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ORIGINAL RESEARCH
HEAD & NECK

Fully Automated Segmentation of Globes for Volume
Quantification in CT Images of Orbits using Deep Learning

L. Umapathy, B. Winegar, L. MacKinnon, M. Hill, M.I. Altbach, J.M. Miller, and A. Bilgin

ABSTRACT

BACKGROUND AND PURPOSE: Fast and accurate quantification of globe volumes in the event of an ocular trauma can provide
clinicians with valuable diagnostic information. In this work, an automated workflow using a deep learning-based convolutional neu-
ral network is proposed for prediction of globe contours and their subsequent volume quantification in CT images of the orbits.

MATERIALS AND METHODS: An automated workflow using a deep learning -based convolutional neural network is proposed for
prediction of globe contours in CT images of the orbits. The network, 2D Modified Residual UNET (MRes-UNET2D), was trained on
axial CT images from 80 subjects with no imaging or clinical findings of globe injuries. The predicted globe contours and volume
estimates were compared with manual annotations by experienced observers on 2 different test cohorts.

RESULTS:On the first test cohort (n ¼ 18), the average Dice, precision, and recall scores were 0.95, 96%, and 95%, respectively. The
average 95% Hausdorff distance was only 1.5 mm, with a 5.3% error in globe volume estimates. No statistically significant differences
(P¼ .72) were observed in the median globe volume estimates from our model and the ground truth. On the second test cohort
(n ¼ 9) in which a neuroradiologist and 2 residents independently marked the globe contours, MRes-UNET2D (Dice¼ 0.95)
approached human interobserver variability (Dice¼ 0.94). We also demonstrated the utility of inter-globe volume difference as a
quantitative marker for trauma in 3 subjects with known globe injuries.

CONCLUSIONS: We showed that with fast prediction times, we can reliably detect and quantify globe volumes in CT images of
the orbits across a variety of acquisition parameters.

ABBREVIATIONS: ACD ¼ anterior chamber depth; AVD ¼ average volume difference; CNN ¼ convolutional neural network; HD ¼ Hausdorff distance;
IGVD ¼ inter-globe volume difference; WL ¼ window level; WW ¼ window width; MRes-UNET2D ¼ 2D Modified Residual UNET architecture; HU ¼
Hounsfield unit

Open-globe injuries are traumatic full-thickness defects of the
ocular wall. Although frequently diagnosed on clinical evalua-

tion, open-globe injuries involving the sclera may not be obvious
on clinical examination and require surgical exploration for defini-
tive diagnosis and repair.1,2 When thorough ocular examination of
the anterior segment is limited by periorbital edema and hemor-
rhage, blepharospasm, or hyphema, imaging can be helpful to es-
tablish the diagnosis of occult open-globe injury.3 CT is the
preferred imaging technique for assessment of the extent and sever-
ity of suspected traumatic injury to the globe.4,5 Direct CT imaging
findings include altered globe contours or volumes, evidence of

scleral discontinuity, or intraocular foreign bodies or gas.6 An addi-

tional indirect imaging finding is alteration of anterior chamber

depth (ACD), which may either be decreased or increased depend-

ing on anterior or posterior segment location of injury, respec-

tively.7,8 However, CT has been shown to have low sensitivity for

the detection of open-globe injury, ranging from 51%–79%, limit-

ing its value as a screening tool.9-11 In a case series specifically evalu-

ating occult open-globe injuries, CT had similar low sensitivity

ranging from 56%–68%.6

Accurate and reliable quantification of globe volumes in the
event of an ocular trauma can provide clinicians with valuable diag-
nostic information.6 Manual segmentation of the globe contours by
radiologists, though considered the criterion standard, is a time-
consuming and labor-intensive process.12,13 Furthermore, it is also
observer dependent. Automated techniques for globe detection can
remedy the pitfalls of manual segmentation.14

Previous works have proposed the use of semiautomated and
automated techniques to measure ocular volume from CT images
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in the context of surgical planning. Bekes et al12 proposed a geo-
metric model–based segmentation of the globes along with lenses,
optic nerves, and optic chiasms in CT images. Because of the lack of
a criterion standard, they did not report Dice scores. However, they
estimated accuracy using the simultaneous truth and performance-
level estimation algorithm published by Warfield et al15 and
reported mean sensitivity values of 97.41% and 98.04% and specific-
ity values of 98.42% and 97.90% for the left and the right globes,
respectively. Harrigan et al13 used optimized registration and fusion
methods for a multi-atlas framework16 for automated detection of
optic nerves along with eye globes and muscles on clinically
acquired CT images. They reported mean Dice and Hausdorff dis-
tance (HD) of 0.84 and 5.27mm, respectively. Another work by
Aghdasi et al17 segmented the optic nerve, globe, and extraocular
muscles for skull-based surgeries in a 2-step process. The approxi-
mate boundaries of the globe were first determined followed by 2D
shape fitting of the voxels inside the boundary. On 30 publicly avail-
able datasets, they reported an average Dice of 0.81 and 0.79 and
95% HD of 3mm and 2.89mm for the right and the left globes,
respectively.

Convolutional neural networks (CNNs), widely popular in
medical image segmentation tasks, are currently the state of the
art in several object detection tasks.18-20 UNET (Fig 1A),21 a fully
connected deep learning CNN with its multiscale encoder–de-
coder type architecture, is a popular choice in many of these

semantic segmentation problems. Another popular architecture,
ResNet,22,23 is a single-scale setup that improves gradient back-
propagation flow with increased speed of convergence24 by learn-
ing residual features.

In this work, we combine the multiscale framework of UNET
with elements that learn residual features and propose a fully
automated workflow that allows for fast, accurate, and robust
detection of globe contours. The proposed approach uses a deep
learning–based CNN, 2D Modified Residual UNET architecture
(MRes-UNET2D), and axial CT images of the orbits to predict
globe contours, which are then used to quantify globe volumes.

MATERIALS AND METHODS
Convolutional Neural Network
Figure 1C shows the MRes-UNET2D used in this work. The net-
work uses high-resolution 2D axial CT images of the orbits as
inputs and yields contours for the globes, which are then used to
compute globe volumes. The feature analysis path of the architec-
ture uses a series of residual elements to generate multiscale abstract
representations of the input images. The residual element used in
our work,25 shown in Fig 1B, uses a convolution layer, a short-range
skip connection, followed by batch-normalization26 and a rectified
nonlinear activation. A dropout27 layer is introduced between the
analysis and synthesis paths to improve regularization.

FIG 1. A, Architectures for (A) a standard 2D UNET and (C) a Modified Residual UNET 2D (MRes-UNET2D). B, The multiscale architecture in
MRes-UNET2D consists of a series of (B) residual elements at every resolution level. The contextual information is propagated by using a series
of long-and short-range skip connections. The input to the architecture consists of preprocessed axial CT images of the orbits, and the output
image contains contours for the left and right globes.
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The synthesis path of the architecture allows accurate localiza-
tion by reconstructing high-resolution feature maps while adding
contextual information from the corresponding level in the analy-
sis path using long-range skip connections. A final convolution
layer combines the feature maps in the native resolution space to
yield pixel-wise probability maps for the labels of interest. All con-
volutions in the main architecture consist of 2D convolution ker-
nels with kernel size of 3� 3.

Study Population and Imaging Protocol
A cohort of 107 consecutive CT orbit subjects (age, 456 20years; 63
men and 44 women) older than 18 years of age, imaged over a 3-year
period between January 2015 and December 2017, were identified ret-
rospectively with the approval of the local institutional review board.
These subjects presented no imaging or clinical evidence of open-
globe injuries. CT images from these subjects came from 3 different
CT scanners from 2 different manufacturers, Aquilion (Toshiba
Medical Systems) (77 subjects), Somatom Definition AS1 (22 sub-
jects), and Somatom Definition Flash (Siemens) (8 subjects). CT
images for each subject were acquired according to the following clini-
cal protocol: 120 kVp, 150 mAs, matrix size of 512 � 512, field of
view ranging from 125 to 240mm, and in-plane resolution ranging
from 0.25mm to 0.46mm. The section thickness used was either 1 or
2mm.

Three observers, consisting of a neuroradiologist with certifi-
cate of added qualification and 2 residents, agreed on a protocol to
mark the globe contours on the CT images by using an in-house
Matlab (MathWorks)-based graphical user interface. This included
manually tracing the boundary pixels of the globes on axial cross-
sections while excluding eyelids, insertions of the extraocular
muscles, and optic nerves. The observers used the sagittal cross-
sections for reference. The graphical user interface provided the
observers with tools to adjust the window level (WL), window
width (WW), and zoom level, and edit or delete contours to accu-
rately trace the boundaries at a pixel level. No further processing
was done on the contours after they were finalized by the
observers.

The subjects in our study were randomly split into 3 groups: 80
subjects in the training cohort, 18 subjects in test cohort 1, and 9
subjects in test cohort 2. To measure interobserver variability, each
observer annotated the left and the right globe contours for sub-
jects in test cohort 2, blinded to the annotations by others. A con-
sensus observer was generated by using a majority voting scheme
on the individual observer contours. The subjects in the training
cohort and test cohort 1 were randomly split between the 3
observers.

An overview of the proposed workflow is shown in Fig 2 for
the training and test phases. All images undergo an image prepro-
cessing step, which consists of adjusting the WW and WL to
enhance soft tissue contrast between the globes, background
muscle, and bone, followed by rescaling of image intensities for
each subject to have intensities in the range of [0, 1].

From the 80 subjects in the training cohort, 74 subjects, with
2610 images, were used to train the deep learning model; 6 subjects,
with 216 images, were used for validation. Data sampling was per-
formed for an equal representation of images with and without
globes in the training data. The following 2D augmentation

schemes were used: random in-plane translations (610 pixels in
each direction), in-plane rotations selected uniformly from [�15°,
15°], left/right image flips, 2D elastic deformations, and image
zoom. During the training process, augmented images were gener-
ated in run time on every training image batch. Any 3 of the afore-
mentioned augmentation schemes were randomly selected, and an
augmented image was generated by sequentially applying the
selected schemes on each image in a training batch.

Network Implementation
A Dice similarity-based loss function was used to maximize the
overlap between the predicted globe masks and the ground truth
masks. We used the following definition of Dice loss:

LDice ¼
P

nrnpnP
nrn þ P

npn
þ

P
n 1� rnð Þ 1� pnð ÞP

nð1� rnÞ þ
P

nð1� pnÞ

Here, rn and pn refer to the ground truth and the predicted
posterior values at the nth pixel, respectively.

Two different window settings were used to study the impact of
Hounsfield unit (HU) windowing on model performance. The WL
and WW ([WL, WW]) for the 2 experiments were selected to be
[50, 200] and [0, 200] HU. In these experiments, the training
images retained their original image resolutions, which ranged
from 0.25mm to 0.46mm in-plane. We also trained an additional
model in which all training image volumes were resampled to a
common grid by using cubic spline interpolation. This was done to
test if resampling the images to a common resolution provides any
improvement to the performance of the model. The resolution for
the common grid was obtained from the average resolution of the
training set: 0.3mm in-plane and 2-mm section thickness.

FIG 2. A, Train phase and (B) test phase of the MRes-UNET2D archi-
tecture. The deep learning model’s parameters are updated by using
image–label pairs in the training set. After the loss converges, the
learned network parameters are used to predict the globe contours
on test images.
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All experiments were implemented in Python by using Keras
(https://keras.io) with TensorFlow28 computational backend. The
training was performed on a Linux server running Ubuntu, with a
Tesla P100 (NVIDIA) and 16-GB VRAM. The MRes-UNET2D
architecture, with approximately 133,000 trainable weights, was
trained with the following parameters: optimizer¼ ADAM,29 maxi-
mum epochs¼ 120, batch size¼ 5, learning rate¼ 1e�3, decay
factor¼ 0.1. The learning rate was optimized for Dice loss by moni-
toring the training and the validation loss curves for convergence
for a range of learning rates along with performance evaluation on
the validation images. The MRes-UNET2Dmodel used in this work
is also available at https://github.com/spacl-ua/globe-volumes.

We also implemented a standard UNET21 architecture for com-
parison. The convolution layers were zero-padded, with 3 � 3 con-
volution kernels, to yield predictions, which were the same size as
input. The cross-entropy loss function used in the original paper
was modified to a binary cross-entropy loss for the binary classifica-
tion problem. The training and the validation images for this UNET
were the same as those used for training the MRes-UNET2Dmodel
with HUwindowing set to [WL¼ 50,WW¼ 200]. The training pa-
rameters for UNET were as follows: optimizer ¼ ADAM,29 maxi-
mum epochs¼ 120, batch size¼ 5, learning rate¼ 1e�3, and decay
factor¼ 0.1.

Network Evaluation
The generalizability of the models was evaluated by using the fol-
lowing performance metrics: Dice, precision, recall, 95% HD, and
volume difference. These evaluation metrics are defined as
follows:

Dice ¼ 2 � jP \ GTj
Pj þ jGTjj

Precision %ð Þ ¼ jP \ GTj
jGTj � 100

Recall %ð Þ ¼ jP \ GTj
jPj � 100

d H Gs;Psð Þ ¼ max
g2GT

min
p2P

kg � pk

95% HD Gs; Psð Þ ¼ P95 d H Gs; Psð Þ; d HðPs;GsÞ
� �

VD ¼ abs ðVP � VGTÞ
VGT

Here GT refers to the ground truth and P to the predicti-
ons from the network. The one-sided HD between point sets
Gs ¼ g1; g2; . . . ; gnf g and Ps ¼ fp1; p2; . . . ; png is d H Gs; Psð Þ.
We used the 95th percentile (P95Þ of HD, referred to as 95% HD,
because it is slightly more stable to small outliers compared with
taking the maximum value. VP and VGT refer to the total globe vol-
umes computed from the predicted globe contours and ground
truth for a subject, respectively. Higher values of Dice, precision,
and recall imply good performance. Lower values of 95% HD imply
smaller deviation in the predicted contour compared with the
ground truth.

Pair-wise Dice similarity scores were calculated on test cohort
2 between the annotations from the 3 observers, the consensus
observer, and the predictions from MRes-UNET2D. For each
subject, we also calculated the inter-globe volume difference
(IGVD), which is the volume difference in milliliters between the
left and the right globe.

IGVD ¼ VL � VR

To test the generalizability of MRes-UNET2D on cases with
suspected globe injuries, we also evaluated the model on 3 sub-
jects with varying degrees of globe injuries, with conspicuity on
CT imaging ranging from subtle to obvious. These 3 cases were
outside of our study cohort and were identified by the radiolog-
ists retrospectively as test cases with globe injuries.

Statistical Analysis
A nonparametric Kruskal-Wallis test was performed to deter-
mine whether there were any significant differences in the
performance of MRes-UNET2D between different image prepro-
cessing settings. This test was repeated to compare for significant
differences between the standard UNET and MRes-UNET2D. A
2-sided pairedWilcoxon signed rank test was performed to assess
the null hypothesis that the difference in globe volumes predicted
by MRes-UNET2D on test cohort 1 and ground truth annota-
tions come from a distribution with zero median. The signifi-
cance level was selected as .05 for all of these tests. A Bland-
Altman analysis was performed to assess the agreement in the
computed globe volumes per hemisphere between the human
observers, MRes-UNET2D, and the consensus observer. To
determine the variation between observers, reproducibility coeffi-
cient and coefficient of variation statistics were computed. We
also tested for the null hypothesis that the IGVD values from
MRes-UNET2D, consensus observer, and the 3 observers come
from the same distribution by using the nonparametric Kruskal-
Wallis test.

RESULTS
The training of our deep learning model, MRes-UNET2D, took
approximately 5hours. In the test phase, the end-to-end prediction
time for a volume (512 � 512 � 40) was approximately 5 seconds
on 2 NVIDIA P100 GPUs. The actual prediction time, excluding
the pre- and postprocessing times, was approximately 680ms per
volume. Figure 3A shows representative axial CT images corre-
sponding to 2 different window settings. The training and the vali-
dation loss curves for 1 instance of the MRes-UNET2D are shown
in Fig 3B.

A comparison of the effect of preprocessing on the perform-
ance of the MRes-UNET2D on test cohort 1 is shown in Table 1.
The first 2 columns correspond to the different window settings.
The third column shows the performance of the network when all
images are resampled to a common grid of 0.3-mm resolution in-
plane and 2-mm section thickness. Results of the nonparametric
Kruskal-Wallis tests indicated that we were unable to reject the
null hypothesis that the Dice scores (P ¼ .39), average volume dif-
ference (AVD) (P ¼ .57), or 95% HD (P ¼ .87) from MRes-
UNET2D for the different image preprocessing schemes come
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from the same distribution. Overall, we observe that slight varia-
tions in preprocessing did not result in any significant differences
in model performance. For subsequent evaluations, we selected the
model with windowing [50, 200] because on average, it yielded the

smallest HD and AVD with improved
Dice overlap scores among the 3
models.

Figure 4 shows the manual annota-
tion (red) and globe contour predic-
tions from MRes-UNET2D (blue) on
a few representative CT images. On
average, MRes-UNET2D achieved
Dice scores of 0.95 with respect to the
ground truth, with high precision and
recall values of 96% and 95%, respec-
tively. The average 95% HD was only
1.5mm, with a 5.3% error in the esti-
mation of total globe volume. The 2-
sided paired Wilcoxon signed rank
test revealed no significant differences
(P ¼ .72) in the median globe vol-
umes from the ground truth and
MRes-UNET2D predictions on test
cohort 1.

Table 1 also compares the average
performance of MRes-UNET2D to a
standard UNET architecture on test
cohort 1, where with 10� fewer trainable
parameters, MRes-UNET2D obtains
lower mean HD and AVD values while
also improving on the mean Dice and
precision scores (Fig 5). However, we
did not find this difference in perform-
ance to be significant for Dice (P¼ .43),
precision (P¼ .22), recall (P¼ .72), 95%
HD (P¼ .36), and AVD (P¼ .55).

Table 2 shows pair-wise Dice over-
lap metrics for the 3 observers, consen-

sus observer, and our model on test cohort 2. MRes-UNET2D
achieved average Dice scores of 0.97 and 0.95 with respect to the
consensus observer and the individual observers, respectively. The
average Dice between the observers, calculated as an average of

FIG 3. A, Representative axial CT images of the orbits with 2 different HU window settings [window level (WL), window width (WW)]¼ [50,200]
(left) and [0,200] (right). B, Dice loss evolution curves over epochs for 1 of the MRes-UNET2D models.

Table 1: Evaluation of MRes-UNET2D and UNET2D on test cohort 1 (n= 18)a

MRes-UNET2D UNET2D
WL= 50
WW= 200

WL= 0
WW= 200

Common Grid
Resampling

WL= 50
WW= 200

Dice 0.95 (0.02) 0.95 (0.02) 0.94 (0.03) 0.95 (0.02)
Precision (%) 96 (3) 96 (3) 96 (3) 95 (3)
Recall (%) 95 (5) 95 (5) 93 (6) 95 (4)
95%HD (mm) 1.5 (1.3) 1.6 (1.2) 1.6 (1.4) 1.7 (1.2)
AVD (%) 5.3 (5.4) 5.5 (5.1) 6.8 (6.0) 5.8 (4.7)

a Values in the table are mean (standard deviation).

FIG 4. Globe contour predictions from MRes-UNET2D. The predicted contours are overlaid in
blue on representative axial CT images of the orbits from 2 test subjects. The manual annotations
are overlaid in red for reference. The inset shows a close-up comparison of the predictions.
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Dice scores between observer 1 versus observer 2, observer 2 versus
observer 3, and observer 1 versus observer 3, was 0.94, whereas this
value was 0.97 with respect to the consensus observer.

We also performed Bland-Altman analysis to compare the
agreement in globe volumes per hemisphere from the 3 observers
and our model, with respect to the consensus observer.We observed
tighter limits of agreement (coefficient of variation ¼ 2.1% and
reproducibility coefficient ¼ 3.8%) for MRes-UNET2D (Fig 6A)
compared with the human observers (Fig 6B–D).

Figure 7A shows the histogram of IGVD values from the entire
cohort under study (n¼ 98, �0.01 6 0.33mL) excluding test
cohort 2. The boxplot in Fig 7B compares IGVD values from the
consensus observer, MRes-UNET2D, and the human observers on
test cohort 2. The mean (6 standard deviation) IGVD from the
network was 0.05 6 0.24mL compared with �0.10 6 0.25mL,

�0.136 0.23mL,�0.096 0.5mL, and
0.206 0.45mL from the consensus ob-
server and observers 1, 2, and 3, respec-
tively. We were unable to reject the null
hypothesis that the IGVD values in test
cohort 2 from the consensus, MRes-
UNET2D, and the 3 observers come
from the same distribution (P ¼ .3).

Figure 7C shows the globe con-
tours predicted by MRes-UNET2D on
the 3 subjects with suspected globe
injuries along with the IGVD com-
puted for each case. We also com-
puted a z score, a measure of distance
in terms of standard deviation from
the population mean, for each of the
subjects. For subjects 1, 2, and 3 in Fig
7C, the IGVDs were �4.62mL,
2.32mL, and 1.22mL, respectively. The
z score values were 14.16, 7.12, and
3.77 for subjects 1, 2, and 3, respec-
tively. The IGVD for subject 1, for
instance, is indicative of a smaller left
globe compared with the right. Subject
3 highlights a case with subtle globe
injury. The z score distance quantifies
that the IGVD of 1.22mL is approxi-
mately 3.77 standard deviations away
from the mean IGVD from the cohort
of normal subjects, depicting abnor-
mality in globe volumes.

DISCUSSION
In this study, we show that our deep
learning network, MRes-UNET2D, can
provide accurate and reliable detection
of globe contours and quantification of
globe volumes. With fast prediction
times and performance approaching an
average human observer, we show that
globe contour predictions, as well as
volume estimates, can be made avail-

able to radiologists in clinically feasible times. We also observe that
using the proposed deep learning CNN yields improved Dice scores
compared with average Dice scores ranging from 0.80 to 0.85 by
using traditional non-deep learning–based schemes described pre-
viously in the literature.12,13,17 The mean 95% HD was also lowered
to 1.5mm compared with approximately 2.89mm to 3mm.17

We show that MRes-UNET2D works well across images with
different fields of view as well as resolutions. The network does
not need any special processing in terms of changing image reso-
lution to a common grid; the images can be trained and tested in
their native resolution. We observe that minor variations in win-
dow level to change contrast between soft tissue and background
bones did not result in a significant performance difference
between the models. Furthermore, it is important to note that the
training and the testing data in this work come from multiple

FIG 5. Boxplot comparison of the performances of MRes-UNET2D and UNET2D on test cohort 1.
The different panels compare the performances of the deep learning models on Dice, 95%
Hausdorff distance (95% HD), volume difference (VD), precision, and recall. Among the 3 MRes-
UNET2Ds, we selected [window level (WL), window width (WW)] ¼ [50, 200] because it yielded
the best performance across all evaluation metrics.

Table 2: Mean (standard deviation) of pair-wise Dice between the observers, consensus
observer, and MRes-UNET2D on test cohort 2 (n= 9)

Observer 1 Observer 2 Observer 3 Consensus MRes-UNET2D
Observer 1 — 0.95 (0.01) 0.94 (0.01) 0.98 (0.00) 0.96 (0.00)
Observer 2 — 0.93 (0.02) 0.97 (0.01) 0.95 (0.01)
Observer 3 — 0.96 (0.01) 0.94 (0.01)
Consensus — 0.97 (0.00)
MRes-UNET2D —

Note:—— indicates the pairwise Dice between Observer 1 and Observer 1 have no meaning.
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scanners across manufacturers. Therefore, it can be stated that
the proposed network is robust to changes in acquisition parame-
ters and scanner hardware variations across manufacturers.

We show that using a deep learning network can provide
reliable and consistent contour and volume estimates, thereby,
reducing the issues associated with interobserver variability. We
observe that the deep learning model’s predictions are more in
agreement (Dice ¼ 0.95) with the individual observer contours
compared with the agreement between observers (Dice¼ 0.94).

We see that the model, though never trained on images with
suspected globe injuries, generalized well to these images on the
limited test cases used in this study. The IGVD values and z scores
from these cases appear to be useful indicators of suspected globe
injuries and provide quantitative information regarding the extent
of deviation from a normal cohort.

Our proposed technique has limitations. The training cohort
entirely consists of subjects with no imaging or clinical findings
of globe injury. Although we observe generalizability of the model
on a few cases with globe injuries, we currently do not have

ground truth annotations to quantitatively validate the perform-
ance of our model on these cases. However, this limitation can be
overcome by fine-tuning the MRes-UNET2D model using train-
ing data that includes these cases.

Although CT provides superior assessment of size and location
of intraocular foreign bodies, compared with competing imaging
modalities, it has moderate sensitivity for detecting open-globe inju-
ries. This has been reported to be ranging from 51% to 79% and is
suboptimal and observer dependent.6,9-11 Using the IGVD values
from the normal study population as a baseline, we can quantita-
tively compare the IGVD for a given CT image with the population
IGVD value and automatically identify globe-related abnormalities
if the differences between the globe volumes diverge from the nor-
mal population distribution. This comparison could potentially
provide additional valuable information to a radiologist, in clinically
feasible times, to understand whether any subtle globe injuries exist.
We will look at introducing additional parameters such as globe
contour distortions, ACD, anterior and posterior segment volumes,
and lens thickness along with IGVD to quantitatively predict the

FIG 6. Evaluation on test cohort 2 (cohort used for interobserver variability between the observers). The Bland-Altman plots to depict agree-
ment in globe volume estimates (left and right) from (A)MRes-UNET2D, (B) observer 1, (C) observer 2, and (D) observer 3 with respect to the con-
sensus observer. The consensus observer was created by using a majority voting scheme on the individual observer contours. The coefficient of
variation (CV) and reproducibility coefficient (RPC) for each analysis are also shown.
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presence of globe injuries and measure the degree of injury from a
scale of subtle injuries to globe ruptures.

CONCLUSIONS
In this work, we proposed a 2D deep learning architecture, MRes-
UNET2D, to detect globe contours in axial CT images of the orbits.
We showed that the proposed CNN model, trained and validated
on CT images from 80 subjects with no imaging or clinical findings
of globe injuries, obtained an average Dice score of 0.95, with less
than 5.3% error in globe volume estimates. The performance of
MRes-UNET2D approached interobserver variability between 3
human observers. The analysis of images from subjects with known
globe injuries demonstrated the utility of IGVD as a quantitative
marker for trauma.
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