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ORIGINAL RESEARCH
PEDIATRICS

T1 Signal Measurements in Pediatric Brain: Findings after
Multiple Exposures to Gadobenate Dimeglumine for Imaging

of Nonneurologic Disease
X G.K. Schneider, X J. Stroeder, X G. Roditi, X C. Colosimo, X P. Armstrong, X M. Martucci, X A. Buecker, and X P. Raczeck

ABSTRACT

BACKGROUND AND PURPOSE: Signal intensity increases possibly suggestive of gadolinium retention have recently been reported on
unenhanced T1-weighted images of the pediatric brain following multiple exposures to gadolinium-based MR contrast agents. Our aim was
to determine whether T1 signal changes suggestive of gadolinium deposition occur in the brains of pediatric nonneurologic patients after
multiple exposures to gadobenate dimeglumine.

MATERIALS AND METHODS: Thirty-four nonneurologic patients (group 1; 17 males/17 females; mean age, 7.18 years) who received
between 5 and 15 injections (mean, 7.8 injections) of 0.05 mmol/kg of gadobenate during a mean of 2.24 years were compared with 24
control patients (group 2; 16 males/8 females; mean age, 8.78 years) who had never received gadolinium-based contrast agents. Exposure
to gadobenate was for diagnosis and therapy monitoring. Five blinded readers independently determined the signal intensity at ROIs in the
dentate nucleus, globus pallidus, pons, and thalamus on unenhanced T1-weighted spin-echo images from both groups. Unpaired t tests
were used to compare signal-intensity values and dentate nucleus–pons and globus pallidus–thalamus signal-intensity ratios between
groups 1 and 2.

RESULTS: Mean signal-intensity values in the dentate nucleus, globus pallidus, pons, and thalamus of gadobenate-exposed patients
ranged from 366.4 to 389.2, 360.5 to 392.9, 370.5 to 374.9, and 356.9 to 371.0, respectively. Corresponding values in gadolinium-based
contrast agent–naïve subjects were not significantly different (P � .05). Similarly, no significant differences were noted by any reader for
comparisons of the dentate nucleus–pons signal-intensity ratios. One reader noted a difference in the mean globus pallidus–thalamus
signal-intensity ratios (1.06 � 0.006 versus 1.02 � 0.009, P � .002), but this reflected nonsignificantly higher T1 signal in the thalamus of
control subjects. The number of exposures and the interval between the first and last exposures did not influence signal-intensity values.

CONCLUSIONS: Signal-intensity increases potentially indicative of gadolinium deposition are not seen in pediatric nonneurologic pa-
tients after multiple exposures to low-dose gadobenate.

ABBREVIATIONS: DN � dentate nucleus; GBCA � gadolinium-based contrast agent; Gd � gadolinium; GP � globus pallidus; NSF � nephrogenic systemic fibrosis;
SI � signal intensity

Recent reports have detailed high signal intensity (SI) in cer-

tain brain areas (primarily the dentate nucleus [DN] and

globus pallidus [GP]) on unenhanced T1-weighted images fol-

lowing multiple exposures to gadolinium-based contrast agents

(GBCAs).1-20 Many of these reports have focused on apparent

differences between macrocyclic and open-chain “linear”

GBCAs,4-13 invariably associating progressive T1 hyperintensity

with multiple exposures to linear GBCAs and concluding that

observed T1 signal reflects the lower stability of these agents and

thus a greater propensity for gadolinium (Gd) release and, subse-

quently, deposition in the brain. Among the more recent reports

are several that describe retrospective assessments in pediatric pa-

tients.15-19 Although each patient evaluated received just 1 spe-

cific linear GBCA (gadopentetate dimeglumine; Magnevist; Bayer

HealthCare, Wayne, New Jersey), the study-based recommenda-

tions in each case were to consider carefully the use of all linear

agents in pediatric subjects.

Gadobenate dimeglumine (MultiHance; Bracco Diagnostics,

Monroe, New Jersey) is an ionic open-chain, linear GBCA that
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differs fundamentally from gadopentetate and other extracellular

GBCAs in having an aromatic substituent on the chelating mole-

cule.21 Unique properties conferred by this substituent include

increased R1-relaxivity,22 which permits the acquisition of diag-

nostically valid images with a reduced dose,23 and liver-specific-

ity, which permits gadobenate use for hepatobiliary-phase liver

applications.24 An additional benefit is increased molecular sta-

bility compared with gadopentetate, other linear agents, and cer-

tain macrocyclic agents.25 Studies that have evaluated brain T1

signal intensities after multiple exposures to gadobenate have

yielded conflicting results with one report demonstrating T1 sig-

nal increases, albeit to a lesser extent than with gadopentetate,10

and others demonstrating no direct changes.11,12

We aimed to determine whether multiple exposures to low-

dose gadobenate for nonneurologic pathology results in T1 signal

changes in the DN and GP of pediatric patients relative to that in

age- and weight-matched GBCA-naïve control subjects.

MATERIALS AND METHODS
Participants
This single-center (Saarland University Medical Center, Hom-

burg/Saar, Germany) prospective study was approved by the in-

stitutional review board. Written informed consent for the use of

imaging data was obtained routinely from all parents or legal

guardians at the time of the first examination. Pediatric (younger

than 18 years of age), mainly oncologic patients referred for diag-

nosis and subsequent therapy monitoring who had undergone at

least 5 MR imaging examinations enhanced solely with gado-

benate and who had no known neurologic disease or symptoms

were identified from our electronic data base. Initial exposure to

the first patient meeting these criteria was in August 2008. Pa-

tients with unsatisfactory images because of motion artifacts, an

unknown history of GBCA administration, or severely impaired

renal function (glomerular filtration rate � 30 mL/min) were

excluded. All eligible patients underwent unenhanced T1-

weighted imaging of the brain as a prospective adjunctive acqui-

sition immediately before the next scheduled routine follow-up

examination (performed in all cases between September 2015 and

March 2016). Thirty-four patients met the inclusion criteria

(group 1). A further 24 age- and weight-matched subjects with no

known neurologic disease or symptoms who had never been ad-

ministered any GBCA composed a GBCA-naïve control group

(group 2). Patients in group 1 received 5 (n � 9), 6 (n � 7), 7 (n �

3), 8 (n � 4), 9 (n � 2), 10 (n � 3), 11 (n � 1), 12 (n � 2), 13 (n �

1), 14 (n � 1), and 15 (n � 1) injections of gadobenate each at a

dose of 0.05 mmol/kg of body weight (0.1 mL/kg of body weight).

Imaging Protocol
All brain MR imaging examinations were performed on 1.5T

whole-body MR imaging systems (Magnetom Aera or Magnetom

Symphony, Siemens, Erlangen, Germany). All examinations used

an unenhanced axial T1-weighted spin-echo sequence (TR/TE,

450 – 650/7–12 ms; section thickness, 5 mm with a 1.5-mm gap).

Unenhanced axial T2-weighted images were acquired with TR/

TE, 4000 –5400/80 –100 ms; section thickness, 5 mm; FOV, 230

mm).

Data Collection
Four general consultant radiologists (A.B., P.R., G.R., and P.A.,

with 25, 4, 20, and 3 years’ experience, respectively) and 2 neuro-

radiologists in consensus (C.C., M.M., with 35 and 5 years’ expe-

rience, respectively; considered reader 5), who were all blinded to

patient diagnoses and details of all contrast administrations, de-

termined SI values in operator-defined oval ROIs positioned

within the DN, GP, thalamus, and pons of all patients and control

subjects, as described by Kanda et al.1 Each reader was instructed

to make ROIs as large as possible (mean size, 10 mm2; range, 6 –18

mm2). ROIs in the DN were placed on the right side whenever

possible and were positioned as far as possible from pulsating

vessels (if present), without including rim aspects. ROIs in the GP

were placed in the capsula interna; ROIs in the central pons and

thalamus were adjusted as appropriate to ensure homogeneity. If

T1-weighted images were considered inconclusive for visualiza-

tion, T2-weighted images were available to each reader for corre-

lation, with ROIs then placed on the corresponding T1-weighted

image.

Image sets for gadobenate-exposed and GBCA-naïve subjects

were randomized, transcribed to a CD-ROM, and sent by mail to

each blinded reader for viewing and independent evaluation on

each reader’s personal PACS workstation.

Statistical Analysis
Comparison of demographic characteristics between groups 1

and 2 was performed by using a Student t test for age and weight

and a Fisher exact test for sex. The primary outcome measure was

whether repeat exposure to gadobenate (group 1) resulted in sta-

tistically significant increases in brain intraparenchymal SI rela-

tive to that in age- and weight-matched GBCA-naïve control sub-

jects (group 2). To evaluate the primary outcome measure, we

calculated DN-pons and GP-thalamus SI ratios for all subjects. SI

values determined in the DN, GP, thalamus, and pons as well as

DN-pons and GP-thalamus SI ratios were compared between

groups 1 and 2 with unpaired t tests. Differences were considered

significant for P � .05. Generalized multivariate linear regression

was used to determine whether SI ratios were influenced by the

number of gadobenate injections (control group considered as

zero injections), age, sex, or weight. The interreader reliability of

SI measurements was determined from the intraclass correlation

coefficient, obtained from the generalized random effects regres-

sion model.

RESULTS
Demographic details of patients in groups 1 and 2 are presented in

Table 1. The gadobenate-exposed subjects included 6 infants (2

years of age or younger at first exposure), 11 subjects from 2 to 8

years of age at first exposure, and 17 subjects 9 years of age or older

at first exposure. No significant differences were noted for age,

weight, or sex distribution between groups 1 and 2. Each patient

in group 1 was administered MultiHance at a dose of 0.05

mmol/kg of body weight. Given that 1 mL of MultiHance solution

for injection contains 334 mg of gadobenate,26 this corresponds

to 33.4 mg of gadobenate/kg of body weight. On the basis of pa-

tient weight at each examination, a mean total accumulated dose

of 9.8 � 8.33 g of gadobenate (range, 1.67–37.41 g) was adminis-
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tered per patient at a mean volume of 3.85 � 3.14 mL/examina-

tion (1.27 � 1.05 g gadobenate/examination). Patient diagnoses

and reasons for follow-up imaging of patients in group 1 are given

in Table 2.

SI values determined in the DN, GP, pons, and thalamus as

well as the DN-pons and GP-thalamus SI ratios are reported in

Table 3. No significant differences (P � .05) in T1 signal intensity

between gadobenate-exposed and GBCA-naïve control subjects

were noted in any brain region by any reader. Similarly, no signif-

icant differences between gadobenate-exposed and GBCA-naïve

control subjects were noted by any reader for DN-pons SI ratios.

A significant difference in GP-thalamus SI ratios was noted by 1 of

5 readers (reader 5), but this was considered anomalous due in

part to nonsignificantly higher mean T1

signal intensity in the thalamus of con-

trol subjects. Generalized multivariate

linear regression confirmed no influ-

ence of the number of gadobenate expo-

sures on SI ratios across readers after ad-

justing for age, sex, and weight. Strong

agreement among all readers was noted

for SI assessments in the DN, GP, pons,

and thalamus with intraclass correlation

coefficient values ranging from 0.84 to

0.97 for gadobenate-exposed subjects

and from 0.86 to 0.92 for GBCA-naïve

control subjects.

Figures 1 and 2 show representative

T1- and T2-weighted images of pediatric

brain regions after multiple injections of

0.05 mmol/kg of gadobenate in patients

younger than 2 years of age (8 injections;

total, 3.34 g of gadobenate) and �7 years

of age (14 injections; total, 27.39 g of

gadobenate), respectively.

DISCUSSION
To date, no clinical signs or symptoms

associated with T1 signal increases in the

brain have been reported and no conse-

quences for patient health, including

neurologic function, have been identi-

fied. Nevertheless, the latest version of

the American College of Radiology

Manual on Contrast Media27 recom-

mends careful consideration of the clin-

ical benefit versus the unknown poten-

tial risk of Gd deposition when deciding

to perform a Gd-enhanced MR imaging

study and particular attention paid to

pediatric and other patients who may re-

ceive many GBCA-enhanced MR imag-

ing studies during their lifetime. It fur-

ther recommends taking into account

multiple factors when selecting a GBCA,

including diagnostic efficacy, relaxivity,

rate of adverse reactions, dosing/con-
centration, and propensity to deposit in more sensitive organs
such as the brain. Our findings in 34 nonneurologic pediatric
patients who received between 5 and 15 administrations of low-

dose (0.05 mmol/kg of body weight) gadobenate revealed no dif-

ferences in T1 signal intensity in the DN, GP, pons, and thalamus

relative to the SI measurements in 24 age- and weight-matched

control subjects who had never been exposed to GBCA. Likewise,

no significant differences in DN-pons SI ratios were noted, while

just 1 of 5 blinded readers reported a significantly higher GP-

thalamus SI ratio, which could be ascribed to higher T1 signal

intensity in the thalamus of control subjects.

Our findings are in contrast to those of Flood et al,18 who

found an increased DN-pons SI ratio in patients exposed to gado-

Table 1: Summary of group characteristicsa

Characteristic
Gadobenate-Exposed

(n = 34)
GBCA-Naïve

Control (n = 24) P Value
Age 7.18 � 5.93 yr 8.78 � 5.78 yr .31

9 mo to 17 yr 7 mo to 17 yr
Sex (M/F) 17:17 16:8 .28
Body weight (kg) 30.55 � 18.57 26.71 � 17.23 .43

7.8–68 8.1–64
No. of administrations 7.8 � 2.9 NA NA

5–15
Interval between first and last

administrations
2.24 � 1.97 yr NA NA
9 mo to 7 yr

Accumulated volume of gadobenate
administered (mL)

29.35 � 24.95 NA NA
5–112

Accumulated gadobenate dose (g)b 9.8 � 8.33 NA NA
1.67–37.41

Note:—NA indicates not applicable.
a Data are mean � SD and range.
b One milliliter of MultiHance solution for injection contains 334 mg of gadobenic acid as the meglumine salt.39

Table 2: Summary of patient diagnosesa

Group 1 (Gadobenate-Exposed) Group 2 (GBCA-Naïve Controls)

Diagnosis No. Diagnosis No.
T-cell non-Hodgkin lymphoma 1 Chronic recurrent osteomyelitis 3
Hodgkin lymphoma 3 Pelvic trauma 1
Coccygeal teratoma 1 Cystic fibrosis 2
Nephroblastoma 4 DORV/VSD 1
Neuroblastoma 3 Polycystic kidney disease 1
Chronic recurrent osteomyelitis 2 Melanoma 1
Hepatoblastoma 2 Non-Hodgkin lymphoma 2
Mesoblastic nephroma 1 Skull base osteoid osteoma 1
ALL 1 Germ cell tumor 1
Paravertebral schwannoma 1 Polytrauma, knee distortion, ACL rupture 1
Angioma of the spleen 1 Myocarditis 2
Germ cell tumor 2 Hemophilia A 1
Renal clear cell sarcoma 1 Blunt head trauma 2
Ewing sarcoma 3 Osler disease 1
Osteosarcoma 2 Multiple osteochondroma, whole-body staging 1
Rhabdoid tumor of the kidney 1 Congenital aortic malformation, whole-body

imaging
1

Dermatofibrosarcoma 1 Persistent left superior vena cava, thoracic and
head/neck imaging

1

ARVD/ARVC 1 Hypertension work-up 1
Hemangioendothelioma 1
Renal leiomyosarcoma 1
Focal nodular hyperplasia 1

Note:—ALL indicates acute lymphoblastic leukemia; DORV, double outlet right ventricle; VSD, ventricula septal defect;
ACL, anterior cruciate ligament; ARVD, arrhythmogenic right ventricular dysplasia; ARVC, arrhythmogenic right ven-
tricular cardiomyopathy.
a Patients in group 1 underwent multiple gadobenate-enhanced MR imaging studies for therapy follow-up or remission
control. Patients in group 2 underwent preliminary unenhanced imaging as part of the initial work-up at the first visit.
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pentetate relative to GBCA-naïve control subjects (though no dif-

ferences in GP-thalamus SI ratio were found) and in contrast to

those of Hu et al,19 who found significantly higher T1 signal in the

DN and GP of patients after serial exposure to gadopentetate than

in the DN and GP of control subjects.

There are at least 2 possible reasons for the different findings.

First, our patient population was different. Whereas Flood et al18

and Hu et al19 evaluated patients who had undergone multiple

brain examinations, our patient cohort comprised mainly onco-

logic patients with no known brain abnormalities. It is thus pos-

sible that the patients evaluated by Flood et al and Hu et al were

more prone to brain Gd deposition due to a more compromised

Table 3: Comparison of brain SI values and DN-pons and GP-thalamus SI ratios between gadobenate-exposed and GBCA-naïve control
subjectsa

Reader/Patient Group DN Pons GP Thalamus DN-Pons Ratio GP-Thalamus Ratio
Reader 1

Exposed 366.4 � 8.62 370.5 � 8.59 360.5 � 10.2 360.3 � 9.99 0.989 � 0.004 1.0 � 0.003
Control 374.3 � 8.12 377.0 � 8.65 364.4 � 10.3 363.2 � 9.88 0.994 � 0.004 1.0 � 0.002
P value .526 .609 0.796 .842 .383 .572

Reader 2
Exposed 367.8 � 9.33 373.6 � 8.84 392.3 � 11.17 370.5 � 10.66 0.984 � 0.006 1.06 � 0.009
Control 370.9 � 9.70 381.9 � 10.25 380.5 � 11.59 373.3 � 11.1 0.972 � 0.007 1.02 � 0.009
P value .826 .547 .476 .859 .217 .185

Reader 3
Exposed 389.2 � 9.79 374.5 � 8.63 383.6 � 10.68 356.9 � 9.06 1.04 � 0.009 1.07 � 0.012
Control 386.3 � 10.14 380.9 � 10.73 383.5 � 12.98 365.6 � 11.67 1.02 � 0.009 1.05 � 0.011
P value .839 .642 .996 .555 .101 .134

Reader 4
Exposed 365.3 � 8.40 372.6 � 8.71 381.1 � 9.95 369.9 � 9.54 0.98 � 0.006 1.03 � 0.006
Control 368.3 � 9.47 378.5 � 10.28 381.8 � 10.57 376.3 � 9.28 0.97 � 0.005 1.01 � 0.007
P value .816 .661 .959 .644 .388 .083

Reader 5
Exposed 386.5 � 9.82 374.9 � 9.04 392.9 � 10.64 371.0 � 9.68 1.03 � 0.013 1.06 � 0.006
Control 386.3 � 10.85 383.4 � 10.71 385.4 � 12.47 376.8 � 11.17 1.01 � 0.007 1.02 � 0.009
P value .987 .547 .647 .699 .147 .002

a Values are mean � standard error of the mean.

FIG 1. Oncologic male patient (1 year 9 months of age at his first visit) undergoing follow-up imaging for cervical neuroblastoma in remission.
Unenhanced T1- and T2-weighted transverse images of the DN-pons (A and B) and GP-thalamus (C and D) after 8 injections of 0.05 mmol/kg of
gadobenate reveal no evidence of SI changes.

FIG 2. Oncologic female patient (7 years 2 months of age at her first visit) undergoing follow-up imaging for non-Hodgkin lymphoma in
remission. Unenhanced T1- and T2-weighted transverse images of the DN-pons (A and B) and GP-thalamus (C and D) after 14 injections of 0.05
mmol/kg of gadobenate reveal no evidence of SI changes.
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blood-brain barrier. On the other hand, studies have demon-

strated T1-signal increases in the DN and GP even in the presence

of a seemingly intact BBB,14,28 implying that the potential for

T1-hyperintensity may be independent of the patient’s clinical

status and dependent solely on the amount of Gd administered.

However, most of the Gd found deposited in the brain is actually

in the perivascular space and has not passed the BBB,29,30 while

Gd that does appear to have crossed an intact BBB is found pri-

marily in the neural tissue interstitium rather than in neural

cells.14

Second, whereas gadobenate and gadopentetate are both ionic

open-chain GBCAs, they differ fundamentally in that an aromatic

substituent is present on the gadobenate molecule. On the one

hand, this substituent influences the elimination profile of gado-

benate, facilitating its excretion in part (typically up to 5% of the

injected dose in subjects with normal renal function) via the hepa-

tobiliary route.31 More pertinently, it also leads to markedly

higher R1-relaxivity in vivo,22 which, in turn, leads to markedly

increased SI enhancement on T1-weighted images for equivalent

administered doses. A proven benefit of this higher relaxivity is

that a lower gadobenate dose can be used to obtain diagnostically

valid images.23,24 In our study, the mean accumulated dose across

all patients was 9.8 � 8.33 g, administered across a mean of 7.8 �

2.9 examinations (mean, 3.85 � 3.14 mL of MultiHance/exami-

nation, corresponding to 1.27 � 1.05 g of gadobenate/examina-

tion). This is considerably lower than the mean accumulated

gadopentetate dose of 16.2 � 10.1 g across a mean of 5.9 � 2.7

examinations (mean, 2.75 g gadopentetate/examination) given by

Flood et al18 and would similarly be lower than that administered

by Hu et al,19 given that they injected a standard dose of 0.1

mmol/kg of gadopentetate/examination. At our institution, we

routinely administer 0.05 mmol/kg of gadobenate for pediatric

oncologic imaging.

An additional feature conferred by the aromatic substituent,

which is invariably overlooked when simplistic comparisons are

made between “linear” and macrocyclic GBCAs,4-10,32 is im-

proved steric hindrance and thus increased kinetic inertia. An

increased steric effect conferred by a bulky substituent potentially

hinders unwrapping of the ligand around the gadolinium, thereby

increasing molecular stability.33 Improved kinetic inertia due to

an aromatic substituent has previously been demonstrated for

gadofosveset.34 Unfortunately, accurate in vivo measurements of

the kinetic stability of gadobenate are currently lacking, though its

thermodynamic and conditional stability constants in vitro are

the highest of all open-chain GBCAs and higher also than the

macrocyclic agent gadobutrol.25 Further evidence of the inherent

stability of gadobenate comes from the fact that this GBCA, unlike

all other GBCAs except gadoterate meglumine (Dotarem; Guer-

bet, Aulnay-sous-Bois, France), does not contain any excess

chelating agent in its formulation.25 Excess chelating agent is an

indirect indicator of the potential of a GBCA to release Gd; that

the gadobenate formulation does not contain excess chelate im-

plies that it does not release Gd to the same extent as other GBCAs.

Our findings are in stark contrast to those of Weberling et al,10

who found significantly increased DN-pons and DN-CSF SI ra-

tios after serial exposures of gadobenate to adults. However, sev-

eral factors should be borne in mind when evaluating the results

of Weberling et al. First, the patients evaluated were only required

to have had a minimum of 5 consecutive gadobenate-enhanced

MR imaging scans; each patient’s first included scan was not nec-

essarily the first scan the patient received, and prior scans with

other GBCAs might have been performed. The likelihood that

patients might have had prior MR imaging exams with other

GBCAs is clearly a major confounding factor. Ramalho et al12

showed that significant T1 hyperintensity in deep brain nuclei

occurred after the use of gadobenate in patients who had received

prior administration of gadodiamide (Omniscan; GE Healthcare,

Piscataway, New Jersey), but not in patients who had not previ-

ously received gadodiamide. An earlier report by Ramalho et al11

demonstrated significant SI increases in the DN and GP of pa-

tients who had received gadodiamide but not in patients who had

received gadobenate. The lack of adequate patient screening by

Weberling et al10 means that possible potentiating effects of prior

exposure to other GBCAs could not be excluded.

Second, each patient evaluated by Weberling et al10 received a

standardized volume of 15 or 20 mL of gadobenate per examina-

tion irrespective of body weight, resulting in a mean accumulated

volume of 136.9 � 57.6 mL (ie, a mean accumulated dose of 45.72

g of gadobenate) between the first and last MR imaging examina-

tions. Given that an approved gadobenate dose for all indications

other than the liver, kidneys, urinary tract, and adrenal glands is

0.1 mmol/kg of body weight,26 which corresponds to 15 mL for a

75-kg patient, any patient below 75 kg in weight would have re-

ceived more than the approved dose (ie, more than the approved

amount of Gd). Third, all except 1 of the patients evaluated by

Weberling et al had brain metastases from melanoma, with many

undergoing radiation therapy. These patients would certainly

have had a more severely compromised BBB, potentially allowing

easier GBCA access to deep brain nuclei.

Weberling et al10 ascribed their observed SI increases to Gd

retention, speculating that their findings reflect the specific po-

tential of gadobenate to release Gd. In drawing parallels with the

postulated causative role of GBCAs in nephrogenic systemic fi-

brosis (NSF), they noted that gadobenate is classified as being of

intermediate risk for NSF by the European Medicines Agency35;

and in referring to 1 in vitro determination of kinetic stability

conducted by a competitor to the manufacturer of gadobenate,36

they suggested that the potential for Gd release is similar for gado-

benate and gadopentetate. Unfortunately, in vitro determinations

of kinetic stability are inherently limited in that they cannot rep-

licate normal physiologic conditions in vivo and cannot account

for differing and unique routes of elimination among GBCAs.

Although Weberling et al10 acknowledged that no unconfounded

cases of NSF have been reported for gadobenate,37 they failed to

point out that other relevant regulatory authorities, including the

US Food and Drug Administration, classify gadobenate as having

a low risk of NSF.38,39 In this regard, most (73%) of the uncon-

founded published NSF cases were reported in the United

States,40 and at the height of the NSF crisis (2006 –2010), just 1

macrocyclic GBCA (gadoteridol, ProHance; Bracco Diagnostics)

had FDA approval for commercial use. Gadobutrol (Gadavist;

Bayer Healthcare) and gadoterate (Guerbet) were approved in

2011 and 2013, respectively. The other approved GBCAs besides

gadobenate were gadodiamide (GE Healthcare), gadoversetamide
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(OptiMARK; Covidien), and gadopentetate (Bayer Healthcare),

which were avoided and subsequently contraindicated in patients

with severe renal impairment,38 leaving only gadobenate as an

approved open-chain GBCA for routine applications in this

population.

If, as is widely accepted, NSF occurs because of Gd release from

the chelating molecule,35 then at least 1 unconfounded case might

have been expected for gadobenate if, as postulated by Weberling

et al,10 Gd is released in vivo to an extent similar to that seen with

gadopentetate. That no unconfounded cases have been reported

despite exhaustive investigation41-43 suggests that Gd is not re-

leased from gadobenate to the same extent and that any observed

T1 hyperintensity reflects retention of the intact molecule. Rob-

erts et al44 recently reported high levels of Gd in the skin of a

patient who underwent 61 enhanced brain examinations with a

variety of GBCAs and that speciation analysis revealed intact

gadobenate.

Further studies are required to determine whether T1 hyper-

intensity is seen in some patients after serial gadobenate exposure,

and if so, whether this reflects accumulation of intact gadobenate

or released Gd bound to macromolecules (eg, neuromelanin). In

this regard, it is possible that Gd released from less stable GBCAs

binds to macromolecules and that the observed T1 hyperintensity

reflects elevated T1-signal due to slowing of the molecular tum-

bling rate of these Gd-macromolecule complexes.30 This hypoth-

esis might explain why elevated T1 signal is observed with less

stable GBCAs despite the very small Gd concentrations shown to

be retained20 and, conceivably, why detectable high signal is less

evident with more stable GBCAs if these are retained as fully intact

molecules rather than as Gd-macromolecular complexes.45 Of

note, however, is the study by Stojanov13 and a recent study in

pediatric subjects by Rossi Espagnet et al.46 that demonstrate

quantifiable T1 signal increases after multiple exposures to the

macrocyclic GBCAs gadobutrol and gadoterate, respectively.

Also worthy of study is the possible differential impact of

GBCA R1-relaxivity on T1 hyperintensity if GBCAs are retained

as intact molecules; it is likely that retained GBCAs that have low

R1-relaxivity may be less detectable than retained intact GBCAs

that have higher R1-relaxivity. Finally, T1 signal increases are

merely suggestive of Gd retention, and T1 hyperintensity might

alternatively reflect various disease-related processes.47-49 While

imaging studies can be considered, at best, an indirect second-

level marker of Gd deposition, a true picture can only come from

direct tissue analysis. In this regard, studies have demonstrated

measurable Gd not only in the DN and GP but also in other brain

areas and body organs.14,20,28 Most important, Murata et al20

have shown that deposition occurs with both linear and macro-

cyclic GBCAs and that it is up to 23 times higher in organs such as

bone than in the brain.

Despite excellent interreader agreement regarding the repro-

ducibility of SI measurements and despite the absence of signifi-

cant differences in SI values between gadobenate-exposed and

GBCA-naïve control subjects across any of the 4 evaluated brain

regions, a significant difference in the GP-thalamus SI ratio was

nevertheless still observed in 1 of the 5 blinded assessments. Al-

though this can be explained by higher T1 signal in the thalamus

of control subjects, it highlights the potential impact of even min-

imal differences in SI measurements on study interpretation.

This, in turn, points to the importance of multiple readers when

performing quantitative evaluations and to the dangers of draw-

ing conclusions based on evaluations performed by just 1 or 2

readers, particularly if such readers are not blinded to information

regarding the images under evaluation. Accurate placing of ROIs

for quantitative assessment is a highly subjective procedure,

which is susceptible to considerable interreader variation.

Our study has some limitations. First, this was a single-center

study. Second, because we assessed nonneurologic patients who

had not previously undergone MR imaging of the brain, it was not

possible to compare unenhanced T1-weighted images after mul-

tiple gadobenate administrations with baseline unenhanced

images acquired before the first gadobenate administration.

However, the lack of significant SI differences between gado-

benate-exposed and GBCA-naïve control subjects suggests that

no differences would have been seen. Third, we determined DN-

pons and GP-thalamus SI ratios despite Gd retention being

observed in both the pons and thalamus.14,20 However, the T1

signal changes in these brain areas are much lower than in the

DN and GP, and these ratios are commonly calculated parame-

ters.1-4,8-13,16-18 Finally, we did not normalize the SI values of the

DN and GP against the SI of the CSF to account for possible intra-

and intersequence signal-intensity differences, differences be-

tween MR units, and magnetic field inhomogeneity as described

by McDonald et al.14 SI normalization might be appropriate for

future studies.

CONCLUSIONS
Our study of 34 pediatric patients who received between 5 and 15

administrations of 0.05 mmol/kg of body weight gadobenate re-

vealed no differences in T1 signal in the DN, GP, pons, and thal-

amus relative to measurements in 24 age- and weight-matched

control subjects who had never been exposed to any GBCA. Like-

wise, no meaningful differences were seen in the DN-pons and

GP-thalamus SI ratios. If T1 hyperintensity and Gd retention in

deep brain nuclei occur in an exposure-dependent fashion, with

greater T1 shortening observed following greater prior exposure

to GBCAs,1 it would seem prudent to administer the lowest pos-

sible dose of a GBCA to achieve diagnostically valid studies, par-

ticularly when repeat MR imaging studies are required for fol-

low-up or screening purposes. To this end, a recent

intraindividual crossover study in which patients received 2 MR

imaging contrast agents in 2 otherwise identical MR imaging ex-

aminations has demonstrated similar diagnostic imaging perfor-

mances for a half-dose (0.05 mmol/kg of body weight) of gado-

benate relative to a full dose (0.1 mmol/kg of body weight) of the

standard relaxivity macrocyclic GBCA, gadoterate, for morpho-

logic imaging of brain tumors.23 Similarly, a prior study50 dem-

onstrated significant superiority for a three-quarter dose (0.075

mmol/kg of body weight) of gadobenate relative to a full dose (0.1

mmol/kg of body weight) of gadoterate for cranial MR imaging.

In both studies, similar or improved imaging performance was

achieved with a lower total administered dose of gadolinium

when gadobenate was used. We consider half-dose gadobenate

safe and effective for diagnosis and routine follow-up of pediatric

oncologic patients.
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