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ORIGINAL RESEARCH
PEDIATRICS

Effect of Age on GABA1 and Glutathione in a
Pediatric Sample

M.G. Saleh, A. Papantoni, M. Mikkelsen, S.C.N. Hui, G. Oeltzschner, N.A. Puts, R.A.E. Edden, and S. Carnell

ABSTRACT

BACKGROUND AND PURPOSE: Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the human brain and
is implicated in several neuropathologies. Glutathione is a major antioxidant in the brain and is considered a marker of oxidative
stress. Several studies have reported age-related declines in GABA levels in adulthood, but the trajectory of both GABA and gluta-
thione during childhood has not been well explored. The aim of this study is to establish how GABA and glutathione vary with age
during early development.

MATERIALS ANDMETHODS: Twenty-three healthy children (5.6–13.9 years of age) were recruited for this study. MR imaging/MR spec-
troscopy experiments were conducted on a 3T MR scanner. A 27-mL MR spectroscopy voxel was positioned in the frontal lobe. J-differ-
ence edited MR spectroscopy was used to spectrally edit GABA and glutathione. Data were analyzed using the Gannet software, and
GABAþ (GABA þ macromolecules/homocarnosine) and glutathione were quantified using water (GABAþH2O and GlutathioneH2O) and
Cr (GABAþ/Cr and glutathione/Cr) as concentration references. Also, the relative gray matter contribution to the voxel volume (GMratio)
was estimated from structural images. Pearson correlation coefficients were used to examine the association between age and
GABAþH2O (and glutathioneH2O), between age and GABAþ/Cr (and glutathione/Cr), and between age and GMratio.

RESULTS: Both GABAþH2O (r¼ 0.63, P¼ .002) and GABAþ/Cr (r¼ 0.48, P¼ .026) significantly correlated with age, whereas glutathi-
one measurements and GMratio did not.

CONCLUSIONS: We demonstrate increases in GABA and no differences in glutathione with age in a healthy pediatric sample. This
study provides insight into neuronal maturation in children and may facilitate better understanding of normative behavioral devel-
opment and the pathophysiology of developmental disorders.

ABBREVIATIONS: fGM ¼ gray matter voxel tissue fraction; fWM ¼ white matter voxel tissue fraction; GABA ¼ gamma-aminobutyric acid; GSH ¼ glutathi-
one; HERMES ¼ Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy; MEGA-PRESS ¼ MEscher-GArwood point-resolved spectroscopy
sequence; i.u. ¼ institutional units; GMratio ¼ relative GM contribution to voxel volume; GABAþ ¼ GABA with macromolecules/homocarnosine

In vivo MR spectroscopy is a noninvasive tool for measuring
brain metabolite levels to investigate both healthy and pathologic

physiology.1,2 The main inhibitory neurotransmitter gamma-ami-
nobutyric acid (GABA) and the primary antioxidant glutathione
(GSH) are of considerable interest due to their critical roles in gov-
erning neuronal activity and protection against oxidative stress.

However, in vivo measurement of GABA and GSH is challenging
due to substantial signal overlap with creatine (Cr).3 Hadamard
Encoding and Reconstruction of MEGA-Edited Spectroscopy
(HERMES)4 is a novel J-difference editing method that selectively
detects multiple metabolites simultaneously and removes overlap-
ping signals, offering substantial scan time reductions over previ-
ously used MEscher-GArwood point-resolved spectroscopy se-
quence (MEGA-PRESS),5 which is limited to single-metabolite
editing. In the present study, we use J-difference editing methods
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to measure age-related changes in GABA and GSH in vivo in a
healthy pediatric sample.

GABA is critical to brain function throughout the life span,2

playing a vital role in inhibitory control. However, studies of
age-related differences are limited. Most studies examining the
relationship between GABA and age have focused on late develop-
ment to adulthood. Some studies have demonstrated increases in
GABA with age from late childhood to late adulthood,6-8 and
others observed decreases in GABA from late adolescence to
late adulthood.9-11 Also, a small number of cross-sectional stud-
ies have compared GABA between 2 age groups. Silveri et al12

found lower GABA levels in adolescents relative to emerging
adults; Simmonite et al13 demonstrated higher GABA levels in
younger participants relative to older participants. Thus, prior
work seems to suggest an increase in GABA through develop-
ment, followed by a period of relative stability, and then a
decline. However, we have limited understanding of how
GABA levels vary in early life. This information is of particular
interest given the important role of GABA in cortical pruning
and plasticity in early development.14

GSH is a critical element in the natural defense of the cell
against damaging reactive oxygen species. Oxidative stress and
GSH have been implicated in a range of neurologic and psychiat-
ric conditions, including neurodevelopmental and neurodeg-

enerative disorders.15 It has previously been shown in healthy
individuals that plasma levels of GSH decline with age.16

However, plasma measurements do not directly reflect brain lev-
els of GSH, which are most relevant to psychiatric and neurologic
pathologies.17 Only 1 study reported a relationship between MR
spectroscopy measures of GSH and age; GSH levels in the occipi-
tal cortex in healthy young participants were higher compared
with healthy elderly participants.18

Because an understanding of normative neuronal maturation
is essential to understand the biologic basis of normative behav-
ioral development (eg, development of inhibitory control) as well
as to investigate neurodevelopmental disorders, the aim of this
study was to use MR spectroscopy to establish how GABA and
GSH vary with age during early development. Prior work sug-
gests that GABA increases in early adolescence and decreases in
late adulthood, whereas plasma measurements of GSH do not
significantly vary from childhood to adulthood (0–40 years of
age). We therefore hypothesized that GABA increases and that
GSH does not change from early childhood to early adolescence.

MATERIALS AND METHODS
Subjects
A total of 23 children were recruited for this study (Table). The
study protocol and consent forms were approved by the local
institutional review board (Johns Hopkins Medicine). Written
parental consent was obtained for all participants. Additionally,
written assent was obtained from children able to make an inde-
pendent decision to participate (older than 8 years of age).

Acquisition Protocol
MR imaging/MR spectroscopy experiments were conducted on a
Philips 3T MR imaging scanner (Philips Healthcare, Eindhoven,
Netherlands) using a 32-channel head coil. After a high-resolution
(1 mm3) whole-brain 3D MPRAGE acquisition, the MR spectros-
copy voxel was positioned in the frontal lobe on the midline above
the genu of the corpus callosum, to include the anterior cingulate
cortex, as shown in Fig 1. Subjects were scanned using the
HERMES sequence for the simultaneous measurement of GABA
with macromolecules and homocarnosine (GABAþ) at 3.0ppm
and GSH at 2.95ppm. Briefly, the HERMES sequence consists of 4
subexperiments: A) a dual-lobe editing pulse (ONGABA at 1.9 ppm;
ONGSH at 4.56ppm); B) a single-lobe editing pulse (ONGABA); C) a
single-lobe editing pulse (ONGSH); and D) a single-lobe editing
pulse at 7.5 ppm (OFFGABA/GSH). GABAþ- and GSH-edited spectra
were generated using the Hadamard combinations AþB–C–D

and A–BþC–D, respectively. Due
to technical error, HERMES was not
run for 3 subjects in whom the
MEGA-PRESS sequence for detec-
tion of GABAþ was performed
instead (ONGABA at 1.9 ppm and
OFFGABA at 7.5 ppm). MR spectros-
copy data were acquired with the
following acquisition parameters:
30� 30� 30 mm3 voxel size, TE/
TR¼ 80/2000ms, 20-ms editing
pulse duration, 2048 data points, 2-

Sample distribution of the pediatric cohort, voxel tissue composi-
tion, and metabolite concentrationsa

Parameters
No. 23
Sex (male/female) 12/11
Age (yr) 5.6–13.9; 10.2 6 2.5
Male 5.6–13.9; 9.81 6 3.01
Female 8.1–13.1; 10.61 6 1.76

Race (No.)
Black/African-American 4
White 16
.1 race 3

Voxel tissue composition
Gray matter (%) 51.7 6 4.8
White matter (%) 31.0 6 3.5
GMratio (%) 62.5 6 3.8
Metabolite levels
GABAþH2O (i.u.) 2.70–4.37; 3.35 6 0.48
GABAþ/Cr 0.073–0.120; 0.102 6 0.011
GSHH2O (i.u.) 1.07–1.92; 1.50 6 0.24
GSH/Cr 0.036–0.058; 0.05 6 0.006

a Data are minimum–maximum; mean 6 SD.

FIG 1. Structural images showing voxel localized in the frontal lobe on the midline above the
genu of the corpus callosum, to include the anterior cingulate cortex.
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kHz spectral width, 304 transients, and variable power and optimized
relaxation delays (VAPOR) water suppression.19 Inter-leaved water
referencing was applied to minimize the effects of magnetic field
(B0) drift during data acquisition

20 and as concentration reference
data for each subject.

Data Processing
Data were analyzed using Gannet software (Version 3.1).21 A modi-
fied multistep frequency-and-phase correction was applied to the
data to reduce subtraction artifacts,22 followed by a 3-Hz exponen-
tial filter and zero-padding by a factor of 16. Finally, the fully-proc-
essed HERMES and MEGA-PRESS subspectra were combined to
generate GABAþ- and GSH-edited spectra (HERMES only).
Hankel Singular Value Decomposition water filtering was applied

to remove the residual water signal.23 The GABAþ, GSH, and 3.0-
ppm Cr (from OFFGABA/GSH and OFFGABA, respectively) signals
were modeled to calculate GABAþ/Cr and GSH/Cr integral ratios.
MPRAGE images were segmented by using SPM12 (http://www.fil.
ion.ucl.ac.uk/spm/software/spm12)24 to calculate gray matter (fGM),
white matter (fWM), and CSF voxel tissue fractions. Absolute con-
centrations (GABAþH2O and GSHH2O) were also calculated in
institutional units (i.u.), correcting for tissue-dependent signal
attenuation.25 The gray matter ratio (GMratio ¼ fGM / fGM þ fWM)
was calculated using the tissue fractions for correlational analysis, as
described below. To assess data quality, we used B0 drift and water
signal linewidth at full width at half maximum. The Cr signal at
3ppm and the water signal at 4.68ppm were used to estimate B0
drift in the in vivo HERMES and MEGA-PRESS data, respectively,
before frequency/phase alignment. Also, the GABAþ and GSH fit
errors (defined as the ratio of the SD of the fit residual to the ampli-
tude of the modeled peak) from Gannet were used for assessing
modeling errors.21

Analysis
The mean and SD of all fit errors (combining GABA and GSH fit
errors) were calculated, and subsequently determined that a value
of 15% was approximately the 95th percentile (ie,�2 SDs above the
mean); therefore, we used this as a threshold for data rejection
before statistical analysis. Pearson correlation coefficients (r) were
calculated to examine the association between age and GABA and
between age and GSH, with separate analyses for water-
(GABAþH2O and GSHH2O) and Cr-referenced (GABAþ/Cr and
GSH/Cr) measurements, and between age and the GMratio.
Subsequently, correlations of GABAþH2O (and GABAþ/Cr) with
age were calculated in male and female participants separately.
Outliers were identified using the Cook26 distance estimates,
excluding values higher than 4/(n – 2), where n is the sample size.
A P value , .05 was considered statistically significant. Statistical
analyses were conducted in R statistical and computing software
(http://www.r-project.org).27 Unless otherwise stated, values are
presented as mean or mean6 SD.

RESULTS
All participants recruited for the study successfully completed scan-
ning. B0 drift during the 10-minute edited MR spectroscopy acquis-
itions was 2.41 6 0.91Hz, and the water linewidth was 8.22 6

0.49Hz, respectively, indicating good frequency stability and B0 ho-
mogeneity. One GABAþ and 2 GSH measurements were removed
due to fit errors exceeding 15%. The remaining data yielded low fit
errors (GABAþ/GSH: 6.03 6 1.85/8.80 6 1.51%). Figure 2 shows
the edited difference spectra for subjects with fit errors,15%.

GMratio, GABAþ, and GSH measurements are reported in the
Table. Correlations between GABAþH2O (and GSHH2O) and age,
and GABAþ/Cr (and GSH/Cr) with age are shown in Fig 3.
Significant correlations were observed between GABAþH2O and
age (r¼ 0.63, P¼ .002), and between GABAþ/Cr and age
(r¼ 0.48, P¼ .026). Neither GSH measurements nor GMratio sig-
nificantly correlated with age.

When we separated results by sex, correlations of GABAþH2O

to age were observed in both male and female participants (male/
female ratio: r¼ 0.60/0.71, P¼ .07/.01); however, only the

GSH

234 ppm 1

GABA

HERMES + MEGA-PRESS

FIG 2. GABAþ- and GSH-edited spectra from participants with a fit
error of,15%. GABAþ-edited spectra are acquired using both HERMES
and MEGA-PRESS sequences.
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FIG 3. GABAþ and GSH correlations with age. Significant correla-
tions are observed between GABAþ and age, whereas GSH does
not significantly correlate with age. r indicates the Pearson correla-
tion coefficient.
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correlation in female participants was significant. Also, nonsignifi-
cant correlations of GABAþ/Cr to age were observed in both
male and female participants (male/female ratio: r¼ 0.50/0.58,
P¼ .15/.06).

DISCUSSION
Inhibitory dysfunction and oxidative stress are widely impli-
cated disease mechanisms in young children and adolescents,
including in autism,28,29 depression,30 and Tourette syn-
drome.31,32 To understand the involvement of GABA and GSH in
inhibitory dysfunction and oxidative stress with respect to normal
and pathologic development, one must establish baseline distribu-
tions of these metabolites in typically developing children. To our
knowledge, this is the first study investigating age-related effects on
GABA and GSH levels in a healthy young pediatric sample (ranging
from�5 to�14 years of age). Our findings demonstrate significant
increases in GABAþ with increasing age, whereas GSH measure-
ments show no association with age.

The age-related increase in GABAþ we report in this study is
consistent with previous studies that used MEGA-PRESS to assess
GABAþ in healthy adolescents.6,12 Studies have linked GABA
with important functions in the developing brain, including myeli-
nation and synaptic pruning.33,34 Myelination begins during gesta-
tion and extends beyond adolescence, progressing from parietal to
frontal regions.35,36 Besides de novo myelination, existing myelin
can undergo remodeling—such as a change in myelin sheath
length/thickness or internode length—to restore myelination pat-
terns or facilitate neuronal activity during development or learn-
ing.37,38 Oligodendrocyte precursor cells have the potential to
proliferate, differentiate, and form new myelin-forming oligoden-
drocytes.38 Hamilton et al39 recently demonstrated in mice that en-
dogenous release of GABA, which acts on GABAA receptors of
oligodendrocyte precursor cells, reduces the number of oligoden-
drocyte precursor cells and oligodendrocytes produced, thus, the
control of myelination and myelin internode length. Because our
study shows insignificant correlation of GMratio with age, it is pos-
sible that increasing GABAþ levels with age may support remodel-
ing or regulation of existing myelin. Synaptic pruning is an
important process that eliminates unnecessary synaptic connec-
tions to increase the efficiency of neuronal transmission. GABAA

receptors in the dendritic spines of mice trigger synaptic pruning
at puberty, improving spatial relearning.34 Thus, increases in
GABAþ with age may facilitate synaptic pruning to allow the de-
velopment of new cognitive abilities during adolescence. Both
myelin remodeling and synaptic pruning may have structural and
functional implications. Structural implications take place at the
neuronal level and cannot be detected using macroscopic mor-
phometry measurements, whereas functional implications can be
inferred by correlations with relevant measures of cognition (eg,
impulsivity, response inhibition, working memory).7,12

In this study, the overall positive correlation of GABAþ with
age was not sex-specific, with both males and females showing a
positive correlation between GABAþ and age (albeit with a loss
of power associated with splitting the data). In the present study,
female participants’ ages overlapped with the postpubertal period,
which may impact GABAþ,40 and were not controlled for in our
analyses. The absence of consistently significant correlation

values is likely due to the small sample size. The present findings
would ideally be replicated in a larger sample, controlling for
menstrual status in female participants.

There were no GSH differences with age, consistent with a large
study involving 176 healthy subjects that demonstrated no statistical
differences in plasma GSH among 3 age groups (age: 2–11, 12–24,
and 25–40 years).16 These findings suggest that GSH synthesis
remains stable in young children and early adolescents, providing
effective protection against reactive oxygen species. Furthermore,
our results suggest that the trajectory of GSH is consistent between
brain and plasma. Glutathione also exists in an oxidized form,
which is 40–100 times lower than the reduced form (GSH) in a
healthy brain.15,16 Although levels of GSH represent the ability of
the brain to defend against reactive oxygen species, the ratio of
GSH/oxidized glutathione would be a useful indicator of age-related
cellular redox status. However, the current state of MR spectros-
copy lacks the sensitivity to detect oxidized glutathione in vivo.41

The acquisition protocol for this study has limitations. First,
GABA and GSH have low signal amplitudes, necessitating the use
of a large volume of interest. Enhancements in hardware and pulse
sequences42,43 might enable the use of smaller VOIs and more effi-
cient region-specific analyses of brain GABA and GSH changes.
Second, the detected GABAþ signal contains a significant contri-
bution from macromolecules and homocarnosine.44 It is possible
that the presence of a correlation was due to an increase in the con-
centration of macromolecules or homocarnosine as a function of
age, as suggested by a number of studies.45-49 Further studies
applying metabolite nulling47 or macromolecule-suppressed edit-
ing44,50 are required to directly address this question. Third, subject
motion is a concern when scanning children, causing data acquisi-
tion at an unintended location and reduced data quality,51 and
additional concerns for edited measurements. Thus, macromole-
cule-suppressed editing (the most motion-sensitive technique) was
not applied in this cohort. This study did apply real-time frequency
correction,20 resulting in relatively good B0 stability (�3Hz) and
postprocessing frequency corrections to minimize subtraction arti-
facts. Incorporation of motion-and-shim-correction methods52-55

would ensure improved robustness of measurements to motion.
Fourth, the present study focused on 1 brain region. Results may
not be uniform across all brain regions, as demonstrated in
adults.56 Finally, the study uses a cross-sectional design, and future
studies should use longitudinal data to explicitly investigate age-
related changes in GABA and GSH across the brain.

CONCLUSIONS
To our knowledge, this is the first study to demonstrate that
GABAþH2O and GABAþ/Cr increases with age, while GSH does
not in a healthy pediatric sample. Given the increasing use of MR
spectroscopy to measure both GABA and GSH to investigate
both normal and abnormal brain physiology, normative studies
of age-related differences in GABA and GSH are needed.
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