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ORIGINAL RESEARCH
ADULT BRAIN

Convolutional Neural Network for Automated FLAIR Lesion
Segmentation on Clinical Brain MR Imaging

X M.T. Duong, X J.D. Rudie, X J. Wang, X L. Xie, X S. Mohan, X J.C. Gee, and X A.M. Rauschecker

ABSTRACT

BACKGROUND AND PURPOSE: Most brain lesions are characterized by hyperintense signal on FLAIR. We sought to develop an auto-
mated deep learning– based method for segmentation of abnormalities on FLAIR and volumetric quantification on clinical brain MRIs
across many pathologic entities and scanning parameters. We evaluated the performance of the algorithm compared with manual
segmentation and existing automated methods.

MATERIALS AND METHODS: We adapted a U-Net convolutional neural network architecture for brain MRIs using 3D volumes. This
network was retrospectively trained on 295 brain MRIs to perform automated FLAIR lesion segmentation. Performance was evaluated on
92 validation cases using Dice scores and voxelwise sensitivity and specificity, compared with radiologists’ manual segmentations. The
algorithm was also evaluated on measuring total lesion volume.

RESULTS: Our model demonstrated accurate FLAIR lesion segmentation performance (median Dice score, 0.79) on the validation dataset
across a large range of lesion characteristics. Across 19 neurologic diseases, performance was significantly higher than existing methods
(Dice, 0.56 and 0.41) and approached human performance (Dice, 0.81). There was a strong correlation between the predictions of lesion
volume of the algorithm compared with true lesion volume (� � 0.99). Lesion segmentations were accurate across a large range of
image-acquisition parameters on �30 different MR imaging scanners.

CONCLUSIONS: A 3D convolutional neural network adapted from a U-Net architecture can achieve high automated FLAIR segmentation
performance on clinical brain MR imaging across a variety of underlying pathologies and image acquisition parameters. The method
provides accurate volumetric lesion data that can be incorporated into assessments of disease burden or into radiologic reports.

ABBREVIATIONS: BIANCA � Brain Intensity Abnormality Classification Algorithm; CNN � convolutional neural network; FDR � false discovery rate; LST � lesion
segmentation tool; RMdSPE � root median squared percentage error; RMSPE � root mean squared percentage error; SVID � small-vessel ischemic disease

Approximately 36 million MR imaging studies are performed

annually in the United States, and this number is rising.1

Approximately 65% of these MRIs are used to assess the central

nervous system. The FLAIR sequence is universally used to iden-

tify and characterize imaging abnormalities in terms of location,

size, and extent, due to its broad utility across many pathologies

and lesion appearances. Specific applications of FLAIR include,

among numerous others, primary and metastatic brain tumors;

demyelinating, autoimmune, infectious, and inflammatory con-

ditions; and ischemia.2-4 Because of its general utility, FLAIR is

acquired on nearly every clinical brain MRI. There is a growing

need to develop fully automated, rapid, precise, quantitative as-

sessments of FLAIR abnormalities to standardize quantitative de-

scriptions of pathology.

A quantitative lesion-burden assessment has the potential to re-

duce errors from interobserver variability, 2D measurements, “satis-

faction of search,” and confirmation bias, promising to improve

workflow efficiency and diagnostic accuracy, eventually translating
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to better patient outcomes.5,6 To this aim, machine learning

methods have been used for identifying FLAIR lesions in specific

diseases, such as gliomas,7,8 multiple sclerosis,9-11 acute infarcts,12,13

traumatic brain injury,14 and white matter hyperintensities related to

small-vessel ischemic disease and Alzheimer disease.15-17 These

methods represent specialized tools for distinct research purposes.18

No methods currently exist to identify FLAIR lesions indepen-

dent of the underlying etiology in a clinical environment. Many brain

MRIs are obtained before a known diagnosis. Furthermore, existing

algorithms often assume specific requirements for image acquisition,

further decreasing clinical utility. In the clinical setting, brain MRIs

and their FLAIR sequences may be acquired with differing image-

acquisition parameters and resolutions, which are often suboptimal

for automated algorithms. To be clinically applicable across most

brain MRIs, a lesion segmentation method must operate well, despite

this high degree of image and lesion heterogeneity.

Deep learning– based approaches have recently demonstrated

success with a variety of other image-segmentation tasks, includ-

ing intracranial hemorrhage segmentation on CT,19 structural

neuroanatomy classification on brain MR imaging,20 cartilage

segmentation on knee MR imaging,21 and left ventricular volume

on cardiac MR imaging.22 The winner of the 20th International

Conference on Medical Image Computing and Computer As-

sisted Intervention (MICCAI) 2017 challenge for white matter

hyperintensity segmentation23 was based on a U-Net.24 There-

fore, we adopted a deep learning approach, adapting a U-Net

convolutional neural network (CNN) architecture for 3D imag-

ing for the task of disease-invariant FLAIR lesion segmentation.

Our study was designed to test this automated FLAIR lesion-seg-

mentation algorithm on 19 different brain pathologies producing

a wide range of lesion appearances and to compare CNN-based

automated segmentations with those of manual lesion segmenta-

tions and existing automated tools.

MATERIALS AND METHODS
Subjects and Data
This retrospective study was approved by the institutional review

board of the University of Pennsylvania, with a waiver for con-

sent. A total of 387 study subjects (218 females and 169 males; age

range, 14 –95 years; median age, 53 years) were included, with 1

MRI (2 sequences: T1-weighted and FLAIR) per subject. Subjects

were identified by searching the radiology archives of our tertiary

care university hospital (Hospital of the University of Pennsylva-

nia) for 19 prespecified diagnoses, confirmed using the electronic

medical record and procedures detailed in the On-line Appendix.

Diseases and Training/Validation Assignment
The 19 diseases included in the validation sample are listed in the

On-line Appendix (see also Fig 1). These diseases encompass a

large range that cause FLAIR abnormalities on brain MR imaging.

They were also specifically chosen to represent a very heteroge-

neous sample, including wide ranges of individual lesion and total

lesion volumes and heterogeneity in lesion shape and internal

signal characteristics.

In assigning cases to training and validation samples, we ran-

domly selected 5 cases of each of the 19 unique diseases to be part of

the validation sample. When diagnoses were rare enough that �5

exemplars of the disease existed in the PACS of our institution (which

was only the case with Susac syndrome), then all cases of that disease

were included in the validation set (none in the training set). The

remainder of the cases were assigned to the training set. The training

set was also supplemented with 20 age-matched healthy brains (with-

out abnormality on FLAIR) to further boost specificity; more healthy

cases were unnecessary given that the remainder of the training cases

already included many individual regions without abnormality on

FLAIR.

Assignments resulted in 295 training cases and 92 validation

cases. Because no hyperparameter optimization was performed (see

FIG 1. Performance of the CNN compared with human manual segmentation and other automated FLAIR segmentation methods. A, Median
Dice scores across all validation cases. The asterisks denotes P � .05 for paired 2-tailed t tests compared with the CNN. The hashtag denotes
P � .05 for human performance compared with the CNN. B, Median Dice scores across validation cases separated by underlying diagnosis. The
asterisk denotes P � .05 (FDR-corrected for multiple comparisons) for the CNN compared with 1 method, and double asterisks denote P � .05
(FDR-corrected for multiple comparisons) for CNN compared with both methods using paired 2-tailed t tests. The hashtag separately denotes
P � .05 (FDR-corrected for multiple comparisons) for human performance compared with the CNN. Error bars represent 1 standard error of the
mean) across cases. ADEM indicates acute disseminated encephalomyelitis; PRES, posterior reversible encephalopathy syndrome; PML, pro-
gressive multifocal leukoencephalopathy; NMO, neuromyelitis optica.
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“CNN Model Architecture [U-Net]” below), this study did not re-

quire separate test and validation sets. The model was trained with

only the training dataset and was separately tested on the validation

dataset.

MR Imaging Parameters and Ground Truth
Segmentations
Imaging data stemmed from a wide range of imaging parameters

(Table 1), typical of clinical imaging studies. Moreover, imaging

was performed on �30 different MR imaging scanners and 16

different scanner models across all study subjects. Image-acquisi-

tion parameters for the training sample were similar to those on

the validation sample (randomly assigned).

Criterion standard lesion segmentations were based on manual

segmentations by a radiologist using ITK-SNAP (www.itksnap.

org),25 further described in the On-line Appendix.

Image Preprocessing
Skull stripping of T1-weighted images was performed with Ad-

vanced Normalization Tools (ANTs; http://neuro.debian.net/

pkgs/ants.html), which were then registered and applied to FLAIR

images.26 Images were normalized by the mean and SD signal

intensity to zero mean and unit SDs. Images were resampled to

1-mm3 isotropic resolution via linear interpolation. Despite most

MR imaging acquisitions being 2D (Table 1), all 2D and 3D ac-

quisitions were treated with the same preprocessing steps to pro-

duce common resolution 1-mm3 volumes suitable for use in a

3D-CNN architecture. Elastic transformations27 were applied to

the images for data augmentation, which included small random

rotations, translations, scaling, and free-form deformations. We

split the full-resolution augmented imaging volume into 96-mm3

cubes (3D patches) as the network input to fit within graphic

memory constraints. Note that these 3D regions encompass a

large portion of the full-resolution imaging volume (Fig 2) and

are created only to address memory constraints. The large

patches, in comparison with the size of any lesion, ensure that the

lesion transition zones are included within the patches. During

training, the cubes were randomly sampled across the full-brain

volumes. To prevent sample imbalance, we sampled the same

number of patches that included lesion voxels as those that ex-

cluded lesions during training. A total of 80 patches were ex-

tracted from each training case, with 3 random augmentations per

case, resulting in 240 patches per case or

a total of 70,800 training patches. Dur-

ing testing, the brain volume was

densely sampled with the cubes using a

step size of 32 mm in each direction, re-

sulting in a 64-mm overlap between

cubes. The overlapped segmentation

predictions were averaged.

CNN Model Architecture (U-Net)
We used a fine-tuned 3D U-Net28,29 to

predict lesion segmentations on the

FLAIR images because of the ability of

the U-Net to provide pixelwise/voxel-

wise predictions, ideal for voxelwise seg-

mentation problems. The network con-

sists of 4 consecutive down-sampled

blocks followed by 4 consecutive up-sampled blocks. We used the
rectified linear unit for nonlinearity. For down-sampling, we used
a stride-2 convolution; for up-sampling, we used a stride-2 de-

convolution. We used the kernel size 3 � 3 � 3 across the net-

FIG 2. Schematic of the CNN U-net architecture. The architecture uses a 3D region-based ap-
proach for training and validation. The sample MR FLAIR images are from a patient with progres-
sive multifocal leukoencephalopathy. Max indicates maximum.

Table 1: Heterogeneous scanning parameters used for FLAIR
sequences in training and validation samples, showing the
number of study subjects in each categorya

Summary
Training
(n = 295)

Validation
(n = 92)

Field strength
1.5T 230 (78.0%) 57 (62.0%)
3T 65 (22.0%) 35 (38.0%)

Dimension
2D 287 (97.3%) 81 (88.0%)
3D 8 (2.7%) 11 (12.0%)

Manufacturer/model
GE Healthcareb

Discovery MR750w 4 (1.4%) 3 (3.3%)
Genesis Signa 20 (6.8%) 6 (6.5%)
Optima MR450w 15 (5.1%) 1 (1.1%)
Signa Excite 20 (6.8%) 7 (7.6%)
Signa HDxt 14 (4.7%) 7 (7.6%)

Phillipsc

Intera 2 (0.7%) 1 (1.1%)
Siemensd

Magnetom Aera 15 (5.1%) 2 (2.2%)
Avanto 39 (13.2%) 8 (8.7%)
Magnetom Espree 83 (28.1%) 19 (20.1%)
Magnetom Essenza 9 (3.1%) 1 (1.1%)
Magnetom Skyra 8 (2.7%) 8 (8.7%)
Magnetom Symphony 4 (1.4%) 3 (3.3%)
Magnetom Symphony Tim 5 (1.7%) 1 (1.1%)
Tim Trio 37 (12.5%) 11 (20.0%)
Magnetom Verio 16 (5.4%) 13 (14.1%)

Toshibae

Titan 4 (1.4%) 1 (1.1%)
TE (ms)

Minimum 86 82
Median 136 136
Maximum 396 398

TR (ms)
Minimum 5000 5000
Median 9000 9000
Maximum 12,000 12,000

a The percentage of the total training or validation sample is in parentheses.
b Milwaukee, Wisconsin.
c Best, the Netherlands.
d Erlangen, Germany.
e Toshiba Medical Systems, Tokyo, Japan.
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work. We applied a dilation factor of 2 in all convolutional layers.

Other than the standard cross-link between corresponding up-

sampling and down-sampling blocks, we also added a residual

connection between subsequent layers, with a number of features

matched by a plain 1 � 1 � 1 convolution. After the final up-

sampling block, 3 additional convolutional, rectified linear unit,

batched-normalized layers were added before the final normal-

ized exponential (softmax) head function (Fig 2). A batch con-

sisted of six 3D patches.

We used standard cross-entropy loss29 and an Adam opti-

mizer with a learning rate of 10�5. The network was trained for

50 epochs. The network was implemented using TensorFlow

(https://www.tensorflow.org/),30 a deep learning module within

the Python programming language. Implementation was on a

Titan Xp GPU (NVIDIA, Santa Clara, California).

Comparison Algorithms
We compared CNN performance against that of previously pub-

lished automated algorithms designed for FLAIR lesion identifica-

tion: lesion segmentation tool (LST; https://www.applied-statistics.de/

lst.html)31 and Brain Intensity Abnormality Classification Algorithm

(BIANCA; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA).32 We also

compared the performance with a second independent radiologist’s

manual segmentations, which we refer to as “human performance.”

These methods were all applied to the same validation dataset. Refer

to the On-line Appendix for additional information on comparison

methods.

Statistical Analysis
The performance of our U-Net architecture neural network was

validated against the manual-segmentation criterion standard on

92 cases (ie, FLAIR volumes) representing 19 different diseases,

after being trained on 295 FLAIR volumes. Although acquisition

parameters included 2D and 3D methods (Table 1), we refer to all

cases as FLAIR volumes, given that we resampled all images to a

1-mm3 resolution (ie, a 3D volume) for CNN training and vali-

dation, before resampling back into native space for comparison

with native space manual segmentations. All analyses were per-

formed in subject native space. Segmentation performance of all

methods was compared using Dice coefficients,33 the most com-

monly used similarity measure for evaluating segmentation per-

formance, with manual lesion segmentations as the ground truth.

Voxelwise performance measures compared with manual seg-

mentation were also calculated. Comparisons of performance

across methods was accomplished using paired 2-tailed t tests.

Additional statistical comparisons are discussed in the On-line

Appendix.

RESULTS
CNN-Based FLAIR Lesion Segmentation Accuracy
The CNN segments brain MR lesions qualitatively with a high

degree of accuracy. Representative comparisons of CNN-based

automatic segmentations and criterion standard manual segmen-

tations are shown in Fig 3 (see also On-line Fig 2 and the On-line

Appendix).

We quantified CNN segmentation performance across all val-

FIG 3. Representative slices from validation samples of FLAIR MR brain images (A) with CNN-based (B) and manual lesion segmentations (C), with
predicted or ground truth lesion segmentations overlaid in red. The CNN performs well on a variety of different neurologic disorders, here
shown in cases of multiple sclerosis, SVID, low grade-glioma, primary CNS lymphoma, adrenoleukodystrophy, and toxic leukoencephalopathy.
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idation cases using Dice scores, and we compared its performance

with existing state-of-the-art automated FLAIR segmentation

methods, LST and BIANCA31,32 and with a second independent

radiologist. Across the validation sample, the CNN demonstrated

a median Dice score of 0.789 (mean, 0.699 � 0.022), which ap-

proached human performance (Fig 1A). This performance was

significantly higher than the Dice scores of LST (median, 0.562;

mean, 0.533 � 0.026) and BIANCA (median, 0.410; mean,

0.395 � 0.027) (ANOVA and paired 2-tailed t tests compared

with CNN; P � .001). Similarly, among the algorithms tested,

other voxelwise measures of performance were highest for the

CNN (Table 2). Human performance (median Dice, 0.805; mean,

0.759 � 0.017) was very slightly-but-consistently better than

CNN performance (P � .01, paired 2-tailed t test).

Effect of Disease Pathology
Next, we examined how segmentation performance varies as a

function of underlying disease pathology. The CNN had signifi-

cantly higher mean Dice scores than at least 1 of the other meth-

ods in 16/19 diagnoses and significantly higher than those in both

other methods in 5/19 diagnoses (paired 2-tailed t tests, P � .05;

false discovery rate [FDR]-corrected for multiple comparisons).

Segmentation performance was not statistically different from the

performance of the independent radiologist’s manual segmenta-

tions in 15/19 diagnoses. Note that low sample sizes within each

diagnosis group limit statistical power, but the median Dice was

numerically higher for the CNN than the other methods in all

diseases except Susac syndrome (Fig 1B). Even for those diseases

for which LST and BIANCA were specifically designed (multiple

sclerosis and small-vessel ischemic disease [SVID], respectively),

the CNN produced segmentations that were better than those for

SVID (P � .05, paired t test comparing CNN and BIANCA) or not

significantly different from those for MS (P � .05, paired t test

comparing CNN and LST), the comparison algorithms. Perfor-

mance was consistently low for Susac syndrome across all meth-

ods, likely due to a combination of factors, including the follow-

ing: a large amount of noise and imaging artifacts, only 2 cases

total available (none in the training data), and very small and

limited extent of lesions in these 2 cases. Note the low perfor-

mance of the independent radiologist for these cases as well. Het-

erogeneity of FLAIR signal within a lesion did not prove a barrier

to accurate segmentation; performance on 16 validation cases

with heterogeneous FLAIR lesions was excellent, with a median

Dice score of 0.87 (range, 0.80 – 0.92; On-line Fig 2).

Lesion Volume Quantification
We found that the CNN performs well in estimating total lesion

volume, with a Spearman correlation � � 0.985 and a best fit line

slope � � 0.958 when comparing predicted with true total lesion

volume across all cases, indicating a very high degree of fidelity

between the predicted and true total lesion volumes on an indi-

vidual subject basis (Fig 4A). The comparison methods, mean-

while, had lower Spearman correlations (LST � � 0.862, BIANCA

� � 0.655) and lower best fit line slopes (LST � � 0.490, BIANCA

� � 0.277), with both methods tending to overestimate smaller

lesion volumes and underestimate larger lesion volumes. We also

analyzed the degree of error in the predicted lesion volume on a

subject-specific basis using the root median squared percentage

error (RMdSPE) and the root mean squared percentage error

(RMSPE), which measure the average percentage error from true

lesion volume. The CNN generated lesion volumes with lower

errors (RMdSPE � 1.4%, RMSPE � 4.8%) compared with LST

(RMdSPE � 3.8%, RMSPE � 72.3%) and BIANCA (RMdSPE �

6.6%, RMSPE � 433.8%) (Table 2).

Effect of Lesion Volume
We investigated how each method performed as a function of

lesion volume (Fig 4B). As expected, all methods performed bet-

ter with larger total lesion volumes, which is partially inherent in

the Dice similarity index33,34 and was also true of the independent

radiologist’s performance. However, the CNN performed the best

of the 3 automated methods at all lesion volumes (ANOVA and

paired 2-sample t tests compared with CNN P � .01), and perfor-

mance did not degrade even at the highest lesion volumes (�100

cm3), whereas performance did degrade slightly at the highest

lesion volumes for the other methods (Fig 4B). Even at very low

total lesion volumes, the CNN produced reasonable estimates,

with Dice scores of �0.55 and accurate estimates of lesion volume

(Fig 3, inactive case of MS, as an example), whereas the other

methods performed poorly in these cases. Similarly, false-positive

voxels were most common for all methods in cases with low lesion

volumes, but this effect was much less pronounced with the CNN

and with a second radiologist (Fig 4C).

When we categorized diseases by median CNN Dice and true

lesion volume, no apparent clusters arose on the basis of etiology

(Fig 4D), noting that the lowest Dice scores were for diseases in

which the total lesion volume and individual lesion sizes tend to

be small (migraine, multiple sclerosis, neuromyelitis optica, and

Susac syndrome). Indeed, Dice scores for all methods including

human segmentation depend on individual lesion sizes, with

poorer performance in cases with small lesions (Fig 4E) due to a

higher number of false-positive and false-negative voxels in these

cases (On-line Fig 1). In summary, Dice scores within each disease

Table 2: Summary measures of accuracy (Dice, voxelwise
sensitivity, specificity, FDR, PPV/NPV) and comparisons of true
and predicted lesion volumes by forecasting RMdSPE and
Spearman correlation r of methodsa

Human CNN LST BIANCA
Dice

Median 0.805 0.789 0.562 0.410
SEM 0.017 0.022 0.026 0.027

Sensitivity (1-FNR)
Median 0.800 0.767 0.599 0.556
SEM 0.017 0.025 0.026 0.020

Specificity (1-FPR)
Median 0.999 0.999 0.999 0.997
SEM 0.000 0.000 0.000 0.000

PPV
Median 0.824 0.769 0.690 0.335
SEM 0.018 0.018 0.030 0.034

NPV
Median 0.999 0.999 0.999 0.999
SEM 0.000 0.000 0.001 0.001

RMdSPE 0.97% 1.38% 3.80% 6.56%
Spearman r 0.991 0.985 0.862 0.655

Note:—PPV indicates positive predictive value; NPV, negative predictive value; FNR,
false negative rate; FPR, false positive rate; SEM, standard error of the mean.
a Methods: Human, CNN, LST, and BIANCA.
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are driven mainly by lesion size/volume but are otherwise inde-

pendent of pathology, demonstrating the broad utility of the

CNN for a range of diseases.

Effect of Technical Factors
We investigated whether CNN performance depends on technical

acquisition factors such as MR imaging scanner models or acqui-

sition parameters (Fig 5). We found no significant differences in

CNN performance with respect to different scanner models (1-

way ANOVA of Dice across 16 scanner types, F � 0.65, P � .84) or

manufacturers (1-way ANOVA across 4 manufacturers, F � 0.61,

P � .61). We also found no correlation between the number of

training cases and validation performance across scanner types

(r2 � 0.015, P � .65, Fig 5B). Thus, the CNN generalizes well

across scanner types. Similarly, there was no effect of field strength

on performance (2-sample t test, P � 0.22). There was a trend

toward better performance with 2D acquisition sequences (P �

.06), noting an inherent bias in that patients with small lesions (in

particular those with MS) more commonly undergo 3D acquisi-

tions at our institution. Finally, we tested whether performance

decreased when the CNN is applied to imaging from outside hos-

pitals. In contrast, we found slightly better Dice scores on those

scans obtained at outside hospitals than at our home institution

(P � .05), but with no significant difference after accounting for

mean lesion size (P � .85), which was overall larger in cases from

outside hospitals.

Inference Time
One advantage of automated methods over manual lesion seg-

mentation is processing speed. The mean inference time of the

CNN on a single FLAIR volume is 28.2 � 1.48 seconds, which

includes all preprocessing steps (brain extraction, interpolation,

patches, and so forth), model loading, and model application. The

average inference of BIANCA for a single subject was fastest at

4.6 � 1.35 seconds, also including relevant preprocessing steps.

LST was the slowest, with a mean inference time of 1.8 minutes �

34.0 seconds. All of these times compare favorably with those of

manual lesion segmentations, which take, on average, approxi-

mately 15–20 minutes for a single FLAIR volume by an experi-

enced individual.

DISCUSSION
This study is the first demonstration of a quantitative, automated

FLAIR lesion evaluation algorithm that applies to a multitude of

clinically distinct and radiologically unique pathologies. The

CNN, specifically a U-Net,28 functions on clinical-grade images from

FIG 4. Performance of segmentation methods according to lesion characteristics. A, Scatterplot of predicted-versus-true total lesion volume
with CNN (green circle) (Spearman correlation � � 0.985, best fit line slope � � 0.958), LST (gray square) � � 0.862, � � 0.490), and BIANCA
(white triangle) (� � 0.655, � � 0.277) with the y � x line. Note clustering of CNN points along the y � x line, representing low deviation of
CNN-based volume estimates from manual lesion volumes. B, Median Dice scores of cases stratified by total lesion volume. C, False discovery
rate stratified by total lesion volume. D, Scatterplot of median CNN Dice score versus median true total lesion volume per diagnostic group. E,
Median Dice scores of cases grouped by mean individual lesion volume. F, Histogram of lesion volumes in training and validation datasets. Error
bars in all panels represent �1 standard error of the mean across cases. The asterisk denotes P � .01 for the CNN compared with 1 method, and
double asterisks denote P � .01 for CNN compared with both methods using 1-way group ANOVA and paired 2-tailed t tests. The hashtag
separately denotes P � .05 for human performance compared with the CNN. ADEM indicates acute disseminated encephalomyelitis; ALD,
adrenoleukodystrophy; TLE, toxic leukoencephalopathy; aMS, active MS: tMS, tumefactive MS; PRES, posterior reversible encephalopathy
syndrome; iMS, inactive MS; NMO, neuromyelitis optica; Vasc, Vascular disease (ischemia); CNSL, CNS lymphoma; Susac S, Susac syndrome; lg,
low-grade; hg, high-grade; PML, progressive multifocal leukoencephalopathy.
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a PACS. We demonstrate that this CNN performs high-quality lesion

segmentations despite a number of heterogeneous scanners, image

acquisition parameters, lesion sizes, and underlying diagnoses, even

with modest training data (�5 cases per diagnosis).

The CNN performs well at FLAIR lesion segmentation across

these variables because of the basic commonality that all these

disease pathologies share: hyperintense FLAIR signal. Our 3D-U-

Net method is specifically designed for and trained on noisy real-

world clinical images to identify hyperintense FLAIR signal while

avoiding artifacts. The utility of an algorithm that is broadly

trained on hyperintense FLAIR signal, as opposed to specific dis-

eases, is that it can be used in clinical situations even when the

diagnosis is unknown. Thus, the CNN can provide accurate le-

sion-volume estimates on any disease with hyperintense FLAIR

signal without being extensively trained with any particular pa-

thology, noting that specific training with 1 disease may boost

performance for that disease at the detriment of others. In con-

trast to using disease-specific methods, we also intentionally

avoided inclusion of other MR images beyond FLAIR, such as

T1,24 in the training model because those sequences do not con-

sistently show abnormalities across the wide range of pathologies

included in the study or in neuroimaging generally.

As a result, the CNN estimates true

total lesion volumes with very high fidel-

ity across a range of 19 diseases tested

here, thereby making the algorithm

clinically applicable to quantitatively

measuring lesion volume. The CNN

outperforms current state-of-the-art

algorithms in brain FLAIR lesion seg-

mentation, as measured by Dice overlap

coefficients, false-positives, false-nega-

tives, and predictions of lesion volume.

On clinical imaging, it outperforms or is

equivalent to these algorithms both on

those diseases for which those algo-

rithms are designed (MS for LST and

SVID for BIANCA), as well as for dis-

eases (eg, adrenoleukodystrophy) for

which no algorithms currently exist. For

high-grade glioma whole-tumor seg-

mentation, it functions at a level compa-

rable with the winning algorithms from

the Brain Tumor Image Segmentation

(BraTS 2017) challenge.35-37 Overall, it

functions nearly at the level of a human

expert.

Another strength of the current

method is that it generates accurate le-

sion segmentations despite a very heter-

ogeneous array of imaging-acquisition

parameters. This particular feature al-

lows the methodology to be easily inte-

grated into the clinical workflow be-

cause it has no specific requirements for

FLAIR image acquisition. In addition to

supporting the clinical workflow, the

method has strong potential to be applied retrospectively in ex-

tracting quantitative lesion data from the massive amount of clin-

ical data available in PACS storage across radiology departments.

When used in combination with natural language processing on

radiology reports or other diagnostic data from electronic medical

records, these measures may support the association of quantita-

tive lesion characteristics with various neurologic diseases on a

large scale.

There is room for further improvement in the methodology.

From a technical standpoint, we found that the most difficult

cases for the CNN, as with any method, are cases with a small

extent of lesions and small lesion sizes. Further developments in

the neural network model architecture and training, including

hyperparameter optimization, additional training cases, and/or

the use of specialized techniques such as a second object localiza-

tion network,19 may continue to boost performance in such situ-

ations. Specific training methods have been developed for avoid-

ing false-positives, such as fine-tuning the network with more

representative baseline lesion distributions or using the Dice score

as the loss function.28

FIG 5. Performance of the CNN segmentation method according to technical characteristics. A,
Median Dice scores on validation cases across different scanner models, grouped by MR imaging
manufacturer. The dashed line indicates overall mean Dice score. There was no significant differ-
ence in Dice scores according to scanner model or manufacturer (P � .05 by 1-way ANOVA, see
Results). B, Median Dice scores according to the number of training cases from that scanner
model, with the best fit line. There is no significant correlation between the number of training
cases and Dice scores (P � .05). C, Median Dice scores on validation cases grouped by field
strength (left panel), acquisition dimension (middle panel), and hospital system where images
were acquired (right panel). Error bars in all panels represent � 1 standard error of the mean
across cases. The asterisk denotes P � .05 for the 2-tailed t test among groups. See Table 1 for
manufacturers’ information. Ess indicates Essenza.
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Furthermore, while the current results are promising, there

are limitations to the conclusions we can draw from this cross-

sectional retrospective study. Prospective use of the technology

may encounter a different typical range of lesion appearances

than in our study. However, we expect the CNN to iteratively

improve in such situations, further learning from the cases at an

institution. The algorithm already appears to generalize well

across multiple MR imaging scanners, even from outside institu-

tions. Finally, a critically important test of the system for future

clinical implementation will be to test the longitudinal precision

of the methodology, to evaluate changes in lesion volume with

time. Current studies are underway to address these important

questions.

CONCLUSIONS
Our findings indicate that a fully-automated deep learning algo-

rithm can achieve high performance on brain MR imaging

(FLAIR) lesion segmentation across an array of different diseases

and image acquisitions. It outperforms current state-of-the-art

FLAIR lesion segmentation algorithms in detecting lesions and

quantifying their volume, and it approaches near-human perfor-

mance. We anticipate that such a system may be useful for de-

scriptions of brain lesions in the clinical setting, replacing subjec-

tive, qualitative assessments with objective quantitative metrics,

an essential component of a modern and efficient neuroradiologic

workflow.
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