model (https://github.com/google-research/bert)
consists of an encoder with n (n ¼ 12 in Fig 2) layers of trans-
former blocks and was pretrained using BookCorpus (https://
github.com/soskek/bookcorpus) and Wikipedia;25 2) BioBERT

Table 2: Data statistics of the 3 data setsa

Train Data Set Valid Data Set Test Data Set

Non-Definitive 585 (30.97%) 73 (30.93%) 73 (30.8%)
Definitive-Mild 329 (17.42%) 41 (17.37%) 42 (17.7%)
Definitive-Strong 503 (26.63%) 63 (26.69%) 63 (26.58%)
Other 472 (24.97%) 59 (25%) 59 (24.89%)
Total 1889 (100%) 236 (100%) 237 (100%)

a Data are the number of sentences and corresponding percentage.

FIG 2. Illustration of using BERT for certainty classification. The input “Findings suggestive of stroke” was classified as “Definitive-Mild.”
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(https://github.com/dmis-lab/biobert)30 was initialized using the
BERT-base and was pretrained using BookCorpus, Wikipedia,
PubMed abstracts, and PubMed Central full text articles; 3)
ClinicalBERT (https://github.com/EmilyAlsentzer/clinicalBERT)31

was initialized using BioBERT and pretrained using around 2 mil-
lion clinical notes in the MIMIC-III database (https://physionet.
org/content/mimiciii/1.4/).32 All 3 model variants shared the same
architecture with the BERT-base model, which consists of 12 layers
of transformer blocks with a hidden size of 768, and 12 self-atten-
tion heads. We fine-tuned all the layers in the model-training pro-
cess. The 3 model variants shared the following hyperparameters:
drop-out probability of 0.1 and maximum sequence (subwords)
length of 80. The optimal batch size, learning rate, and number of
epochs were chosen using the validation data (see the Results
section).

Model Evaluation. We evaluated the performance QC-RAD
using standard metrics: Sensitivity, specificity, and area under the
receiver operating characteristic curve (AUC). For aggregated
evaluation across 4 certainty categories, we use the macro-average
value, which calculates each metric (sensitivity, specificity, or
AUC) independently for each category and then takes the aver-
age. We prefer macro-average to micro-average because we value
the ability of QC-RAD to perform equally well across different
categories. In the context of imbalanced data in which the major-
ity category has many more samples than other categories,
micro-average will be biased toward the dominating majority cat-
egories, while macro-average is less sensitive and considers each
category equally.

Figure 2 shows an example. The input sentence “Findings sug-
gestive of stroke” is composed of a sequence of 4 words. [CLS]
and [SEP] are added prior to being fed into the BERT model. We
first initialize n transformer encoders (n¼ 12 orange blocks in
Fig 2) using the pretrained BERT model, and all the parameters,
including the fully connected layer, will be fined-tuned through
supervised learning using the labeled data (see the “Data
Annotation” section) for certainty classification. Through a mul-
tilayer deep neural network architecture (encoder) in BERT, each
input token will be transformed to a final output embedding (vec-
tor representation). For this sentence-classification task, we use
only the final hidden state of the first token [CLS], which is con-
sidered aggregated sentence representations, and feed it into a
fully connected layer to obtain a probability distribution across 4
certainty categories through the softmax function.

RESULTS
We reported the classification performance against the reference
standard categories assigned by radiologists. The aggregated

results are presented with the macro-average across 4 categories
defined in Table 1. For 3 pretrained language models, we used
grid-search to optimize the batch size (range in 24, 32, and 64)
and learning rate (range in 0.000005, 0.00001, 0.00003, and
0.00005) during the fine-tuning process for a fair comparison.
The number of epochs for fine-tuning training was selected on
the basis of the peak AUC score on the validation data.

Comparative Performance among 3 BERT Models
(Validation Data)
We compared the performance on the certainty classification task
using the 3 pretrained BERT models, and the results are shown in
Table 3. The BioBERT model obtained the best macro-AUC of
0.931, and the BERT-base yielded the best macro-sensitivity of
79.46% and specificity of 93.65%, while ClinicalBERT achieved the
relatively lower macro-sensitivity of 78.52% compared with the
other 2 models (Table 3).

Performance Curve in the Fine-tuning Process (Validation
Data)
Figure 3 shows the performance curve of the BERT-base (left)
and BioBERT (right) across the number of epochs during the
fine-tuning process. Here, we also show the F1 score, which is the
harmonic mean of the positive predictive value and sensitivity.
We observed similar trends on both models. With fine-tuning, all
the performance metrics increased initially and plateaued after
approximately 5 epoch trainings.

Performance on the Test Data
On the basis of the evaluation results (AUC scores) on the valida-
tion data, we chose the best system (BioBERT) and applied it to
the test data as shown in Table 4. The system performs the best
on the “Other” category, with the highest sensitivity of 98.31%,
specificity of 97.19%, and AUC of 0.994. Among the other 3 cate-
gories, the system obtained the highest sensitivity for Non-
Definitive (76.71%), the highest specificity for Definitive-Strong
(95.4%), and the highest AUC for Definitive-Strong (0.964).
Overall, it obtained the macro-average sensitivity of 77.29%, spec-
ificity of 92.89%, and AUC of 0.93 on the heldout unseen data.
Although the Non-Definitive class has a lower AUC score than
Definitive-Strong, the sensitivity of Non-Definitive was better
than that of Definitive-Strong (76.71% versus 74.6%) as shown in
Table 4. In Fig 4, receiver operating characteristic curves of
Definitive-Strong (class 2) and Other (class 3) are closer to the
ideal spot (the closer to the upper left corner, the better).

Error Analysis
We conducted error analysis on the validation data, and the con-
fusion matrix is shown in Table 5. Rows represent the truth label

Table 3: Performance comparison among 3 BERT variants (with their optimal parameters) on the validation data set

Model
No of
Epochs

Batch
Size

Learning
Rate

Macro-Sensitivity
(%) (95% CI)

Macro-Specificity
(%) (95% CI)

Macro-AUC
(95% CI)

BERT-base 4 24 0.00003 79.46 (68.02–87.82) 93.65 (89.26–96.46) 0.928 (0.883–0.973)
BioBERT 6 32 0.00003 79.08 (67.13–87.78) 93.13 (88.58–96.13) 0.931 (0.886–0.975)
ClinicalBERT 5 32 0.00005 78.52 (66.91–87.07) 93.19 (88.57–96.25) 0.925 (0.878–0.971)

Note:—Macro indicates the average on the macro level across different categories.
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assigned by domain experts, and columns indicates the system
predictions. It shows that only 1 (1.7%) sentence in the Other cat-
egory was wrongly classified as Non-Definitive, which explains
the high performance of this category in Table 4. On the basis of
the definition of the “Other” category, it covers a narrow scope of
semantics, and it is easy for the system to pick up the representa-
tive patterns (eg, “follow-up” is a reliable indicator for recom-
mendations). The top 3 error patterns are the following: 1) Non-
Definitive ! Definitive-Mild (11 of 73, 15%), 2) Definitive-Mild
! Non-Definitive (11 of 41, 26.8%), and 3) Definitive-Strong !

Non-Definitive (11 of 63, 17.5%). Those error patterns suggest
that the Non-Definitive category is more challenging to distin-
guish from the other 2 definitive categories.

DISCUSSION
We demonstrated that the interrater agreement of subject matter
experts on certainty interpretations when considering both hedging
term usage and surrounding linguistic contexts is excellent.
Building on this ground truth, we then demonstrated that deep

FIG 3. Performance curve across the number of fine-tuning epochs. The left figure is for BERT, and the right one is for BioBERT.

Table 4: System performance of BioBERT on the test data seta

Category Sensitivity (%) (95% CI) Specificity (%) (95% CI) AUC (95% CI)
Non-Definitive 76.71 (56/73) (65.35–85.81) 90.24 (148/164) (84.64–94.32) 0.919 (0.874–0.964)
Definitive-Mild 59.52 (25/42) (43.28–74.37) 88.72 (173/195) (83.42–92.79) 0.843 (0.76–0.92)
Definitive-Strong 74.6 (47/63) (62.06–84.73) 95.4 (166/174) (91.14–97.99) 0.964 (0.931–0.997)
Other 98.31 (58/59) (90.91–99.96) 97.19 (173/178) (93.57–99.08) 0.994 (0.979–1)
Macro Avg 77.29 (65.4–86.22) 92.89 (88.19–96.05) 0.93 (0.888–0.972)

Note:—Macro Avg indicates average on the macro level across different categories.
a Numerators and denominators for sensitivity and specificity are included in parentheses.

FIG 4. Receiver operating characteristic curves of individual classes on the test data set. Class 0¼Non-Definitive, class 1¼Definitive-Mild, class
2¼Definitive-Strong, and class 3¼Other.

AJNR Am J Neuroradiol 42:1755–61 Oct 2021 www.ajnr.org 1759



transfer learning shows great potential for unlocking contextualized
semantics for certainty assessment of radiology reports using lim-
ited annotated data. Our novel QC-RAD system holds the potential
to facilitate precision communication of imaging findings, as well as
to serve as a new quality measure in radiology reporting.

Multiple publications have stressed the importance of the accu-
rate conveying of diagnostic certainty in the radiology report. Most
recently, a study developed a certainty scale, specifying recom-
mended and nonrecommended certainty terms. The adoption of
such a scale significantly increased the proportion of recommended
certainty terms during a voluntary period.33 Similar to the idea of a
standardized certainty lexicon,7 this approach is limited to term-level
certainty, without taking into account contextual semantics. In con-
trast to prior work that has used NLP to simply identify the instan-
ces of these predefined terms and to count the frequency of specific,
predefined hedging terms, our work has developed a deep learning–
based NLP algorithm that will read and interpret the level of cer-
tainty conveyed in the free text, including surrounding contexts.

Our study categorized the certainty of each sentence in the
Impression section of radiology reports into different certainty cat-
egories. We showed that our automated categorization scheme has
strong operating characteristics compared with a ground truth
based on the radiologists’ consensus. The sentence-level certainty
categorization is a first step toward a more general quantification
of diagnostic uncertainty conveyed in radiology reports.

Deep learning approaches have shown breakthrough results in
many tasks, but it is challenging to train a reliable deep neural net-
work with limited annotation data in a specific domain. Pretrained
language models, such as BERT, greatly alleviate this problem by
training a deeply bidirectional language representation in an unsu-
pervised manner using only a plain text corpus. By leveraging this
universally learned knowledge, we performed the fine-tuning using
the task-specific annotated data so that the learned deep encoder
can be adapted to better fit our target task. Our experiments show
promising results on all 3 variants of the BERT models, leading to
the best macro-average AUC score of 0.93 on the unseen test data.

Among the 3 variant models of BERT, though ClinicalBERT
was pretrained using clinical notes, it did not show any advantage
compared with the other 2 models (BERT and BioBERT) as it did
in other benchmark tasks.31 This finding is possibly because clini-
cal notes often contain ill-formed, nongrammatic sentences, arbi-
trary abbreviations, and typographic errors, which are less likely to
be present in the Impression section of radiology report.
Therefore, the expanded knowledge from clinical notes may not
necessarily benefit the current task and could potentially introduce
noise. BioBERT did show a slight overall performance gain in
terms of the AUC score; however, at a certain threshold, BERT-
base outperformed it on the basis of sensitivity and specificity.

The Impression of the radiology report reflects the radiolog-
ist’s interpretation of actionable findings on the imaging study.
Sometimes the diagnoses are inherently uncertain by imaging
alone. However, when there is near-certainty about the diagnosis,
radiologists should convey confidence.8 Our ultimate goal is to
provide the radiologist with a real-time, automatic measurement
of the level of diagnostic certainty in their report before signing.
Thus, the radiologists will have objective information about the
level of certainty that they are conveying. The current system
classifies 1 sentence into a discrete certainty category. In future
work, we will expand the system by combining the discrete cer-
tainty category with the probability that the certainty level is cor-
rect. Once this expanded system has been developed and
appropriately validated, the quantification of the certainty level
conveyed in the radiology report may be used as a quality metric
to evaluate radiologists’ performance.

There are limitations in this study. First, the data size used for
this study is relatively small, yet the high-quality annotation and
transfer-learning strategy enable the system to learn efficiently,
yielding promising results on the withheld testing data.
Leveraging a larger amount of unlabeled data (eg, unsupervised
representation learning34) would potentially further improve the
performance of the system, which we will explore for future work.
Second, we developed and evaluated the QC-RAD system using
head MR imaging radiology reports only, and its generalizability to
other radiologic specialties needs further investigation. However,
because our system is fully trainable and does not depend on any
heuristic rules, we speculate that it can be easily generalized
to other radiology subspecialties through active-learning35 and do-
main-adaptation learning36 techniques. Third, cross-institutional
external validation on the performance of the system and ground
truth consensus is needed to verify the overall generalizability of
the study, which we will pursue in the near future. We did conduct
an external validation within our institution. Specifically, we ran-
domly sampled a new set of 40 MR imaging head reports from 4
new neuroradiologists (10 reports each) who were not covered by
our original data collection. We asked the same 3 radiologists to
assign 1 of the 4 certainty categories to all the 132 sentences from
the Impression sections of these 40 reports. We found that the
interannotator agreement remained very high with a mean pair-
wise k score of 0.761. We chose the annotations from the annota-
tor who agreed most with the other 2 as ground truth and eval-
uated the performance of QC-RAD on this new data set, achieving
the macro-sensitivity of 84.01%, macro-specificity of 93.59%, and a
macro-AUC of 0.945. This validation experiment demonstrates
great generalizability of our QC-RAD system and ground truth
consensus.

CONCLUSIONS
We developed and validated a deep transfer learning system, QC-
RAD, to automatically assess the level of certainty in head MR
imaging reports. Experimental results demonstrated that QC-RAD
can effectively unlock contextualized semantics of free-text report-
ing language for assessment of diagnostic certainty in radiology
reports, holding the potential to facilitate precision communication
of imaging findings between radiologists and referring physicians.

Table 5: Confusion matrix among different categories

Truth

Prediction
Non-

Definitive
Definitive-

Mild
Definitive-
Strong Other

Non-Definitive 56 11 3 3
Definitive-Mild 11 28 2 0
Definitive-Strong 11 5 46 1
Other 1 0 0 58
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