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ORIGINAL RESEARCH
ADULT BRAIN

Aging and the Brain: A Quantitative Study of Clinical CT
Images

K.A. Cauley, Y. Hu, and S.W. Fielden

ABSTRACT

BACKGROUND AND PURPOSE: Though CT is a highly calibrated imaging modality, head CT is typically interpreted qualitatively.
Our aim was to initiate the establishment of a reference quantitative database for clinical head CT.

MATERIALS AND METHODS: An automated segmentation algorithm was developed and applied to 354 clinical head CT scans with
radiographically normal findings (ages, 18–101 years; 203 women) to measure brain volume, brain parenchymal fraction, brain radio-
density, and brain parenchymal radiomass. Brain parenchymal fraction was modeled using quantile regression analysis.

RESULTS: Brain parenchymal fraction is highly correlated with age (R2 ¼ 0.908 for men and 0.950 for women), with 11% overall brain
volume loss in the adult life span (1%/year from 20 to 50 years and 2%/year after 50 years of age). Third-order polynomial quantile
regression curves for brain parenchymal fraction were rationalized and statistically validated. Total brain parenchymal radiodensity
shows a decline as a function of age (14.9% for men, 14.7% for women; slopes not significantly different, P¼ .760). Age-related loss
of brain radiomass (the product of volume and radiodensity) is approximately 20% for both sexes, significantly greater than the
loss of brain volume (P, .001).

CONCLUSIONS: An automated segmentation algorithm has been developed and applied to clinical head CT images to initiate the
development of a reference database for quantitative brain CT imaging. Such a database can be subject to quantile regression anal-
ysis to stratify patient brain CT scans by metrics such as brain parenchymal fraction, radiodensity, and radiomass, to aid in the
identification of statistical outliers and lend quantitative assessment to image interpretation.

ABBREVIATIONS: BPF ¼ brain parenchymal fraction; TIV ¼ total intracranial volume; SD ¼ standard deviation

Abnormalities in brain volumetrics have been associated with
congenital and acquired diseases. Most in vivo studies have

been performed with MR imaging of healthy volunteers and mea-
sure global and regional volume loss.1-8 Lack of an accepted nor-
mative database, together with evidence that measurements are
influenced by differences in postprocessing methods, has limited
quantitative reporting.9

Among adults, MR imaging has been used to identify abnormal-
ities of global brain volume in multiple sclerosis,10,11 amyotrophic
lateral sclerosis,12 and age-related dementia,13 with brain parenchy-
mal fraction (BPF) permitting normalization for subject variabili-
ty.14,15 MR imaging also suggests that brain volume is reduced by
antipsychotic medications,16 steroids,17 alcohol use,18 and radiation
and chemotherapy19 among other things. Changes in brain radio-
density or radiomass (the product of volume and radiodensity), as
a function of disease states are relatively unexplored topics.
Identifying and quantifying tissue loss through volumetric meas-
ures, measures of radiodensity or radiomass, may aid in the diagno-
sis or monitoring of brain pathology. To account for intrasubject
variability as well as variability as a function of age and sex, correlat-
ing metrics with pathology requires a reference database. The initia-
tion of such a reference database is the goal of the current study.

CT imaging appears highly suitable for in vivo study of the
brain because it is routinely acquired in the clinical setting and is
less subject to motion artifacts than MR imaging. Radiodensity
characteristics of the brain and skull enable automated volumet-
ric and radiodensity assessment. Furthermore, the relatively low
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clinical threshold for performing CT provides large numbers of
studies with radiographically normal findings, enabling the gen-
eration of a large reference database for statistical analysis.

In the current study, we report brain volumes from 354 sub-
jects, both before and after normalization to the intracranial vol-
ume, expressed as a function of age and sex. Total radiodensity
and radiomass estimations are also calculated. Statistical methods
are used with quantile regression applied to brain parenchymal
fraction measures. We propose that a clinical database can be
used to quantitatively assess new cases in the context of a clinical
peer group.

MATERIALS AND METHODS
Study Design
This study was limited to a retrospective analysis of head CTs
performed on patients who were identified from the clinical
PACS. The study was approved by this institutional review board
(Geisinger Medical Center), and a waiver of consent was granted.

Study Cohort
All studies were from a single CT scanner during a 2-year time
interval (January 1, 2015, to December 31, 2016). Selected cases
were scanned for nonspecific symptoms (headache, syncope, ver-
tigo), were without known systemic disease, and were discharged
without incident. All control cases were interpreted as having
normal findings (without acute or chronic abnormal findings) by
2 board-certified neuroradiologists.

Imaging Data
The CT scanner (LightSpeed VCT; GE Healthcare) primarily serves
the emergency department of a level 1 trauma center. The axial ac-
quisition noncontrast head CT protocol consists of 135 kV(peak)
and modulated milliampere, minimum 50 and maximum 290mA;
rotation time, 0.75 seconds, acquired from the foramen magnum
through the vertex with a standard 512 � 512 matrix; and 24-cm
FOV at 5.0-mm section thickness. The scanner undergoes a daily
quality assurance procedure, which assesses the radiodensity of
water. This value must be within allowable limits, generally 0–5
HU. Drift or trending is rarely observed. In addition, scanners
undergo an annual inspection by a medical physicist using the
American College of Radiology phantom. Acceptable ranges of
Hounsfield units for clinical scanners are broad (�7 to +7 HU for
water, 110–135 HU for acrylic). This testing is extended to all kV

(peak) values used by the scanner. Additionally, service engineers
routinely test the calibration at preventive maintenance.

Image Processing and Analysis
DICOM images were converted to the Neuroimaging Informatics
Technology Initiative data format using MRIConvert-2.0.7 (https://
www.softpedia.com/get/Science-CAD/MRIConvert.shtml). Images
were first thresholded from �15 to 50 HU to grossly remove back-
ground and skull. Brain extraction was then applied using the FSL
Brain Extraction Tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET)
with a fractional intensity threshold of 0.01. All cases were carefully
reviewed for the integrity of brain extraction. For segmentation, a
3-tissue-compartment segmentation using the FMRIB Automated
Segmentation Tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fast) was
used, with the resulting white matter and gray matter compart-
ments combined into a single brain compartment (Fig 1). The brain
parenchymal fraction (BPF) was calculated as the ratio of brain vol-
ume to total intracranial volume, consisting of brain plus CSF
space. Brain radiomass was calculated as the product of mean brain
radiodensity and brain volume.

Statistical Methods
Statistical analysis was performed using GraphPad Prism software,
Version 7.0c for Mac OS X (GraphPad Software). Polynomial
regression models were performed in R Studio (Version 1.2.1335;
http://rstudio.org/download/desktop). The overall polynomial
regression of third degree of age was fitted on the BPF, after adjust-
ing for sex. For male and female subgroups, quantile regression
was adopted to characterize BPF, with the polynomial term of age.
Models were evaluated using leave-one-out cross-validation, and
root-mean-square errors were computed for predictive accuracy.
At a .1 significance level, significant differences were observed in
BPF between men and women.

RESULTS
Brain Parenchymal Volume
A scatterplot of brain parenchymal volume from adult male
and female subjects as a function of age is shown in Fig 2A. The
mean brain volume for men is 12096 133.6 cm3, and for women,
1056 6 107.4 cm3). Across all ages, whole-brain volumes were
approximately 10% smaller for female subjects. The slopes of the
linear regression trendlines for brain volume (men, R¼ 0.413,
R2 ¼ 0.17; women, R¼ 0.425, R2 ¼ 0.18) are not significantly dif-
ferent between the sexes (P¼ .5451) (On-line Table 1). The loss of

brain volume calculated from the lin-
ear trendline from 20 to 100 years is
14.0% for men and 13.9% for women,
without a significant difference.

Brain Parenchymal Fraction
BPF from adult male and female sub-
jects as a function of age is shown in
Fig 2B. The brain parenchymal fraction
ranges from approximately 0.9 to 0.75,
showing a curvilinear decline with age.
The mean BPF is 0.843 for women and
0.847 for men and the difference was

FIG 1. Brain extraction and CSF segmentation. A, Raw head CT image. B, Brain extracted image; vol-
ume¼ TIV (total intracranial volume). C, Thresholded to identify CSF. BPF¼ TIV–CSF volume/TIV.
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not significant between the sexes (Student t test, P¼ . 48). Linear
regression with age shows R2 ¼ 0.51 for men and 0.62 for women.
BPF shows a decreased coefficient of variation relative to brain vol-
ume (3.085% vs 11.06% for men, 4.632% vs 10.2% for women; male
data is shown in On-line Table 1).

The bar charts (Fig 2C and 2D) show decade groupings of the
age cohorts. The BPF shows increased correlation with age, with

decreased SD relative to brain volume measure. Statistical corre-
lations of brain parenchymal volume and BPF are shown in On-
line Table 2.

Brain Parenchymal Density
The brain parenchymal density (Fig 3A) is taken as the mean
Hounsfield unit number for total brain parenchyma. Considerable

FIG 2. A, Brain volume as a function of age and sex. B, Brain parenchymal fraction as a function of age and sex. C, Bar chart of brain volume with
decade age grouping, with SDs. Gray bars indicate men; white bars, women. D, Bar chart of BPF with decade age grouping, with SDs. Gray bars
indicate men; white bars, women.
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variation is seen in the mean parenchymal density for both sexes.
The mean Hounsfield unit density for men is 30.296 3.20, and for
women, 29.58 6 2.70. Male mean brain parenchymal density is
slightly-but-significantly greater than for women (P¼ .0263). The
mean brain parenchymal density declines significantly with age
from 31.34 to 28.91 for men (P, .0061, �7.74%) and from 30.64
to 28.54 for women (P¼ .0026, �6.8%). The slopes of the linear
regression lines are not significantly different (P¼ .76). Analysis by
decade grouping by age shows that the third decade (20–29 years)
is significantly different from the older groups (male data shown in
On-line Table 3).

Brain Parenchymal Radiomass
Brain volume multiplied by brain radiodensity yields total brain
radiomass, measured as cubic centimeter � Hounsfield unit
(Fig 3B). The mean brain radiomass was 36,671.6 6 5954 for
men and 29,2916 8816 for women, with female brain radiomass
being consistently approximately 20% less than for men. For
women, the brain mass was 34,876 at 18 years and 27,673 at
100 years, a 20.7% decline. For men, the brain mass was 40,679 at
18 years and 31,709 at 100 years, a 22% decline, with differences
in regression slopes not significant (P¼ .325). Significance
between decade cohorts is achieved between the third decade and
the older decade cohorts (male data shown in On-line Table 3).

Quantile Regression
BPF was chosen to illustrate quantile regression. The overall poly-
nomial regression of third degree of age was fitted on the brain
parenchymal fraction, after adjusting for sex. Overall polynomial
regression indicated differences between men and women (mean
difference ¼ �0.005; 95% confidence interval, 0.01 to �1e-04;
P¼ .046). Therefore, we fitted a quantile regression model of third
degree of age on brain parenchymal fraction for men (Fig 4A) and

FIG 3. A, Brain parenchymal radiodensity as a function of age and sex. B, Estimated brain radiomass (volume� radiodensity) as a function of age
and sex.

FIG 4. Quantile regression of brain parenchymal fraction. Scatterplot
of BPF as a function of age for female patients (A) and male
patients (B). Quantile regression lines are drawn by polynomial
curve fitting with 5th and 95th percentile as dashed lines, and 10th
and 90th percentile as dotted lines. Polynomial coefficients are
shown in Table 1.
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women (Fig 4B), respectively, with a polynomial curve of third
degree of age plotted at 0.05-tile and 0.95-tile, and 0.10-tile and
0.90-tile. The coefficients of the polynomial regression models are
shown in the Table.

DISCUSSION
Our study is a quantitative analysis of clinical images. Most brain
studies of this type are performed with MR imaging, on healthy
volunteers under ideal conditions. The goal of the current study
was the development of a clinical tool; our study is derived from
clinical images so that patients can be compared with their clini-
cal peer group using the same imaging technique under identical
conditions. While current image interpretation is largely qualita-
tive, an automated quantitative analysis together with statistical
methods such as quantile regression enables a quantitative assess-
ment of brain parameters.

The data show large variance in brain volumes, consistent
with previous reports that total brain size can vary almost 2-fold
among individuals of the same age.20 Adult brain volumes are
consistent with published literature, with our study focusing on
the parenchymal volume.4,21,22 The female brain parenchymal
volume is 1056 cm3, approximately 12.6% smaller than for men
(mean parenchymal volume, 1209 cm3) not adjusted for body
size, with a near-linear 14.9% decrease in male brain volume and
14.7% decrease in female brain volume during the adult life span
(18–100 years), also consistent with previous reports.3,4

The BPF is taken as a ratio of brain parenchymal volume to
the intracranial volume9,23 and serves to normalize the brain
volume to account for variations in head size, with increased
sensitivity for age-related atrophy or pathology.12,13,15,23,24 To
our knowledge, the BPF has not been previously derived from
head CT imaging. Because brain volume can vary as much as
2-fold even in the younger population, the CT BPF shows
considerably less variation, decreasing from approximately
0.9 in early adulthood to 0.75 in late life, as has been noted in
an MR imaging study of volunteers.3 BPF shows significantly
greater correlation with age than brain volume (On-line
Tables 1–3).

CT has the advantage over MR imaging in that the image sig-
nal intensity is a direct measure of the radiodensity and is a cali-
brated and scaled metric. Previous studies have found declines in
Hounsfield units with aging,25,26 whereas other studies report no
change.27,28 Global variant brain tissue density has been shown to
correlate with acute and chronic pathology.29,30 Imprecisions of
machine calibration may contribute to the variance in radioden-
sity; however, several patterns are evident. First, there is a signifi-
cant negative trendline slope of radiodensity as a function of age
for both men and women (P, .001). Second, the radiodensity of
the 20- to 29-year group in both sexes is statistically significantly
higher than in older groups (On-line Tables 1–3). These data

argue for an age-dependent decline in brain tissue radiodensity.
A decline in brain tissue density may correlate with neuronal loss
and/or an increase in lipid or water content. Myelin is less dense
than water, and relative loss of myelin would not be expected to
result in decreased density.

Most imaging studies of brain atrophy measure the loss of tis-
sue volume only. CT enables assessment of tissue radiodensity,
with the product of radiodensity and volume, yielding an esti-
mate of total brain radiomass. Radiomass can be correlated with
mass measures from postmortem data. An authoritative postmor-
tem study by Svennerholm et al31 showed a 20% decrease in brain
parenchymal mass from 20 to 100 years of age for women and 22%
for men. Our study of decade age cohorts shows a 22% decrease
from the third to the 10th decade for both sexes. The data of
Svennerholm et al also showed that the average female brain mass
is 16% smaller than the male brain mass, whereas the brain volume
is only 10% smaller. Both sets of data illustrate that brain mass
declines significantly more than is reflected by a measure of brain
volume alone.

Quantile regression is used as a quantitative method for
comparing a given case with the total pool of reference cases.
BPF was chosen for illustration. Third-order polynomial was
best fit for the data. Small-but-measurable differences were seen
between men and women, with slightly greater volume loss in
men at older ages (Table). Similar regressions could be per-
formed for each type of quantitative metric. New cases could be
described in terms of the quantile position relative to the refer-
ence database.

Study Limitations
A potential criticism of this database is that included studies may
not be “normal” because each study is obtained for a clinical rea-
son. The goal of this study was not to identify true normal but to
characterize the clinical population and develop a clinically useful
database with which future studies might be compared. A large
database together with statistical methods will approximate nor-
malcy (i.e., the law of large numbers applies) or at least provide a
clinically useful reference. CT entails radiation exposure and
recruiting large numbers of healthy volunteers from the clinical
archive facilitates the development of a large database of both
sexes across the life span.

All data for this study originated from a single CT scanner.
Although contemporary scanners are highly calibrated, differences
between scanners or scan protocols could introduce an additional
variable. Measured volumes and BPFs would be expected to show
little variance across scanners, though measured Hounsfield units
may vary.32 Data from different scanners may be merged using sta-
tistical methods such as z scoring; more rigorous calibration stand-
ards may be necessary for broad implementation of a standard
database.

Coefficients of polynomial regression models

Overall Men (0.05-Tile) Men (0.95-Tile) Women (0.05-Tile) Women (0.95-Tile)
Intercept 0.86 8.32E-01 9.12E-01 8.11E-01 9.54E-01
Age –0.58 4.74E-03 –4.91E-05 5.21E-03 –3.13E-03
Age2 –0.13 –1.32E-04 3.21E-06 –1.19E-04 6.37E-05
Age3 0.04 7.63E-07 –1.15E-07 5.88E-07 –4.72E-07
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CONCLUSIONS
This study demonstrates that a large pool of clinical CT data can
be subject to automated analysis to yield brain metrics supported
by the existing literature. The total brain metrics of BPF, brain
parenchymal density, and brain parenchymal mass derived from
CT images are novel reports and show high correlation with loss
of brain matter as a function of the aging process. Clinical head
CT data can be subject to analytic methods to quantitatively
assess new studies in the context of a clinical peer group.

Disclosures: Keith Cauley—RELATED: Grant: Geisinger Clinical Research Grant,
Comments: internal research grant, no money paid to me; UNRELATED:
Employment: Geisinger Medical Center.
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