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REVIEW ARTICLE

The Perplexity Surrounding Chiari Malformations – Are We
AnyWiser Now?

S.B. Hiremath, A. Fitsiori, J. Boto, C. Torres, N. Zakhari, J.-L. Dietemann, T.R. Meling, and M.I. Vargas

ABSTRACT

SUMMARY: Chiari malformations are a diverse group of abnormalities of the brain, craniovertebral junction, and the spine. Chiari 0,
I, and 1.5 malformations, likely a spectrum of the same malformation with increasing severity, are due to the inadequacy of the
para-axial mesoderm, which leads to insufficient development of occipital somites. Chiari II malformation is possibly due to nonclo-
sure of the caudal end of the neuropore, with similar pathogenesis in the rostral end, which causes a Chiari III malformation. There
have been significant developments in the understanding of this complex entity owing to insights into the pathogenesis and
advancements in imaging modalities and neurosurgical techniques. This article aims to review the different types and pathophysiol-
ogy of the Chiari malformations, along with a description of the various associated abnormalities. We also highlight the role of
ante- and postnatal imaging, with a focus on the newer techniques in the presurgical evaluation, with a brief mention of the surgi-
cal procedures and the associated postsurgical complications.

ABBREVIATION: CM ¼ Chiari malformation

Chiari malformations (CMs) are a group of rhombencephalic
abnormalities, initially described by Hans Chiari, tradition-

ally classified into 4 types.1-3 Types I to III are associated with a
varying degree of caudal displacement of the contents of the pos-
terior fossa, along with cerebellar tonsillar herniation through the
foramen magnum. Type IV is characterized by cerebellar hypo-
plasia or aplasia and an occipital encephalocele.1-3 Because of the
complex nature of the associated abnormalities, CMs can present
with diverse clinical manifestations, secondary to the involvement
of the cerebellum, brain stem, spinal cord, lower cranial nerves,
and altered CSF flow dynamics. Recent advances in imaging tech-
niques, such as phase-contrast imaging, cine MR imaging, and
DTI, with frequent imaging and surgical management of these

malformations, necessitate a re-evaluation of this classification
because some forms do not conform well to the previously
described categories. We present herein a review of the existing
literature on the newer types of CMs, their etiopathogenesis,
associated abnormalities, and postsurgical evaluation.

Types and Prevalence of CMs
Chiari I malformation (CM-1) is characterized by caudal migra-
tion of the cerebellar tonsils below the foramen magnum by
.5mm (Fig 1).1,2,4-6 The prevalence of CM-1 was previously esti-
mated to be,1%, with a mild female preponderance.7 However,
with the frequent use of neuroimaging, incidental identification
of CM-1 is estimated to range between 1% and 4% in individuals
undergoing MR imaging of the brain and cervical spine.8 An
advanced form of CM-1, associated with caudal migration of the
obex beyond the foramen magnum, and elongation of the me-
dulla and fourth ventricle, is described as CM-1.5 (Fig 2).3,4,9

Tubbs et al10 described a prevalence of CM-1.5 in 17% of individ-
uals initially diagnosed as CM-1.9 The higher rates of revision
surgery for persistent syringohydromyelia after posterior fossa
decompression in CM-1.5 highlight the need to distinguish
between the 2 variants.4,9 Individuals who present with typical
clinical symptoms of CM-1 and syringohydromyelia but lack ton-
sillar and brain stem herniation are classified as CM-0. Milhorat
et al11,12 described the occurrence of mild tonsillar herniation
(,5mm), along with syringohydromyelia and clinical features
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typical for CM-1 in 8.7% of patients who are symptomatic, calling
it low-lying cerebellar tonsil syndrome.

CM-2 is characterized by caudal migration of the brain
stem, cerebellum, and fourth ventricle through the foramen
magnum, along with inferior displacement of the cervical

spinal cord (Fig 3).1,2,13 The occurrence of low occipital or
high cervical encephalocele with signs of CM-2 other than
lumbar meningocele and/or myelomeningocele is described as
a CM-3.1,2 Since the initial description of CM-3, there have
only been approximately 60 reported cases.3,14 The only
reported case of occipitocervical encephalocele communicat-
ing with the foregut has been referred to as CM-3.5.3,15,16

CM-4, currently termed “primary cerebellar agenesis” or
“severe cerebellar hypoplasia,” was initially described as cere-
bellar hypoplasia with occipital encephalocele.2,3 CM 5 is the
coexistence of lumbar meningocele and/or myelomeningocele
(CM-2), with a low occipital or high cervical myelomeningo-
cele (CM-3).17

Pathophysiology of CMs
The exact etiopathogenesis of CM-1 is not entirely understood.
There is no single hypothesis that can explain the occurrence of
CM and all the associated abnormalities. CM-1 is thought to be
due to the inadequacy of paraxial mesoderm after the closure of
the neural tube, leading to insufficient development of occipital
somites.18,19 Although a small posterior fossa is not necessarily
seen in all patients with CM-1, individuals with a small posterior
fossa tend to be symptomatic at an earlier age, present with
syringohydromyelia, and show a better response to subocci-
pital decompression.20-23 CM-0, CM-1, and CM-1.5 share a
common pathophysiologic basis and could likely represent a
spectrum of the same malformation, with increasing severity,
rather than distinct entities.

CM-2 is believed to be due to nonclosure of the caudal end of
the neuropore, leading to the egress of CSF from the CNS.24,25

The ventricular distension acts as a scaffold for neurodevelop-
ment, primarily of the supratentorial cerebral parenchyma and
surrounding mesenchyme, which form the skull vault and
base.25,26 The absence of adequate ventricular fluid and the failure
of distension of the developing ventricles lead to disorganized de-
velopment of the CNS, which results in abnormalities, including
callosal dysgenesis, anomalous neural migration, and falx defects.
Secondary effects include mesenchymal maldevelopment and a
small posterior fossa, which proves inadequate to contain the
developing hindbrain. This leads to caudal descent of the cerebel-
lar vermis, the tonsils, and the fourth ventricle through the
foramen magnum into the cervical spinal canal and also to
obstruction of CSF flow, with resultant hydrocephalus. CM-3
shares a similar pathophysiology with the defect that involves the
rostral end of the neuropore. In fetal life, the neurenteric canal
establishes a temporary communication between the yolk sac and
the amniotic cavity, and possibly maintains equal pressures in the
2 cavities.27 CM-3.5 may be due to the persistence of the neuren-
teric canal with resultant abnormal communication between the
yolk sac and the amniotic cavity.15

Associated Abnormalities
The associated abnormalities in CM can be categorized based on
their anatomic location into those that involve the brain and spi-
nal cord, skull and vertebral column, ventricles, and meninges, as
described in On-line Table 1.

FIG 1. CM-1. Sagittal T2WI of the cervical and upper thoracic spine
(A) shows cerebellar tonsillar herniation below the foramen magnum,
with syringohydromyelia (arrows). Axial T2WI at C4 (B) and T5 (C) lev-
els demonstrate syringohydromyelia.

FIG 2. CM-1.5. Sagittal T1WI and T2WI of the cervical and upper tho-
racic spine (A and B) show obex herniation below the foramen mag-
num, with medullary kink (arrowhead).
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Brain. In CM-1, the brain is usually normal except for asymmetri-
cal tonsillar herniation with a peglike configuration, showing loss
of folial pattern.28 CM-1 is associated with anterior flattening of
the midbrain, pons, and medulla, and rarely hydrocephalus.29

Although rare, spontaneous resolution of CM-1 is known to
occur in children and adults, possibly related to an increased pos-
terior fossa volume, cerebellar tonsillar atrophy, and spontaneous
disruption of arachnoid adhesions (On-line Fig 1).8

CM-2 is associated with cerebellar hypoplasia and caudal her-
niation of the cerebellar tonsils, which wrap around the medulla,
ie, the so-called banana sign, along with towering of the cerebel-
lum.30 Other cerebellar abnormalities include heterotopic and
dysplastic gray matter. In a retrospective study, 2 of 17 patients
with cerebellar dysplasias had associated CMs.31 The brain stem,
especially the midbrain, is elongated, with the fusion of the colli-
culi and tectal beaking. There is elongation and stenosis of the
cerebral aqueduct with hypoplasia or aplasia of cranial nerves.28

The massa intermedia is enlarged and anteriorly displaced in
approximately 75%–90% of patients, along with elongation of the
habenular commissure and pineal gland.28,32 Approximately 90%
of patients with CM-2 have associated hydrocephalus and

disproportionate enlargement of the
atria and occipital horns, ie, colpoce-
phaly.33 The corpus callosum may
show partial or complete agenesis with
the absence of the septum pellucidum
(Fig 4). The cerebral cortex may show
multiple small gyri, ie, stenogyria, with
a partial or complete absence of the ol-
factory bulbs and tracts. In approxi-
mately one-third of the patients with
CM-2, ventricular margins may show
a nodular appearance due to subepen-
dymal nodular heterotopia.28,34

In CM-3, there is cerebellar or low
occipital encephalocele in association
with herniation of the sagittal sinus or
torcular herophili and the brain
stem. Partial or complete agenesis
of the corpus callosum may also be
seen in CM-3.

Spinal Cord. Syringomyelia is a fluid-
filled cavity formed by CSF dissecting
the spinal cord, as opposed to hydro-
myelia, which represents dilation of
the ependymal-lined central canal.
Because the distinction between these
entities is often not possible on imag-
ing, the term syringohydromyelia is
used. The filiform or fusiform dilation
of the central ependymal canal up to
2–3mm is termed prominent central
canal and .3mm as syringomy-
elia.17,35 It typically involves the lower
cervical or upper thoracic spinal cord;
seen in approximately 50%–75% of

individuals with CM-1 and 25%–45% of patients with CM-2, and
may also be seen in CM-3.36-38 The extent of the abnormality
may vary from a small segment of spinal cord to an elongated
(holocord) syringohydromyelia. Rarely, syringohydromyelia may
contain internal septations and affect the entire length of the
spinal cord.

Neuroimaging of the syrinx is essential for presurgical plan-
ning for associated scoliosis and craniovertebral junction abnor-
malities.39 The aim of imaging is to assess the size, extent, and
level of cord involvement. It is essential to identify the presyrinx
state, ie, an abnormal spinal cord signal intensity adjacent to the
syrinx, and the presence of flow voids within the syrinx on T2-
weighted MRI because these features are potential predictors of a
good response after correction of the CSF obstruction.40-42 Open
spinal dysraphism, ie, lumbar meningocele and/or myelomenin-
gocele, is associated with CM-2 in .90% of cases.1,2,13,17 The
global birth prevalence of spina bifida aperta is between 3.4 and
4.8 per 10,000 live births, and nearly all cases are associated with
CM-2.43-45 Approximately 8% of patients with open spinal dys-
raphism have an associated diastematomyelia, ie, split cord
malformation.46

FIG 3. CM-2. Sagittal T2WI of the brain (A) shows cerebellar tonsillar herniation below the level
of the foramen magnum (arrow), hydrocephalus (asterisk), tectal beaking, and towering of the
cerebellum. Axial and sagittal T2WIs of the lumbar spine (B and C) show myelomeningocele with
neural placode exposure (arrowheads) and CSF flow artifacts (asterisk).

FIG 4. CM-2. Sagittal T1WI of the brain (A) shows hypoplasia of the splenium of corpus callosum
(asterisk) and tonsillar parenchymal loss secondary to the herniation (arrowhead), scalloping of
the clivus (short arrow), and dysplastic sella (gray asterisk). Axial T2WIs (B and C) show interdigi-
tating gyri (white arrows in B) due to fenestrated falx, stenogyria (gray arrowhead), and hypopla-
sia of the splenium of the corpus callosum (white arrows in C).
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Skull and Vertebral Column. CM-1 is associated with skull base
and craniovertebral junction abnormalities, including concave
clivus, basilar invagination, and platybasia, in approximately 50%
of patients.36 There also is hypoplasia of the basiocciput and fora-
men magnum widening. The associated bony abnormalities are
severe in CM-2. Luckenschadel, or lacunar skull, along with bone
scalloping in the frontal region, ie, lemon sign, is usually seen in
CM-2. Scalloping of the clivus, petrous temporal bone, and jugu-
lar tubercles leads to a shortening of the internal auditory canals.
In CM-2, the posterior vertebral defects often affect the lumbar
spine and, less commonly, the thoracic spine, compared with
CM-3, which involves the cervical spine, predominantly in the
upper cervical vertebrae; however, there could be involvement up
to the level of C7. Various vertebral segmentation and fusion
abnormalities, such as hemivertebrae, block vertebrae, and
Klippel-Feil syndrome, can be associated with CM. Other verte-
bral abnormalities include atlanto-occipital assimilation, the ret-
roflexed odontoid process, and scoliosis.47

Meninges. In CM-1, the tentorium cerebelli shows increased
sloping, there is arachnoid thickening and adhesions in approxi-
mately 70% of patients at the level of the foramen magnum, and
outlet of the fourth ventricle can be seen.28,48,49 In CM-2, how-
ever, the tentorium is low-lying, hypoplastic, V-shaped, and wid-
ened, and there is tectal beaking and towering of the cerebellum.
The straight sinus is more vertical due to tentorial sloping. The
falx cerebri may show fenestrations or hypoplasia with interdigi-
tating gyri in approximately 30% of patients (Fig 4B).50 CM-3
shows findings similar to CM-2.

Imaging Modalities and Clinical Utility
Antenatal Imaging. Sonography is currently the imaging tech-
nique of choice for the assessment of fetal abnormalities. Fetal
MR imaging, a level III diagnostic tool, has increased sensitivity
and diagnostic confidence, and provides additional findings that
may affect prognosis and management.51,52 Fetal MR imaging
may accurately demonstrate the level of the defect in open spinal
dysraphism but has a limited ability to reveal split cord malfor-
mations compared with postnatal MR imaging.46 Recent studies
indicate improved cerebellar herniation and a decreased need for
ventriculoperitoneal CSF shunting, along with improved mental
and motor function in patients who underwent in utero repair of
open spinal dysraphism compared with those who underwent
postnatal repair.45,53 Prenatal MR imaging of patients with open
spinal dysraphism has shown an association between decreased
head circumference and effaced extra-axial CSF spaces in higher
grades of CM. However, there was no significant difference in
postnatal ventricular size between the prenatal and postnatal
repair groups.53

Postnatal Imaging. Radiographic evaluation by using a lateral
projection of the skull is used to assess platybasia, retroflexion of
the odontoid process, basilar invagination, and atlanto-occipital
assimilation. A decreased clival canal angle,125° and a posterior
margin of the odontoid process located .9mm beyond the pB-
C2 line indicate a potential risk for occipitocervical fusion, along
with posterior cervical decompression.54,55 Evaluation of the

spine is performed on anteroposterior, upright, and lateral views.
The assessment for acute idiopathic scoliosis includes the cor-
onal Cobb angle to look for hyperscoliosis, and Risser scores
to look for residual growth potential. The presence of hyper-
scoliosis may point to an associated neural axis abnormality
and syringohydromyelia.

A volumetric CT aids in the optimal evaluation of the bony
abnormalities of the skull base, craniocervical junction, and verte-
bral anomalies. CT is also helpful in the assessment of the poste-
rior fossa volume and cerebellar tonsillar herniation. MR imaging
is the most sensitive imaging technique for the evaluation of in-
tracranial abnormalities in CM. The conventional and advanced
MR imaging sequences useful in the morphologic assessment
of the brain and spine, CSF flow dynamics, tonsillar motion, and
the microstructural alterations of the brain stem are as detailed in
On-line Table 2.

The evaluation of CSF flow by phase-contrast MR imaging in
the presurgical period may serve as a guide for surgical planning
and predict surgical outcomes in CM.56,57 The salient findings on
CSF flow studies include obstruction of CSF flow at the level of
the foramen magnum, which results in increased flow in the ante-
rior and decreased flow in the posterior subarachnoid space along
the proximal cervical cord (Fig 5). Other findings on CSF flow
studies include increased flow in the anterior subarachnoid space
and increased CSF flow velocity. Based on the involved regions,
the CSF flow abnormalities are classified into 3 different patterns:
1) CSF flow obstruction posterior to the cerebellum and tonsils;
2) CSF flow obstruction posterior to the cerebellum, tonsils, and
through the fourth ventricle and cerebral aqueduct; and 3) CSF
flow obstruction posterior to the cerebellum and the tonsils,
through the fourth ventricle, and the cerebral aqueduct, and ven-
tral to the brain stem.58 In pattern 1, “bone only” craniocervical
decompression is usually performed and the subarachnoid

FIG 5. Phase-contrast MR imaging: CSF flow study. Phase images in
systole and diastole (A and B) show decreased CSF flow posterior to
the cerebellum and the dorsal subarachnoid space (arrowheads).
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manipulation, ie, bone decompression with duraplasty with or
without dissection of the arachnoid adhesions, is reserved for
patients with pattern 3.58 The surgical management in pattern 2
is based on the extent of the CSF flow restoration on intraopera-
tive sonography.

In healthy individuals, cine MR imaging demonstrates a slight
inferior motion of the cerebellar tonsils, followed by the medulla
and the spinal cord. Also, there is a mild anteroposterior motion
of the tonsils, medulla, and the spinal cord. In CM, there is
increased craniocaudal displacement of the tonsils and the me-
dulla. There may be impaired passive recoil, with a decreased
upward motion, which may contribute to syrinx formation. DTI
is a sensitive technique to assess microstructural changes in the
brain stem and cerebellar peduncles. In CM-2, antenatal DTI
demonstrated increased fractional anisotropy values in the mid-
brain, which may aid in the prenatal diagnosis of open neural
tube defects.59 Presurgical MR imaging in CM-1 showed elevated
fractional anisotropy values in the anterior pons, which reduced
after decompression surgery.60 DTI studies demonstrate paren-
chymal alterations and may contribute to the diagnosis and man-
agement of CM in the future.59,60

Posterior Fossa Decompression for CM-1
The decision to treat CM-1 surgically is based on the severity
and progression of symptoms and signs, in conjunction with
the MR imaging findings. Indications for surgery are typically
symptoms that affect daily life or any degree of symptomatic
syringohydromyelia.61 The goals of surgery are to stop the

progression of symptoms, relieve the brain stem and spinal cord
compression, restore the normal flow of CSF through the fora-
men magnum, and stop the progression of syringohydromyelia.
If warranted, posterior fossa decompression consists of surgical
enlargement of the posterior cranial fossa, with a “bone-only”
craniocervical decompression (typically a small suboccipital
craniectomy above the foramen magnum with removal of the
posterior arch of C1) or bone decompression, with an expand-
ing duraplasty, ie, opening of the dura mater over the cisterna
magna, and insertion and suturing of allogenic and xenogenic
connective tissue dura graft in a watertight fashion to enlarge
the cistern (Fig 6). Intraoperative sonography may be per-
formed to determine if a dura mater opening is necessary
because bone removal alone may sometimes not suffice to
restore normal CSF flow. Dissection of arachnoid adhesions is
frequently performed in patients with a syrinx. Tonsillopexy, ie,
limited resection of the cerebellar tonsils with bipolar cautery,
may also be performed when the surgeon is unable to
adequately superiorly mobilize herniated tonsils that severely
impinge on the foramen magnum.

Postsurgical Imaging in CM
MR imaging is generally the technique of choice for evaluation of
the expected postoperative imaging findings (On-line Fig 2) and
the associated complications in patients with CMs.

Complications in CM-1 Surgery. Pseudomeningoceles are subcu-
taneous fluid collections that are more likely in patients under-
going posterior fossa decompression with duraplasty versus
without duraplasty (18.5% versus 1.8%).62 Wound infections are
either superficial, ie, cellulitis involving the postoperative bed, or
deep in the form of subcutaneous abscesses or meningitis. The
incidence rates of postsurgical infections range from 1% to as
high as 11%.63 Abscesses appear as rim-enhancing fluid collec-
tions with restricted diffusion. Meningitis typically demonstrates
leptomeningeal enhancement that predominantly involves the
posterior fossa.

Anterior and posterior circulation strokes are rare complica-
tions of CM surgery, occurring in 0.5% of patients.62 The poste-
rior inferior cerebellar artery territory is usually involved,
possibly due to injury to its distal branches during revision sur-
geries. Arachnoid adhesions complicate approximately 0.5% of
cases with allogenic and xenogenic connective tissue grafts.64

They may obstruct the normal flow of CSF owing to tethering of
the parenchyma to the overlying dura, leading to hydrocephalus
and symptomatic recurrence. Inferior migration of the cerebel-
lum, ie, cerebellar slumping, is an unlikely event due to excessive
bony decompression of the foramen magnum (.4 � 4 cm). It
may result in treatment failure or even mass effect on the brain
stem and spinal cord.65

Complications in CM-2 Surgery. Postoperative complications in
CM-2 include wound dehiscence and shunt infection (7.6%), CSF
leaks and postoperative fluid collections (32.8%), and inclusion
cysts and intraspinal arachnoid cysts (3.4%).45,46

FIG 6. Intraoperative photographs show posterior fossa decompres-
sion in a patient with CM-1. A, After a midline incision in the occipito-
cervical region, the occipital bone, the atlanto-occipital membrane,
and the C1 lamina are exposed. B, A suboccipital craniectomy and re-
moval of the posterior arch of C1 has been performed, and the dura
mater will be opened in a Y-shaped fashion. C, After opening of the
dura mater and the arachnoid overlying the cisterna magna, the 2 cer-
ebellar hemispheres with their respective cerebellar tonsils can be
visualized. D, A duraplasty has been performed, wherein a dural graft
has been inserted and sutured in a watertight fashion to enlarge the
cistern.
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CONCLUSIONS
CMs are a diverse group of abnormalities that involve the brain,
the craniocervical junction, and the spine. They present with a
multitude of clinical manifestations, depending on the affected
regions, and altered CSF flow dynamics. Because of the increasing
performance of neuroimaging for optimal therapeutic guidance,
we need to be aware of common and uncommon types of CM,
associated abnormalities, and common imaging findings.
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