
of July 31, 2025.
This information is current as

Cognitive Impairment
Relapsing-Remitting Multiple Sclerosis with
Network Features in Patients with 
Reduced Global Efficiency and Random

Morrow and R.I. Aviv
R. Hawkins, A.S. Shatil, L. Lee, A. Sengupta, L. Zhang, S.

http://www.ajnr.org/content/41/3/449
https://doi.org/10.3174/ajnr.A6435doi: 

2020, 41 (3) 449-455AJNR Am J Neuroradiol 

http://www.ajnr.org/cgi/adclick/?ad=57967&adclick=true&url=https%3A%2F%2Fmrkt.us-marketing.fresenius-kabi.com%2Fajn1872x240_july2025
https://doi.org/10.3174/ajnr.A6435
http://www.ajnr.org/content/41/3/449


ORIGINAL RESEARCH
ADULT BRAIN

Reduced Global Efficiency and Random Network Features in
Patients with Relapsing-Remitting Multiple Sclerosis with

Cognitive Impairment
R. Hawkins, A.S. Shatil, L. Lee, A. Sengupta, L. Zhang, S. Morrow, and R.I. Aviv

ABSTRACT

BACKGROUND AND PURPOSE: Graph theory uses structural similarity to analyze cortical structural connectivity. We used a voxel-
based definition of cortical covariance networks to quantify and assess the relationship of network characteristics to cognition in a
cohort of patients with relapsing-remitting MS with and without cognitive impairment.

MATERIALS ANDMETHODS:We compared subject-specific structural gray matter network properties of 18 healthy controls, 25 patients
with MS with cognitive impairment, and 55 patients with MS without cognitive impairment. Network parameters were compared, and
predictive value for cognition was assessed, adjusting for confounders (sex, education, gray matter volume, network size and degree, and
T1 and T2 lesion load). Backward stepwise multivariable regression quantified predictive factors for 5 neurocognitive domain test scores.

RESULTS: Greater path length (r ¼ –0.28, P , .0057) and lower normalized path length (r ¼ 0.36, P , .0004) demonstrated a corre-
lation with average cognition when comparing healthy controls with patients with MS. Similarly, MS with cognitive impairment
demonstrated a correlation between lower normalized path length (r ¼ 0.40, P , .001) and reduced average cognition. Increased
normalized path length was associated with better performance for processing (P , .001), learning (P , .001), and executive domain
function (P ¼ .0235), while reduced path length was associated with better executive (P ¼ .0031) and visual domains. Normalized
path length improved prediction for processing (R2 ¼ 43.6%, G2 ¼ 20.9; P , .0001) and learning (R2 ¼ 40.4%, G2 ¼ 26.1; P , .0001)
over a null model comprising confounders. Similarly, higher normalized path length improved prediction of average z scores (G2 ¼
21.3; P , .0001) and, combined with WM volume, explained 52% of average cognition variance.

CONCLUSIONS: Patients with MS and cognitive impairment demonstrate more random network features and reduced global effi-
ciency, impacting multiple cognitive domains. A model of normalized path length with normal-appearing white matter volume
improved average cognitive z score prediction, explaining 52% of variance.

ABBREVIATIONS: C ¼ characteristic clustering coefficient; CI ¼ cognitive impairment; CP ¼ Cognitively preserved; g ¼ normalized clustering coefficient;
HC ¼ healthy controls; L ¼ characteristic path length; l ¼ normalized path length; NAWM ¼ normal-appearing white matter; RRMS ¼ relapsing-remitting MS

MS is a chronic inflammatory disease of the central nervous
system characterized by WM and GM axonal loss and de-

myelination and associated with whole-brain atrophy.1 The most
commonly described manifestation of MS is physical disability,
but cognitive impairment is common and underrecognized.2

Historically, WM lesions were considered the primary contributing

factor to impairment; however, WM damage only partly accounts
for functional status, and recent studies have shown that structural
GM measures are crucial contributors to disease manifestation.3,4

A recently introduced method of GM analysis differs from tradi-
tional voxel- and surfaced-based methods by taking advantage of
graph theory applications and MR imaging to obtain parameters
that reflect the structural connectivity of the cortex.5

By means of a graph theoretical approach, sets of nodes
describe spatial regions of gray matter, either obtained from an
atlas6 or defined by cubes of voxels,5 and the edges describe the
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structural similarity between 2 nodes. Networks defined in this
way have been found to exhibit small world properties.7 Small
world networks are more efficient systems, characterized by
higher clustering and similar characteristic path length com-
pared with randomly created networks of the same size and
degree of distribution.8 In comparison, “regular” networks show
both higher clustering and higher characteristic path length
than random networks.8 The graph theoretical approach sup-
ports the axonal tension hypothesis, which theorizes that inter-
connected areas of the brain are structurally similar due to
mutual tension between axons.9 Studies have shown that struc-
tural networks become disorganized in patients with Alzheimer
disease,10 schizophrenia,11 and diabetes.12 However, studies
applying this approach to patients with MS have shown contra-
dictory results.6,13 Rimkus et al13 showed that patients with MS
have a more random network topology than healthy controls
(HC), whereas Tewarie et al6 showed that patients with MS have
a more regular network topology. This inconsistency may be
due to different methods of extracting structural networks and a
higher percentage of patients with secondary-progressive MS
included in the latter study. Patients with secondary-progressive
MS have been shown to undergo different cortical atrophy pat-
terns than patients with relapsing-remitting MS (RRMS),14

potentially altering the structural gray matter network topology
and affecting whole-group analysis. Thus, although graph theo-
retical approaches have shown promise in other disease proc-
esses, methodologic inconsistencies in previous MS studies have
prevented meaningful comparison of results.6,12,15

In this study, we used a voxel-based definition of the GM
structural covariance networks to determine network characteris-
tics in a cohort of patients with RRMS with (CI) and without cog-
nitive impairment (CP). Using the same method as Rimkus et
al,13 we sought to determine the association between network pa-
rameters and CI. Consistent with a more small world network in
normal health and degeneration to a more random network in
disease, we hypothesized a higher degree and density in HC com-
pared with patients with MS and a higher degree, density, and
normalized (l ) and reduced path length in MS-CP versus MS-
CI. We expand on prior reported findings by quantifying the
added contribution to a model of CI of network parameters over
traditional determinants such as white matter lesion load.

MATERIALS AND METHODS
Patient Cohort
Patients with RRMS were prospectively recruited for this ethics
board–approved study from tertiary referral MS clinics and were
age- and sex-matched with HC. MS diagnosis was established
using the revised McDonald (2017) criteria by a senior MS neu-
rologist (20 years’ experience).16 Participants’ clinical histories,
including age, sex, education level, and disease duration, were
recorded. Exclusion criteria were drug/alcohol abuse, relapse or
corticosteroid use within the past 3months, premorbid psychiat-
ric history, head injury (including loss of consciousness), and
concurrent morbidity (cerebrovascular disease and MR imaging/
gadolinium contraindications, including impaired renal func-
tion). Eighty patients with RRMS (55 CP, 25 CI) and 18 healthy
controls were recruited.

Neuropsychological Assessment
All participants were assessed for cognitive impairment using the
minimal assessment of cognitive function in MS, assessing 5 cog-
nitive domains with 7 tests. These domains include learning and
memory (California Verbal Leaning Test-II, Brief Visuospatial
Test-revised); processing speed and working memory (Paced
Auditory Serial Addition, Symbol Digit Modalities Test); executive
function (Delis-Kaplan Executive Function System); verbal flu-
ency (Controlled Oral Work Association Test); and visuospatial
perception/spatial processing (Judgment of Line Orientation test).
Age- and sex-adjusted normative data were used to convert raw
test scores to z scores.17 Z scores less than �1.5 for a single test
defined impairment, and patients impaired on$2 tests were con-
sidered impaired for MS group dichotomization, whereas an aver-
age z score was also calculated for each patient.

Image Acquisition
MR imaging was performed on a 3T MR imaging system
(Magnetom Prisma; Siemens, Erlangen, Germany) with a 20-
channel phased array coil. The acquisitions included sagittal volu-
metric T1 (TR/TE/flip angle, 2300 ms/2.26 ms/9°; number of aver-
ages, 1; FOV, 256mm; section thickness, 1mm; matrix size,
256� 256 mm); T2 sampling perfection with application-opti-
mized contrasts by using different flip angle evolution (SPACE
sequence; Siemens) (TR/TE, 3200/408ms; FOV, 230mm; section
thickness, 0.9mm; matrix, 230� 230 mm); T2 FLAIR (TR/TE,
500/387ms; FOV, 230mm; section thickness, 0.9mm; matrix,
230� 230 mm); and phase-sensitive inversion recovery (TR/TE,
2900/9.5ms; FOV, 220mm; section thickness, 2mm; matrix,
220� 176).

Segmentation and Lesion Measurement
T2 FLAIR images were coregistered to structural T1-weighted
images by Statistical Parametric Mapping software, Version 12
(SPM 12; http://www.fil.ion.ucl.ac.uk/spm/software/spm12). A
neuroradiologist (17 years of experience) used the threshold func-
tion in Analyze (Version 12.0; AnalyzeDirect, Overland Park,
Kansas) to derive the WM T2-hyperintense and T1-hypointense
lesion tracings on T1 and T2 images. Lesion volumes were filled
using the SPM SLF Toolbox (https://github.com/NIC-VICOROB/
SLF) to remove segmentation errors.18 Lesion-filled T1 images
were automatically segmented into cortical GM, WM, and CSF
volumes using the SPM12 segmentation tool (https://neuroimage.
usc.edu/brainstorm/Tutorials/SegCAT12) with the minimum pro-
bability of cortical GM set to 70% to correct for GM/WM partial
volume effects. The segmentations were inspected visually, and no
scan was excluded. GM volumes were realigned with the standard
space Montreal Neurological Institute T1 template and resliced
into 2 � 2 � 2 mm3 isotropic voxels. Deep GM structure volumes
(ie, basal ganglia and thalamus) were segmented using the FMRIB
Integrated Registration and Segmentation Tool, Version 5 (https://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST).

Gray Matter Network Construction
Network construction was performed using a previously pub-
lished process available on-line at https://github.com/bettytijms/
Single_Subject_Gray_Matter_Networks.6 Briefly, realigned and
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resliced GM segmentations were divided into 3 � 3 � 3 voxel
cubes representing the nodes in the structural network. Two
nodes were connected by an edge when their Pearson correla-
tion coefficient exceeded a certain threshold. To correct for
cortical curvature, we rotated cubes by multiples of 45° and
reflected them over all axes to find the maximum correlation
coefficient between each pairing (Figure, left column matrices).

The similarity matrices were then
binarized using a subject-specific
threshold based on permutation test-
ing to ensure a similar chance of
including 5% spurious correlations
for each patient (Figure, right column
matrices).13 The resulting unweighted,
undirected networks were used to cal-
culate the following network parame-
ters: size, degree, connectivity density,
betweenness centrality, characteristic
clustering coefficient (C), and charac-
teristic path length (L). Network
measures were calculated using the
Brain Connectivity Toolbox (https://
www.nitrc.org/projects/bct/). Defini-
tions for the network parameters are
the following19—size: total number
of nodes present in the network;
degree: average number of edges
connected to each node divided by
the total number of nodes; density:
number of edges present in the net-
work divided by the number of pos-
sible edges; betweenness centrality:
number of shortest paths between
any 2 pairs of nodes that pass
through a given node; C: how many
of the nodes are connected to a given
node, which are also connected to
one another; and L: average of small-
est number of edges connecting all
possible pairs of nodes.

Normalized clustering coefficient
(g) and normalized path length (l )
were calculated by dividing C and L
respectively by C and L, obtained from
averaging over 20 randomized net-
works of the same size and degree
distribution.13 The small world coeffi-
cient of the network was then calcu-
lated by dividing g /l . Small world
networks have a characteristic cluster-
ing coefficient much larger than ran-
dom networks and a characteristic
path length approximately equal to
those of random networks. Thus, a
small world network can be seen when
g /l . 1.20

Size, degree, and density are in-
cluded as potential confounders for more complex network pa-
rameters. Characteristic clustering coefficient and path length are
included as important descriptors of graph topology and graph
connectivity. g , l , and small world coefficient are included as
quantifiers for randomness and small worldness. The between-
ness coefficient is included to determine regional hubs in future
analyses.

FIGURE. Pearson correlations (edges) between all pairs of GM regions (nodes) for a group of sub-
jects. Here the rows/columns denote the nodes, and the warmer colors represent the greater
edge weights/connectivity between the nodes. The colored matrices (left column) here show
the weighted undirected network, where the edges are associated with the strength of the con-
nection and are undirected (ie, if node j is connected to node k, then node k is also connected to
node j), resulting in a symmetric connectivity matrix. The black-white matrices are binary undir-
ected networks, where edges are either 0 or 1, indicating the absence or presence of a connec-
tion, and they have no directionality. Nodal correlations are proportional to longer path length.
MS-CI shows a warmer matrix than MS-CP or HC.
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Statistical Analysis
Demographic factors were compared between all patients with
MS and HC or between patients with MS-CI and MS-CP using
the Wilcoxon rank sum test for continuous variables and the
Fisher exact test or x 2 test for categoric variables as appropriate.
Using the ANCOVA with the Fisher least significant difference
test correction, we compared the network parameters between
groups, accounting for confounding factors including sex, educa-
tion, global GM volume, NAWM, and factors of size, degree, and
density. Confounding factors included sex, education, global gray
matter volume, network size and degree, and T1 and T2 lesion
loads. To normalize distributions for T1 and T2 lesion loads, we
used natural log transformation. Similarly, the associations
between each of 9 network parameters and each of 6 neurocogni-
tive domain test scores were tested in patients with MS only. To
control for the multiple comparisons, we applied the Benjamini-
Hochberg adaptive linear step-up method,21 and the adjusted P
value , .05 was considered statistically significant. Partial corre-
lation coefficients were calculated after accounting for confound-
ing factors to determine the correlation of each network
parameter to average cognition by calculating an average z score
for each study participant. Using the backward stepwise selection
procedure in the multivariable linear regression analysis, we
would search for the most significant predictive factors for each
of 5 neurocognitive domain test scores in MS. R2 was estimated
as the goodness-of-fit for each of the models. The higher the R2

value, the better was the model fit. To evaluate significant influ-
ence from network predictors associated to neurocognitive do-
main scores, we performed the G2 likelihood ratio test. The G2

likelihood ratio statistic is the difference between �2L (log

likelihood) of the fitted model (ie, the
model includes both significant net-
work predictors and demographic
variables) and the reference null
model (ie, the model includes only
confounding factors of sex, educa-
tion, global GM volume, and T1 and
T2 lesion loads). The P value was
obtained from the G2 likelihood ratio
x 2 test, and P , .05 was considered
statistically significant. Multicollinearity
was tested using the variance inflation
factor. All analyses were conducted by
SAS, Version 9.4 for Windows (SAS
Institute, Cary, North Carolina).

RESULTS
Group Demographics
Eighteen HC (mean age, 48.7 6 7.2
years; 72% women) and 80 patients
with MS (mean age, 51.8 6 8.6 years;
68% women) with a mean education
of 15 6 2.4 years, disease duration of
15.8 6 8.9 years, and mean Expanded
Disability Status Scale score of 4.3 6

2.3) were included. There was no dif-
ference in the frequency of disease-

modifying drug use between groups (P¼ .80).
CI was present in 25/80 (31%) of patients. Increased T1 and

T2 lesion loads and reduced global GM volume and lower aver-
age and individual domain z scores were present in MS-CI versus
MS-CP. A greater proportion of women composed the MS-CP
cohort (75% versus 52%). Compared with HC, patients with MS
demonstrated an average of 2 fewer years of education and
reduced global GM volume and z scores for processing, learning,
and average cognition (Table 1). Size and degree were higher in
HC versus patients with MS (Table 2), but only degree remained
significantly different after correcting for other confounders.
Therefore, degree was added as an additional confounder when
comparing the other network parameters between HCs and the
MS cohort. Size, density, and degree were not significantly differ-
ent between MS-CP and MS-CI.

Patients with MS demonstrated increased path length (P ¼
.03) and reduced l (P ¼ .02) compared with HC. l (P ¼ .006)
was reduced in MS-CI versus MS-CP (Table 2). Lower l (r ¼
0.36, P , .0004) and greater path length (r ¼ –0.28, P , .0057)
demonstrated a correlation with average cognition when compar-
ing HC with patients with MS. Similarly, MS-CI demonstrated a
correlation between reduced l (r¼ 0.40, P, .001) and lower av-
erage cognition.

Association between Network Parameters and Cognitive
Domains
The On-line Table demonstrates the association in patients with
MS between global GM network properties and the 5 cognitive
domains. Network parameters positively associated with average
cognition were density (P ¼ .002), degree (P ¼ .02), clustering

Table 1: Demographic and clinical characteristics of healthy controls and patients with MS

Characteristics HC
MS

Total Sample MS-CP MS-CI
No. 18 80 55 25
Female sex (No.) (%) 13 (72%) 54 (68%) 41 (75%) 13 (52%)a

Age (mean) (SD) (yr) 48.7 (7.2) 51.8 (8.6) 52.7 (8.8) 49.7 (7.9)
Education (mean) (SD) (yr) 17.0 (2.9) 15.0 (2.4)b 15.2 (2.2) 14.6 (2.7)
Disease duration (mean) (SD)

(yr)
NA 15.8 (8.9) 15.7 (8.4) 15.9 (9.9)

EDSS (mean) (SD) NA 4.3 (2.3) 4.1 (2.4) 4.6 (2.2)
T1 lesion load (mean) (SD) NA 4.0 (5.6) 2.8 (3.3) 6.7 (8.3)c

T2 lesion load (mean) (SD) NA 15.8 (15.8) 11.8 (11.2) 24.6 (20.5)c

Global gray matter volume
(mean) (SD)

875.9 (48.9) 748.5 (69.6)d 761.2 (65.9) 720.6 (70.8)a

NAWM volume (mean) (SD) 616.2 (39.9) 510.9 (101.3)d 540.9 (56.3) 444.7 (141.5)e

Neurocognitive domain score
(mean) (SD)

Processing �0.17 (0.74) �0.90 (0.99)e �0.43 (0.68) �2.01 (0.65)f

Learning 0.12 (0.73) �0.80 (1.29)e �0.093 (0.76) �2.35 (0.74)f

Executive functioning 0.50 (0.75) �0.062 (1.12) 0.30 (0.80) �0.85 (1.32)f

Visual 0.98 (0.20) 0.55 (0.91) 0.79 (0.86) 0.010 (0.80)f

Language �0.70 (0.84) �0.86 (1.05) �0.56 (0.84) �1.53 (1.17)f

Average z score 0.15 (0.41) �0.42 (0.80)e �0.003 (0.48) �1.34 (0.54)f

Note:—NA indicates not applicable; EDSS, Expanded Disability Status Scale.
a Adjusted P, .05 (comparison within MS groups is based on cognitive impairment status).
b Adjusted P, .05 (comparison of total sample of MS patients with healthy control).
c Adjusted P, .01 (comparison within MS groups is based on cognitive impairment status).
d Adjusted P, .001 (comparison of total sample of MS patients with healthy control).
e Adjusted P, .01 (comparison of total sample of MS patients with healthy control).
f Adjusted P, .001 (comparison within MS groups is based on cognitive impairment status).
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(P ¼ .001), and l (P , .001), while path length (P ¼ .04) was
inversely associated. Increased l was associated with better per-
formance for processing (P , .001), learning (P , .001), and ex-
ecutive domain function (P ¼ .0235), while reduced path length
was associated with better executive (P ¼ .0031) and visual
domains. Higher clustering was seen in association with executive
(P¼ .0004) and visual (P¼ .0007) domains. Increased degree and

density were seen with better executive
and visual (P ¼ .0269 and P ¼ .0008)
domains, respectively, whereas size
was increased with better executive
functioning (P ¼ .0315). Betweenness,
g , and small world parameters were
not associated with any domains.

Predictors of Cognitive
Impairment
Network parameters were significantly
associated with models of cognitive
impairment in each domain. The
predictive models of cognitive per-
formance that included the network
parameters demonstrated a better
model fit than the null model in the
processing, learning, and visual do-
mains and for average cognition. l
improved prediction for processing
(R2 ¼ 43.6%, G2 ¼ 20.9; P , .0001)
and learning (R2 ¼ 40.4%, G2 ¼ 26.1;
P, .0001). Density improved predic-
tion of impairment in the visual do-
main (R2 ¼ 27.5%, G2 ¼ 9.2; P ¼
.0024). While degree was signifi-
cantly associated with executive and
language domains, the parameter did
not improve the predictive model
significantly over the null model. A
higher l improved prediction of the
average z score, (G2 ¼ 21.3; P ,

.0001) and, together with WM vol-
ume, explained 52% of average cog-
nition model variance (Table 3).

DISCUSSION
We demonstrate a reduction in l

between HC and patients with MS-
CP and MS-CI after correcting for
confounding factors, including global
GM, sex and education, and lesion
load in the MS subgroup. Reduced l

was directly correlated with average
cognition and associated with im-
paired performance in processing,
learning, and executive domains. l

improved prediction for performance
within the processing domain and
accounted for 43.6% of the variance.

l also accounted for 40% of the variance within the learning do-
main. Path length was increased in patients with MS compared
with HC and correlated with reduced executive and visual do-
main functioning. No associations with cognition were found for
betweenness, g , or small world variables.

Graph theory or network neuroscience is used to represent
the matrix of global brain organization and structural or

Table 2: Values of global gray matter network properties between HC and patients with
MS and within the MS sample based on cognitive statusa

Network Properties
(Mean) (SD) HC

MS
Total Sample MS-CP MS-CI

No. 18 80 55 25
Size 6950.17 (700.80) 6677.81 (589.84) 6607.64 (575.60) 6832.20 (603.02)
Degree 1234.59 (129.73) 1064.42 (124.89)b 1080.08 (113.24) 1029.97 (143.86)
Density (%) 17.77 (0.77) 15.97 (1.59) 16.37 (1.31) 15.10 (1.82)
Clustering 0.439 (0.013) 0.396 (0.034) 0.405 (0.027) 0.377 (0.040)
Betweenness 5998.11 (609.99) 5816.27 (534.55) 5741.29 (513.53) 5981.22 (553.17)
Path length 1.863 (0.009) 1.871 (0.014)b 1.869 (0.012) 1.875 (0.016)
g 1.086 (0.003) 1.081 (0.005) 1.081 (0.004) 1.079 (0.006)
l 1.021 (0.003) 1.015 (0.004)b 1.016 (0.003) 1.012 (0.004)c

Small world 1.064 (0.003) 1.065 (0.004) 1.064 (0.004) 1.067 (0.005)
a HC versus MS group was statistically compared taking into account sex, education, and global gray matter vol-
ume; and the MS-CP versus MS-CI groups were compared with 2 additional confounding factors of T1 and T2
lesion loads (log). Data are corrected for multiple comparisons.
b Adjusted P, .05 (comparison of total sample of MS patients with healthy control).
c Adjusted P, .01 (comparison within MS group based on cognitive impairment status).

Table 3: Predictors of neurocognitive domain scores in total groups of patients with MSa

Standardized Coefficients b Comparing with
the Reference
Modelb (G2)
(P Value)b (95% CI) Significance

Processing (R2 ¼ 43.6%) 20.9 (,.0001)
NAWM volume 0.298 (0.047–0.616) .0229
l 0.548 (0.236–0.895) .0011

Learning (R2 ¼ 40.4%) 26.1 (,.0001)
Education 0.205 (0.022–0.388) .0283
T1 lesion loads (log) �0.300 (�0.581 to �0.019) .0369
l 0.622 (0.332–0.913) ,.0001

Executive functioning
(R2 ¼ 41.0%)

4.4 (.1108)

Education 0.354 (0.170–0.539) .0003
NAWM volume 0.274 (0.020–0.527) .0348
Degree 0.313 (0.095–0.531) .0055

Visual (R2 ¼ 27.5%) 9.2 (.0024)
Sex (M/F) 0.293 (0.056–0.530) .0160
T2 lesion loads (log) 0.367 (0.204–0.714) .0383
Density (%) 0.523 (0.236–0.809) .0005

Language (R2 ¼ 35.8%) 7.9 (.0953)
EDSS (log) �0.376 (�0.648 to �0.104) .0074
Disease duration (log) 0.224 (0.007–0.441) .0433
NAWM volume 0.318 (0.037–0.600) .0274
Degree �0.254 (�0.486 to �0.021) .0330

Average score (R2 ¼ 56.2%) 21.3 (,.0001)
Education 0.305 (0.139–0.471) .0005
T1 lesion loads (log) �0.261 (�0.515 to �0.008) .0434
NAWM volume 0.343 (0.109–0.576) .0046
l 0.404 (0.12–0.696) .0073

a Backward stepwise elimination multivariable regression was conducted after accounting for sex, education,
global gray matter volume, and T1 and T2 lesion loads (log). The Table shows the best regression model for each
dependent variable (neurocognitive domain scores).
b Reference model included only confounding factors of sex, education, global gray matter volume, and T1 and T2
lesion loads (log). The G2 likelihood ratio test was used to compare the best regression model with the reference
model. P , .05 was considered statistically significant.
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functional connectivity by providing a mathematic framework to
model the pair-wise communications between elements of a net-
work. This, in turn, gives insight into how cognitive function is
linked to neuronal network structure. Loss of white matter struc-
tural integrity and network integration is posited as a significant
determinant of cognitive impairment in the “disconnection hy-
pothesis”; however, white matter lesions are characterized by
varying degrees of axonal and myelin loss, despite similar macro-
scopic appearances on MR imaging.22 By controlling for multiple
confounding factors, including both T1 and T2 white matter
lesion load, our results indicate that network parameters explain
variance in cognition beyond that of conventional structural pa-
rameters. Normalized path length or l together with normal-
appearing white matter volume added to a model of average z
score explained 52% of variance. Rimkus et al13 demonstrated
that a lower l value was associated with worse average cognition,
processing, and executive functioning, while Dicks et al23 showed
an association between l reduction and executive functioning.

We extend these findings by showing that l was also associated
with the learning domain and improved predictive models,
accounting for a high degree of variance for processing and learn-
ing. Reduction in l is indicative of a more random network and
mirrors prior findings in MS, mild cognitive impairment, and
Alzheimer disease.13,23,24 Our results reinforce the link between
reduced white matter integrity and impairment, particularly in ex-
ecutive functioning and processing speed.25 fMRI studies suggest
that executive functioning is dependent on a bilateral brain net-
work that requires efficient pathways connecting the dorsolateral
prefrontal, anterior cingulate, and parietal cortices. Similarly, mac-
rostructural white matter abnormality is linked to impairment in
processing speed in neurologically healthy elderly subjects from a
population-based random sample.26

A prior study showed that a short path length is a characteris-
tic feature of the normal human cortex7 and corresponds to a
high global efficiency. Progressive white matter disease burden in
MS causes impairment in global efficiency, characterized by node
disconnection and an increase in path length, similar to our find-
ings.24,27 Reduced global efficiency is also consistent with prior
fMRI studies demonstrating lower functional network integration
in patients with MS.28,29 The relationship between white matter
damage and global efficiency may support the axonal tension hy-
pothesis, which purports that axonal tension between interrelated
cortical areas induces gyration and influences the degree of com-
pactness of neural circuits within the brain.9 The codependence
of path length and white matter disease extent may also explain
why path length did not appear in predictive modeling of cogni-
tive domains. Our findings are disparate from those of Rimkus et
al,13 who observed that a higher path length value could be a con-
sequence of loss of density of connections and reported a shift
with cognitive impairment from increased-to-reduced path
length after correcting for density. We explored the association
between degree and density and all network parameters including
path length but revealed a confounding effect only for degree, not
density. Degree depends on the number and quality of connec-
tions between nodes and thus provides more information than
standard structural parameters. In contrast, GM atrophy
decreases the volume available for creating nodes, directly

affecting graph size and explaining why only degree remained
significant after correcting for GM volume.

Prior studies have reported both increased and reduced path
lengths with cognitive impairment in MS, mild cognitive
impairment, Alzheimer disease, and patients with diabetic reti-
nopathy.6,12,13,23,27,30 Multiple potential explanations exist for
this apparent disparity. There is a paucity of data characteriz-
ing changes in network parameters with disease duration or
disease subtype, especially in MS. Study differences may
therefore reflect cohort differences in disease subtype and du-
ration between the 2 studies or indicate a nonlinear path
length response with disease. Further clarification of the effect
of MS disease subtype and longitudinal network changes is
needed. Tewarie et al6 showed a heterogeneous pattern of spa-
tial reconfiguration of interregional cortical thickness in
RRMS. While the global structural covariance was unaffected
compared with HC, the association between functional con-
nectivity and covariation in cortical thickness showed both
higher and lower functional connectivity, dependent on the
magnetoencephalography frequency band. Differences were
attributed to differential cortical layer responses to frequency
and differences in local and global characteristics of the neu-
ronal population. Similarly, functional and diffusion tensor
MR imaging studies have demonstrated both increased and
reduced cortical activations and connectivity, respectively, in
patients with MS-CI compared with HC, thought to reflect
network reorganization and cortical plasticity, a known hall-
mark of early disease.15,21

Limitations of the study include the use of a 3 � 3 voxel size
to represent individual nodes. It is uncertain what the optimum
cube size is for adequate representation of cortical folding, convo-
lution, and thickness. However, the cube size used in this study is
consistent with prior publications. Reproducibility of node selec-
tion was not tested but is previously reported in HC.31 While we
studied global network parameters and cognition, previous stud-
ies have shown correlations between regional (rather than global)
parameters and cognitive outcomes for attention and executive
functioning domains,15 average cognition, and information proc-
essing.6 A regional analysis would be useful to validate prior stud-
ies and better define the topographic relationship between graph
parameters and cognitive domains. The cross-sectional design of
this study cannot address temporal changes in network parame-
ters or evaluate the impact of progressive cognitive or motor
deterioration on these parameters. A better understanding of the
impact of structural and clinical changes on network parameters
is important but can only be addressed with longitudinal studies.
Pathologic correlates of measured network parameters are un-
known, and further study will be needed to ascertain the utility of
these measures as biomarkers of disease assessment and prognos-
tication. However, monitoring of graph parameters may poten-
tially provide the clinician with insight into the structural or
functional integrity of the connectome. Used in this way, the pa-
rameters could serve as surrogates for monitoring the efficacy of
disease control and to detect early changes that may signify a
decline in network efficiency that preempts cognitive impair-
ment. The biologic processes underlying the graph theoretical
approach are not yet fully understood.5 Further research is
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needed to confirm that structural similarity is a suitable bio-
marker of physical connectedness.

CONCLUSIONS
Patients with MS with CI demonstrate more random network
features and reduced global efficiency impacting multiple cogni-
tive domains. A model of l with normal-appearing white matter
volume improved average cognitive z score prediction, explaining
52% of variance.
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