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ORIGINAL RESEARCH
FUNCTIONAL

Peeking into the Black Box of Coregistration in Clinical fMRI:
Which Registration Methods Are Used and How Well Do They

Perform?
X F.D. Raslau, X L.Y. Lin, X A.H. Andersen, X D.K. Powell, X C.D. Smith, and X E.J. Escott

ABSTRACT

BACKGROUND AND PURPOSE: Interpretation of fMRI depends on accurate functional-to-structural alignment. This study explores
registration methods used by FDA-approved software for clinical fMRI and aims to answer the following question: What is the degree of
misalignment when registration is not performed, and how well do current registration methods perform?

MATERIALS AND METHODS: This retrospective study of presurgical fMRI for brain tumors compares nonregistered images and 5
registration cost functions: Hellinger, mutual information, normalized mutual information, correlation ratio, and local Pearson correlation.
To adjudicate the accuracy of coregistration, we edge-enhanced echo-planar maps and rated them for alignment with structural anatomy.
Lesion-to-activation distances were measured to evaluate the effects of different cost functions.

RESULTS: Transformation parameters were congruent among Hellinger, mutual information, normalized mutual information, and the
correlation ratio but divergent from the local Pearson correlation. Edge-enhanced images validated the local Pearson correlation as the
most accurate. Hellinger worsened misalignment in 59% of cases, primarily exaggerating the inferior translation; no cases were worsened
by the local Pearson correlation. Three hundred twenty lesion-to-activation distances from 25 patients were analyzed among nonregis-
tered images, Hellinger, and the local Pearson correlation. ANOVA analysis revealed significant differences in the coronal (P � .001) and
sagittal (P � .04) planes. If registration is not performed, 8% of cases may have a �3-mm discrepancy and up to a 5.6-mm lesion-to-
activation distance difference. If a poor registration method is used, 23% of cases may have a �3-mm discrepancy and up to a 6.9-mm
difference.

CONCLUSIONS: The local Pearson correlation is a special-purpose cost function specifically designed for T2*–T1 coregistration and
should be more widely incorporated into software tools as a better method for coregistration in clinical fMRI.

ABBREVIATIONS: AFNI � Analysis of Functional Neuro Images; CR � correlation ratio; HEL � Hellinger; LAD � lesion-to-activation distance; LPC � local Pearson
correlation; MI � mutual information; NMI � normalized mutual information; NR � nonregistered

Interpretation of fMRI depends on accurate functional-to-

structural alignment. However, accurate placement of the acti-

vation area on the anatomic underlay is fraught with challenges.

The images to be superimposed are acquired sequentially, not

simultaneously, and patients are not always cooperative in hold-

ing still across the entire examination. Registration is then re-

quired to account for patient movement by placing the images

back into the same reference space. Additionally, the image se-

quences are multimodal in that the anatomic data are T1-

weighted gradient-echo, whereas the functional data are T2*-

weighted echo-planar. The latter also has intrinsic geometric

distortion with signal drop-out and is typically acquired at a lower

resolution (Fig 1, upper row). Functional-to-structural misalign-

ment may be subtle and not easily recognized (Fig 1, lower row).

When functional-to-structural misalignment occurs, error is in-

troduced when interpreting the functional significance of appar-

ent gyral activation and when judging lesion-to-activation dis-

tances (LADs), which can impact surgical risk assessment.

This coregistration between functional and structural images

is an important postprocessing step that can affect the final inter-

pretation, yet it is our observation that the registration step is not

well-understood, even by most neuroradiologists experienced

with functional imaging and vendor application specialists. Most

publications only briefly remark that “images were coregistered”

with no further elaboration. It seems to us that most fMRI users
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just assume that the coregistration step should work as intended

without understanding what is actually happening. In our expe-

rience with presurgical fMRI studies, coregistration often seemed

to underperform expectations; furthermore, there seemed to be

too much variability in fMRI activation localization using dif-

ferent registration methods.

It is important to contextualize the aims of this study. While

there is an inexhaustible number of possible ways to perform

coregistration, our project has a distinct focus on the current state

of clinical use. Thus, we are primarily interested in the perfor-

mance of the coregistration step in FDA-approved commercial

software. The cost functions evaluated in this study emerge from

a survey of the current state of the industry.

A variety of research (Analysis of Functional Neuro Images

[AFNI; http://afni.nimh.nih.gov/afni]; FSL [http://www.fmrib.ox.

ac.uk/fsl]; statistical parametric mapping [SPM; http://www.fil.ion.

ucl.ac.uk/spm/software/spm12]) and FDA-approved commer-

cial (Prism Clinical Imaging, https://www.prismclinical.com/

pages-output/prism-process/; NordicNeuroLab, http://www.

nordicneurolab.com/; Invivo, http://www.invivocorp.com/;

Brainlab, https://www.brainlab.com/; Siemens, https://usa.healthcare.

siemens.com/magnetic-resonance-imaging/options-and-upgrades/

clinical-applications/syngo-mr-neuro-fmri;

GE Healthcare, https://www.gehealthcare.

com/products/advanced-visualization/

all-applications/brainwave) platforms

are available for fMRI postprocessing.

The following brief survey of the major

commercial software packages illus-
trates the variety of approaches taken by
the vendors. NordicNeuroLab, Invivo,
Brainlab, Siemens, and GE Healthcare
have a default workflow that automati-
cally applies coregistration, and most
also provide the option of manual nudg-
ing with 6 df. In these cases, only 1 cost
function is available, it is chosen by the
vendor, the choice is usually not obvi-
ously disclosed, it cannot be changed by
the user, and it is applied universally to
all modalities to be registered. Brain-

lab1 and GE Healthcare use mutual in-

formation. Invivo and Siemens use

normalized mutual information. Nor-

dicNeuroLab uses a variant of mutual

information that uses adaptive sam-

pling with an octree partition.2 The

workflow of Prism is more elaborate in

several ways. It uses AFNI as its engine.

It does not automatically coregister,

though there is the option to activate

formal coregistration, during which

one may select the cost function from a

list of choices, including Hellinger

(default selection), local Pearson cor-

relation, mutual information, normal-

ized mutual information, correlation

ratio, and least squares. A second cost

function (mutual information by default) runs in the back-

ground and warns the user about a discrepancy between the

results of the primary and secondary cost functions. The pri-

mary and secondary metrics selected can be different for each

pair of images to be registered. Last, manual nudging is allowed

with 3 df for translation. (Compiled by personal e-mail com-

munication with Chad Neller and Jim Reuss from Prism, Cathy

Elsinger from NordicNeuroLab, Erik Peterson from Invivo,

John Murray from BrainLab, David Carpenter from Siemens,

and Olaf Roeder from GE. 12/12/2016 –11/6/2017.)

This survey serves to illustrate the variability among vendors

and that in most cases, the vendors make the decision for you. The

presumption that the vendor has chosen the best registration al-

gorithm may not necessarily be correct. There is always a need for

more validation studies, and vendors are responsive to quality-

improvement initiatives in partnership with physicians.

The most important work to date comparing cost functions

against one another is by Cox et al3 and Saad et al,4 who intro-

duced the local Pearson correlation (LPC) cost function specifi-

cally designed for T2*–T1 coregistration. They demonstrated that

LPC outperforms mutual information, correlation ratio, and

Hellinger across AFNI, FSL, and SPM platforms. Nevertheless,

FIG 1. Sample patient with a right temporal lobe tumor. The upper row illustrates the challenge
in functional-to-anatomic multimodal alignment between T2* EPI (A) and T1-weighted MPRAGE
images (B). Note the inherently poor resolution of EPI. These images also show signal drop-out
from susceptibility artifacts near the sinuses and craniotomy (asterisks). The lower row highlights
the great difficulty in judging accurate alignment simply by visual inspection. The fusion image of
the average EPI mask over the MPRAGE image (C) shows signal drop-out at the skull base (aster-
isks), which can potentially confound registration algorithms. The fusion image of edge-enhanced
EPI (D) delineates structural boundaries in EPI data and reveals slight misalignment (arrows) due to
patient motion between MPRAGE and EPI, primarily in the inferior-superior direction along with
some rotation.
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this survey of commercial vendors reveals that only Prism makes

LPC available, though not even by default.

The present study explores the performance of registration

methods used by FDA-approved software for clinical fMRI and

aims to answer the following question: What is the degree of mis-

alignment when registration is not performed, and how well do

current registration methods perform?

MATERIALS AND METHODS
Patient Selection
This is a retrospective evaluation of presurgical fMRI studies of

consecutive patients scanned between April 2016 and March

2017. Inclusion criteria were fMRI studies with at least 1 motor or

language task, the presence of brain tumor for the purpose of LAD

measurement, and an activation area within 40 mm of the tumor

margin. Studies were excluded if performed for indications other

than tumor, if deemed clinically nondiagnostic due to gross pa-

tient motion or noncompliance with the task, or if no activation

area was present within 40 mm of the tumor margin.

Scanning Technique
Images were acquired on a 3T Tim Trio scanner (Siemens, Erlan-

gen, Germany). A 32-channel head coil was used. A sagittal 3D

T1-weighted MPRAGE sequence was acquired with the following

parameters: 1 � 1 � 1 mm isotropic resolution, TR � 1690 ms,

TI � 1100 ms, TE � 2.56 ms, flip angle � 12°, FOV � 256 � 224

mm, matrix � 256 � 224, one hundred seventy-six partitions.

Axial blood oxygen level– dependent fMRI was acquired by using

T2* echo-planar imaging with the following parameters: 3.5 �

3.5 � 3.5 mm isotropic resolution, no interslice gap, TR � 2100

ms, TE � 27 ms, flip angle � 77°, FOV � 224 � 224 mm, ma-

trix � 64 � 64, thirty-eight slices.

fMRI Tasks
Motor tasks used in these protocols included �1 of the following:

finger motion, foot motion, or tongue motion, depending on the

tumor location and the judgment of the supervising radiologist.

Language tasks included �1 of the following: verb generation (in

which a written noun is displayed and the patient is asked to

covertly generate an appropriate verb), antonym generation (in

which a written word is displayed and the patient is asked to

covertly generate an appropriate antonym), and letter fluency (in

which a written letter is displayed and the patient is asked to co-

vertly generate words that begin with that letter). The block design

consists of 21-second intervals, alternating between active and

control blocks, totaling 3 minutes for the motor task and 4 min-

utes for each language task. Stimuli are presented by a projector-

mirror system, and a finger response system is used to track pa-

tient participation.

Postprocessing
Postprocessing of blood oxygen level– dependent fMRI data was

rendered automatically on a Prism Process (Prism Clinical Imag-

ing) workstation following built-in steps that included within-

series motion correction, spatial smoothing, and calculation of

activation maps using a general linear model, which disregards

EPI volumes deemed outliers and incorporates motion parameter

estimates as a nuisance covariate. This automated processing on

the Prism workstation used default options for spatial smoothing

(a modest amount of Gaussian blur with a full width at half max-

imum of 4 mm) and for spatial extent thresholds/clustering (a

correlation coefficient threshold of 0.35 in conjunction with a

cluster radius of 5 mm and a cluster volume of 210 mm3), with

additional statistical thresholding determined by the neuroradi-

ologist during visual inspection of the activation maps.

The T1-weighted anatomic images were skull-stripped. No

formal coregistration was performed at this initial processing

step. These initial images are hereafter referred to as nonregistered

(NR).

For assessing the effects of the registration method, we ex-

ported the NR images from Prism into the AFNI format for off-

line coregistration. AFNI is the image-processing engine also used

in Prism. The 3dAllineate function in AFNI was used to coregister

EPI and T1-weighted images using Hellinger (HEL), mutual in-

formation (MI), normalized mutual information (NMI), corre-

lation ratio (CR), and the local Pearson correlation (LPC) cost

functions separately. We chose the default interpolation options

of the 3dAllineate function, which uses linear interpolation inter-

nally during the steps of the alignment process (–interp option).

As a weight function, we used a simple binary mask derived from

the skull-stripped MPRAGE image.

Image Evaluation
The transformation parameters, consisting of 3 df in translation

and 3 df in rotation, were automatically calculated by each regis-

tration algorithm. These transformation parameters were re-

corded for HEL, MI, NMI, CR, and LPC. Results were unambig-

uously congruent among the first 4 cost functions but notably

divergent from LPC (see the Results section and Fig 2). Statistical

analysis confirmed that LPC was significantly different from each

of the other 4 methods, but neither HEL, MI, NMI, nor CR dif-

fered from one another. These results are not surprising because

the first 4 cost functions belong to a category of information theo-

ry– based methods grounded in the joint histogram of the image

intensities, whereas the modus operandi of the LPC method is

entirely different. These results justify the use of HEL, which hap-

pens to be the default option in both AFNI and Prism, as a repre-

sentative cost function for the category of information theory–

based methods for further analysis against the LPC.

The NR, HEL, and LPC brain activation images were imported

back into Prism to standardize the image display among the 3

methods. All images were resampled and cubic spline–interpo-

lated to the 1-mm isotropic voxel size of the MPRAGE images.

The blood oxygen level– dependent fMRI threshold level was vi-

sually optimized, as is routine practice in clinical work, by a

board-certified neuroradiologist (F.D.R.) with 6 years of experi-

ence interpreting fMRI studies; but for each patient, the threshold

level was held constant across all registration methods being com-

pared. T1-weighted MPRAGE window-level settings were exag-

gerated for high contrast to easily delineate the tumor margin.

All activation areas located within 40 mm of the tumor mar-

gins were identified on any of the axial, coronal, and sagittal

planes on either motor or language tasks. This distance was some-

what arbitrarily selected simply for collecting samples for subse-
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quent analysis. The LAD was measured for each of these activa-

tion areas on all 3 registration methods.

To adjudicate the accuracy of spatial alignment among these 3

methods, the 3dedge3 function in AFNI was applied to the EPI

data to create edge-enhanced EPI maps, which afford direct visual

inspection of misalignment with respect to anatomic detail on the

MPRAGE images. Following the work of a prior study,5 we rated

these edge-enhanced versions of the NR, HEL, and LPC images

for accurate alignment with the ventricular and sulcal margins

using the following rating system: 1, grossly misaligned; 2,

�5-mm error; 3, two- to five-millimeter error; and 4, zero- to

two-millimeter error.

Statistical Analysis
Statistical analysis of the differences in transformation parameters

among HEL, MI, NMI, CR, and LPC was performed using a re-

peated-measures ANOVA with the registration method and

transformation parameter as levels of within factors. We per-

formed statistical analysis of the differ-

ences in LAD among NR, HEL, and LPC

for each imaging plane separately using

repeated-measures ANOVA, treating

the registration method as the within-

subject factor and subjects as levels of a

between factor. Treating observations in

each subject as coming from separate

“groups” allows the modeling of a sub-

ject-by-method interaction effect and

can help remove any bias in the main

effect toward a particular method

caused by a few subjects. Huynh-Feldt

corrections to the number of dfs in the

F-tests were used on the basis of a moder-

ate departure from sphericity (Green-

house-Geisser epsilon of �0.75).

RESULTS
Thirty consecutive patients undergoing

presurgical fMRI were examined. Five

patients were excluded because they

were scanned for indications other than tumor or were deemed

clinically nondiagnostic. Of the patients included, 5 fMRI runs

were excluded because there was no activation area within 40 mm

of the tumor margin. Therefore, a total of 25 patients were evalu-

ated with a combined total of 75 motor and language tasks. A total

of 320 LADs were identified and measured, consisting of 56 in the

axial plane, 112 in the coronal plane, and 152 in the sagittal plane.

The transformation parameters as calculated by each cost

function were unambiguously congruent among HEL, MI, NMI,

and CR but notably divergent from LPC (Fig 2). In fact, the trans-

formation effects of the first 4 cost functions were in the opposite

direction for most of the translations and rotations compared

with LPC. The most notable discordance was inferior translation

and rotation in pitch (ie, nodding the head). A repeated-measures

ANOVA was performed with registration method and transfor-

mation parameters as levels of within factors. The analysis showed

a highly significant effect of the registration method (P � .001). In

Bonferroni-corrected pair-wise comparisons, the LPC method

was significantly different from each of the other 4 methods (P �

.001), whereas neither of HEL, MI, NMI, nor CR differed from

one another at the P � .05 level. These results justify the use of

HEL, which happens to be the default option in both AFNI and

Prism, as a representative cost function for the category of infor-

mation theory– based methods for further analysis against LPC.

Direct visual inspection of edge-enhanced EPI revealed that HEL

worsened misalignment with respect to NR in 59% of cases, pri-

marily exaggerating inferior translation; no cases were worsened

by LPC. HEL improved alignment in 11% of cases; LPC improved

41% of cases (Fig 3).

Figure 4 illustrates a typical case. The bottom row shows the

edge-enhanced EPI superimposed on the anatomic T1-weighted

images. Attention to the ventricular margin, tumor margin, and

peripheral sulcal margins reveals alignment that is slightly too

high on NR (rated 2 for 2- to 5-mm error), too low on HEL (rated

2 for �5-mm error), and just right on LPC (rated 4 for 0- to 2-mm

FIG 2. Graph plotting the average transformation parameters for translation and rotation as
calculated by several metrics: Hellinger, mutual information, normalized mutual information, corre-
lation ratio, and local Pearson correlation. The transformation effects of LPC are in the opposite
direction (asterisks) for most translations and rotations, most notably the inferior translation and
rotation in pitch. R-L indicates right-left; A-P, anterior-posterior; and S-I, superior-inferior.

FIG 3. Histogram summarizing the objective assessment of coregis-
tration using edge-enhanced images for both HEL and LPC compared
with the initial nonregistered condition. In the case of the HEL metric,
the accuracy of function-to-structural alignment actually worsens in
59% of cases and improves in 11% of cases. However, in the case of the
LPC metric, none of the cases worsened and 41% improved.
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error). The upper row shows an activation area from the antonym

task near the left parietal lobe tumor on a coronal section. The

LADs were 2.6 mm for NR, 12.9 mm for HEL, and 7.4 mm for

LPC. Incidentally, these images also show an activation area in the

ventral temporo-occipital junction, which was inferiorly dis-

placed with the HEL method and inadvertently localized below

the tentorium within the cerebellum.

The 320 LADs were analyzed for differences among NR, HEL,

and LPC. The repeated-measures

ANOVA test showed significant differ-

ences in the coronal (P � .001) and sag-

ittal (P � .04) planes, but not in the axial

plane (P � .55). Pair-wise comparisons

between registration methods con-

firmed significant differences for LPC

versus NR (P � .001) and for LPC versus

HEL (P � .001) but not for HEL versus

NR for those planes that exhibit a signif-

icant effect of method (coronal and

sagittal).

Histogram analysis of differences in

LAD measured among NR, HEL, and

LPC (Fig 5) revealed that the maximum

LAD difference was �3 mm in most cas-

es; however, 105 (33%) cases had a

�3-mm discrepancy, almost all in the

coronal and sagittal planes, even up to a

10.9-mm LAD difference. Figure 6 iso-

lates the LAD differences between LPC,

which is taken to represent accurate

alignment based on the edge-enhanced

analysis, and nonregistered. This con-

trast, therefore, reveals the degree of

misalignment when registration is not

performed. In this case, 27 (8%) cases

have �3 mm discrepancy, almost all in

the coronal and sagittal planes and up to

a 5.6-mm LAD difference. Figure 7 iso-

lates the LAD differences between LPC,

which yields accurate alignment, and

HEL, which has been shown to system-

atically introduce misregistration error.

This contrast emphasizes the degree of

misalignment that may result if a poor

registration method is chosen. In this

situation, 75 (23%) cases have a �3-mm

discrepancy, almost all in the coronal

and sagittal planes, and up to a 6.9-mm

LAD difference.

DISCUSSION
Registration consists of iterative algo-

rithms that minimize an intensity-based

cost function, which is a quantitative

metric of how well 2 volumes are being

aligned.5-7 The transformation model

may involve 6 df with 3 for translation and 3 for rotation (called

rigid-body registration) or 9 df epsilons, adding 3 for scaling, or 12
df epsilons, adding 3 for shearing (called “full affine registration”),
or �12 df epsilons, consisting of a diverse family of nonlinear
algorithms. There is currently no consensus on which complex
nonlinear registration techniques are reliable enough to guide
clinical interpretations.

Rigid-body transformation remains the industry standard for

FIG 4. The upper row displays activation areas from the antonym task superimposed on coronal
MPRAGE images (A–C). The high-contrast window-level setting helps demarcate the tumor in the
left parietal lobe (asterisks). Lesion-to-activation distance between the tumor and the nearest
activation area (large yellow arrows) is quite different: 2.6 mm in NR (A), 12.9 mm in HEL (B), and 7.4
mm in LPC (C). Notice that the activation area in the ventral temporo-occipital junction (green
arrowheads) is displaced in the cerebellum in HEL (B). The lower row consists of edge-enhanced
EPI superimposed on MPRAGE images (D–F). Visual inspection reveals that edge-enhanced EPI
(small blue arrows) is too high in the initial NR (D), too low in HEL (E), but just right in LPC (F).

FIG 5. Histogram displaying the maximum differences in LAD among LPC, HEL, and NR. Data are
also sorted by imaging plane. Notice that the LAD difference is �3 mm in most cases, and this is
especially true in the axial plane. However, a nontrivial number of cases have a �3 mm discrep-
ancy, particularly in the coronal and sagittal planes.
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fMRI registration. This standard makes sense because we are
aligning images taken from the same patient during the same
session so that true structural differences between undistorted
images with different weightings are not expected. However, in
fMRI, the underlying T2* images are distorted nonuniformly, re-
sulting in misalignment that rigid-body registration cannot fully
correct. Proper alignment is also affected by signal drop-out in the
T2* images due to air-tissue interfaces such as the nasal sinuses.
The choice of metric or cost function is crucial but not yet stan-

dardized to obtain the best rigid-body
registration despite the presence of these
distortions. Most vendors supporting
clinical software have made the choice of
which cost function is used, usually mu-
tual information or normalized mutual
information, as reviewed earlier. In the
case of Prism, the clinical imaging plat-
form used at our institution, the default
cost function is HEL, though alternative
metrics are at least also available, includ-
ing LPC. Validation of these choices is
lacking.

Correct localization of fMRI activa-
tion is essential if LAD is to be used for
prognostic value and risk assessment.
Even a small amount of misalignment
can lead to misinterpretation of the
functional significance of fMRI activa-
tion, such as in the case of activation be-
ing classified as cerebellar instead of ce-
rebral (Fig 4). Not only in the clinical
setting but also in basic science research,
correct anatomic localization of fMRI
activation is an elementary expectation.

A number of publications have ex-
plored the significance of LAD for pre-
surgical fMRI risk assessment. Concern-
ing motor function, 1 study reported a
higher risk of new postoperative deficits
with an LAD of �5 mm, but complete
resection without deficits was achieved
for an LAD of �10 mm.8 For language
function, Kundu et al9 found that the
LAD with respect to the Broca area was
17.5 mm for the group with postopera-
tive deficits but 26.8 mm for the group
with no deficits. Similarly, the LAD with
respect to the Wernicke area was 13.9
mm with deficits but 29.6 mm with no
deficits. Wood et al10 found an overall
correlation between LAD and mortality
and furthermore reported that motor
deficits increased linearly with a closer
LAD but language deficits increased ex-
ponentially with a closer LAD (�20
mm), while leveling off and not further
diminishing with farther LADs (�20
mm), which the authors posit may re-
flect the more distributed nature of lan-

guage networks. Bailey et al11 found that the LAD, particularly for
expressive language, failed to predict postoperative deficits. The
authors suggested that their findings, though counterintuitive at
first glance, actually corroborate the added value of presurgical
fMRI because neurosurgeons would react appropriately and take
a more cautious surgical approach to successfully minimize post-
operative deficits. Another study scrutinized the accuracy of mo-
tor and language activation sites in fMRI when judged against the
criterion standard of intraoperative electrocortical stimulation

FIG 6. Histogram of the maximum differences in LAD between LPC and NR. Data are also sorted
by imaging plane. Because edge-enhanced analysis has shown LPC to produce accurate align-
ment, the contrast between LPC and NR reveals the degree of misalignment when registration is
not performed. The most pronounced LAD differences are found in the coronal and sagittal
planes.

FIG 7. Histogram of the maximum differences in LAD between LPC and HEL. Data are also sorted
by imaging plane. Because it has been shown that LPC produces accurate alignment and that HEL
systematically introduces misregistration error, the contrast between LPC and HEL serves to
illustrate the degree of misalignment that may result if a poor registration metric is chosen. The
most pronounced LAD differences are found in the coronal and sagittal planes.
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and found that all such correlations were within 20 mm and 87%
of correlations were within 10 mm.12 The discrepancies likely
reflect the combined error of technical factors, including spatial
resolution, smoothing, geometric distortion, patient motion,
misregistration, and stereotactic localization error and stimula-
tion effects.

While these investigations into the prognostic value of LADs
and the validity of fMRI results are meaningful, surprisingly,
some references even neglected to mention the crucial postpro-
cessing step of coregistration at all. This present study brings at-
tention specifically to the choice of cost function because it has
been underappreciated and its accurate implementation impacts
image interpretation. Given that it matters which registration al-
gorithm is applied, it is disconcerting that so many clinical (and
basic science) fMRI articles give it so little attention. None of the
studies cited above specified the cost function, presumably be-
cause the choice is thought to be “standard” and because better
choices cannot be distinguished from poor choices. Two of them
explained that EPI was manually nudged “for perceived optimal
spatial coregistration.”9,10 However, visual checking and manual
nudging are user-dependent and difficult to standardize.

In this study, the performance of several cost functions was
compared alongside LPC. HEL was specifically chosen because
this is the default cost function in AFNI and Prism, which is the
FDA-approved postprocessing software used at our institution.
HEL13 and the more common MI14 are both information theory–
based cost functions and widely used for generic multitechnique
registration.

LPC, introduced by Cox et al3 in 2008 and Saad et al4 in 2009,
is a special-purpose cost function specifically designed for T2*–T1
coregistration by taking advantage of known differences in con-
trast between the 2 modalities, though it is not yet widely used. It
exploits the strong negative correlation that CSF is bright on T2*
images but dark on T1 images. This cost function is further dis-
tinguished by being more heavily weighted toward the CSF signal
and by incorporating localized estimates with a scalar nonlinear
stretching to accentuate larger correlations to accommodate non-
uniformity artifacts. LPC was demonstrated to outperform a
range of other cost functions, including MI, CR, and HEL.

An alternative rigid-body algorithm that bears similarities to
LPC is boundary-based registration, which incidentally is made
available in the FSL research platform. It, too, has proved supe-
riority in T2*–T1 coregistration compared with the correlation
ratio and normalized mutual information.15

Other groups have explored more exotic approaches using
nonlinear techniques to correct the underlying geometric distor-
tions inherent in EPI for the purpose of optimizing fMRI coreg-
istration.16-18 Direct head-to-head comparisons between rigid
and nonlinear techniques have been undertaken in both fMRI19

and PET/MR imaging.20 In the fMRI study, the authors con-
cluded that their particular nonlinear algorithm was superior to
affine transformation, which happened to use normalized mutual
information. In the PET/MR imaging study, of the limited selec-
tion of metrics evaluated, the 9-df transformation and the 12-df
full affine transformation fared better than the 6-df rigid transfor-
mation or the 12�-df nonlinear algorithm. However, neither LPC

nor boundary-based registration was used in these analyses. For

nonlinear registration algorithms to be validated, they must be

shown to reliably preserve accurate distances in patient scans. If

this is shown to be the case at a future time, the option should exist

for these algorithms to be placed alongside, or even in place of, the

existing best standard for fMRI registration.

Our methodology has several potential limitations. Patient

sample size was not large, and data collection was limited to a

single institution. Moreover, only a select number of cost func-

tions were compared, but as explained previously, this decision

was influenced by the cost functions currently in clinical use and

the options available in Prism (which uses an AFNI engine). For

instance, AFNI does not offer boundary-based registration, and

Prism cannot support FSL outputs. Second, evaluation of the

tumor margin may be considered suboptimal on non-contrast-

enhanced T1-weighted images so that tumor and edema were

probably not perfectly differentiated. However, even on contrast-

enhanced images, identifying nonenhancing tumor is still a prob-

lem, and regardless, the only detail pertinent to the current anal-

ysis is that the same tumor margin is used across all registration

methods for consistent LAD measurements. Last, the activation

areas were chosen on the basis of proximity, but their clinical

significance was not considered and correlative intraoperative

mapping was not available.

There are several future directions worth considering. The

performance of the local Pearson correlation can be compared

between different registration models, for instance 6-parameter

rigid body versus 12-parameter full affine. Furthermore, a sepa-

rately acquired field map can be used for correction of geometric

distortion. Therefore, registration with and without field map–

based correction can be assessed. Head-to-head comparison be-

tween LPC and boundary-based registration would also be inter-

esting. Our results are preliminary in this regard and may serve as

a catalyst for more definitive work.

CONCLUSIONS
Comparison of transformation parameters, visual inspection of

edge-enhanced EPI, and statistical analysis of LAD differences in

the different planes are all concordant with the fact that HEL and

other similar cost functions introduce systematic error, primarily

in terms of exaggerated inferior translation. This inferior shift is

not surprising because registration algorithms must deal with

missing data in the form of signal drop-out near the skull base

from susceptibility artifacts in T2* echo-planar imaging. On the

other hand, the LPC algorithm, which uses a different modus

operandi, performs superbly. On the basis of our patient series, we

found that if formal coregistration is not performed in routine

clinical fMRI, patient motion between EPI runs and between EPI

and MPRAGE images (the dominant source of initial misalign-

ment) causes up to a 5.6-mm error. If a poorer registration metric

is used (ie, HEL instead of LPC), yet another source of misalign-

ment may further muddle the situation, contributing up to a

6.9-mm error. It is important that fMRI users be aware of the

limitations and variabilities in registration methods to avoid po-

tential adverse outcomes, and that the LPC metric appears prom-

ising for routine T2*–T1 co-registration.

A few general recommendations follow. In the research world,

while there are existing pipelines in both AFNI (using LPC) and

FSL (using boundary-based registration) for optimal T2*–T1
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coregistration, there is no guarantee that individual researchers

using even these platforms will run the correct scripts. The peer-

review process should have the expectation that one disclose the

registration methodology, including cost function, df, software

platform, and quality control. Our primary interest lies with com-

mercial vendors supporting clinical fMRI. Thus, we note that

Prism is the only software FDA-approved for clinical use that

makes LPC available, though not by default. Vendors are encour-

aged to incorporate LPC (or perhaps boundary-based registra-

tion) as the default registration metric for T2*–T1 coregistration.

fMRI users would also benefit if commercial software made avail-

able quality-control measures similar to the edge-enhanced ren-

dering applied in this study. National organizations such as the

American Society of Functional Neuroradiology and the Quanti-

tative Imaging Biomarker Alliance fMRI section may consider

incorporating recommendations for the standardization of the

cost function and possibly specific quality-control measures to

promote best practices. While there is no current industry stan-

dard for optimal functional-to-structural alignment, our results

and review argue that there should be.
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