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ORIGINAL RESEARCH
ADULT BRAIN

Enhancing Brain Lesions during Acute Optic Neuritis and/or
Longitudinally Extensive Transverse Myelitis May Portend a

Higher Relapse Rate in Neuromyelitis Optica
Spectrum Disorders

X G. Orman, X K.Y. Wang, X Y. Pekcevik, X C.B. Thompson, X M. Mealy, X M. Levy, and X I. Izbudak

ABSTRACT

BACKGROUND AND PURPOSE: Neuromyelitis optica spectrum disorders are inflammatory demyelinating disorders with optic neuritis
and/or longitudinally extensive transverse myelitis episodes. We now know that neuromyelitis optica spectrum disorders are associated
with antibodies to aquaporin-4, which are highly concentrated on astrocytic end-feet at the blood-brain barrier. Immune-mediated
disruption of the blood-brain barrier may manifest as contrast enhancement on brain MR imaging. We aimed to delineate the extent and
frequency of contrast enhancement on brain MR imaging within 1 month of optic neuritis and/or longitudinally extensive transverse
myelitis attacks and to correlate contrast enhancement with outcome measures.

MATERIALS AND METHODS: Brain MRIs of patients with neuromyelitis optica spectrum disorders were evaluated for patterns of
contrast enhancement (periependymal, cloudlike, leptomeningeal, and so forth). The Fisher exact test was used to evaluate differences
between the proportion of contrast enhancement in patients who were seropositive and seronegative for aquaporin-4 antibodies. The
Mann-Whitney test was used to compare the annualized relapse rate and disease duration between patients with and without contrast
enhancement and with and without seropositivity.

RESULTS: Brain MRIs of 77 patients were evaluated; 59 patients (10 males, 49 females) were scanned within 1 month of optic neuritis and/or
longitudinally extensive transverse myelitis attacks and were included in the analysis. Forty-eight patients were seropositive, 9 were
seronegative, and 2 were not tested for aquaporin-4 antibodies. Having brain contrast enhancement of any type during an acute attack was
significantly associated with higher annualized relapse rates (P � .03) and marginally associated with shorter disease duration (P � .05).
Having periependymal contrast enhancement was significantly associated with higher annualized relapse rates (P � .03).

CONCLUSIONS: Brain MRIs of patients with neuromyelitis optica spectrum disorders with contrast enhancement during an acute relapse
of optic neuritis and/or longitudinally extensive transverse myelitis are associated with increased annual relapse rates.

ABBREVIATIONS: AQP4 � aquaporin-4; ARR � annualized relapse rate; CE � contrast enhancement; IgG � immunoglobulin G; LETM � longitudinally extensive
transverse myelitis; NMO � neuromyelitis optica; NMOSD � NMO spectrum disorders; ON � optic neuritis

Neuromyelitis optica (NMO) is an inflammatory demyelinat-

ing disorder of the central nervous system,1 characterized by

recurrent episodes of longitudinally extensive transverse myelitis

(LETM) and/or optic neuritis (ON).2 Discovery of an NMO-spe-

cific autoantibody, NMO–immunoglobulin G (IgG), and its tar-

get autoantigen, aquaporin-4 (AQP4), have differentiated NMO

from multiple sclerosis as a distinct disease entity.3 Moreover,

given the high specificity of AQP4-IgG serology for clinically di-

agnosed NMO, such seropositivity was incorporated into the re-

vised diagnostic criteria for NMO in 2006.1 The term “NMO spec-

trum disorders” (NMOSD) was introduced in 2007 to encompass

broader phenotypes, including seropositive patients with coexist-

ing autoimmune disorders and patients with limited or inauguralReceived December 22, 2016; accepted January 14, 2017.
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forms of NMO.4 The terms NMO and NMOSD were unified un-

der a revised NMOSD definition in 2015.5 The unifying NMOSD

diagnostic criteria allowed the diagnosis of NMOSD in patients

without clinical involvement of the optic nerves or the spinal cord

and stratified the diagnosis according to those with or without

AQP4-IgG positivity.

While NMO was traditionally thought to be a disease exclu-

sively involving the optic nerves and spinal cord, imaging abnor-

malities within the brain have been reported in a significant pro-

portion of patients seropositive for AQP4-IgG, in regions with

both high6,7 and low AQP4 expression.8 Lesions involving the

diencephalon, area postrema, corpus callosum, hemispheric

white matter, and corticospinal tracts have been reported.8 Spe-

cific patterns of contrast enhancement (CE) within the brain have

also been reported in NMO, including pencil-thin,9 cloudlike,10

leptomeningeal,11 and perivascular enhancement (Figs 1 and 2).12

The current literature suggests a relatively low incidence of contrast-

enhancing brain lesions in NMO.9-11,13-18

However, in a large proportion of brain MRIs in those studies,

whether they were acquired during an acute phase of the disease

versus at any time point was not specified. Furthermore, the inci-

dence of contrast-enhancing lesions in the brain during acute

relapses of ON and/or LETM in patients with NMOSD has not

been examined before, to our knowledge. Prior studies investigat-

ing predictors of relapse in patients with NMOSD have addressed

factors that are either clinical or biochemical in nature, including

AQP4-IgG seropositivity,19 female sex,20-22 and older age of on-

set.23 In contrast, no MR imaging parameters have been shown to

be associated with disease outcome.

In the current study, we aimed to delineate the extent and

frequency of CE in the brain during acute attacks of ON and/or

LETM. We also sought to determine whether detection of brain

CE was associated with specific outcome measures, including dis-

ease duration and the annualized relapse rate (ARR).

MATERIALS AND METHODS
Patients
A retrospective chart review was performed to identify patients

with contrast-enhancing brain lesions between September 2001 and

November 2013 at the Johns Hopkins NMO center. All patients

identified were diagnosed with NMO or NMOSD based on the

Wingerchuk et al 20061 or 20074 revised criteria, respectively.5 Insti-

tutional review board approval was obtained for the study. Electronic

patient records were reviewed for demographic information, history

of relapse, AQP4-IgG status, age at diagnosis, age at last follow-up,

and the number of relapses.

Neuroimaging
MR imaging examinations were performed by using either 1.5T

or 3T scanners (Philips Healthcare, Best, the Netherlands; GE

Healthcare, Milwaukee, Wisconsin; and Siemens, Erlangen, Ger-

many). T1WI, fast spin-echo T2WI, fast spin-echo FLAIR, and

postgadolinium T1WIs were performed. A gadolinium contrast

agent of 0.1 mL/kg was intravenously administered followed by a

20-mL saline injection. T1-weighted axial and coronal images

were acquired without any delay after intravenous injection. The

sagittal T1WIs were obtained with the following parameters: TR

range � 520 – 696 ms, TE range � 4.6 –14 ms, matrix size range �

192 � 192 to 512 � 196, FOV range � 190 � 190 mm to 240 �

240 mm, section thickness/spacing range � 1/1 to 5/7 mm. Axial

T2WI was performed with the following parameters: TR range �

2500 –7000 ms, TE range � 83–112 ms, matrix size range � 256 �

184 to 448 � 335, FOV range � 159 � 200 mm to 240 � 240 mm,

section thickness/spacing range � 2/2 to 5/5 mm. A FLAIR

sequence was obtained with the following parameters: TR � 6000

ms, TE � 120 ms, TI � 2000 ms, section thickness � 5 mm,

FOV � 23 cm, matrix size � 256 � 256.

All brain MRIs were evaluated in consensus by 2 radiologists, a

FIG 1. Different contrast-enhancement patterns are shown in this
figure. A, A periependymal linear enhancement pattern can be seen
surrounding the lateral, third or fourth ventricles, and/or cerebral
aqueduct. Here we see right posterior periventricular enhance-
ment (arrow). B, Periependymal enhancement and inhomoge-
neous, subtle parenchymal enhancement with ill-defined margins,
so-called cloudlike enhancement (arrows). C, Isolated enhance-
ment (arrow), D, Incomplete ring enhancement (arrow).

FIG 2. A 21-year-old male patient diagnosed with neuromyelitis op-
tica. He initially presented with longitudinally extensive transverse
myelitis when he was 12 years of age. MR imaging was performed at 14
years of age within 1 month of an acute LETM attack. Axial FLAIR image
(A) shows a large region of increased signal abnormality within the
pons, extending into the left middle cerebellar peduncle with ex-
pansion of the pons itself and the cerebellar hemisphere. Postcon-
trast T1-weighted image (B) shows cloudlike contrast enhance-
ment (arrows).
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board-certified neuroradiologist (I.I.) and a radiologist (G.O.),

with 10 and 4 years of experience, respectively. All patients had at

least 1 brain MR imaging performed at our institution. Brain MRIs

acquired within 1 month of the onset of the relapse were classified as

imaging during an acute LETM and/or ON attack. CE was evaluated

by using postgadolinium T1-weighted images. Brain CE was catego-

rized in 6 specific patterns of enhancement: periependymal, cloud-

like, leptomeningeal, isolated, ring, or other (Figs 1 and 2).

Statistical Analysis
The Fisher exact test was used to evaluate the difference between

the proportions of patients with CE who were seropositive versus

seronegative. A nonparametric Mann-Whitney test was used to

compare the ARR and disease duration between those with and

without CE. Regression analyses of the ARR with and without CE

were also performed, with and without adjusting for age, sex, race,

and AQP4-status. P values � .05 were considered statistically sig-

nificant and were not adjusted for multiple analyses.

RESULTS
Brain MRIs of 77 patients (11 males, 66 females) were evaluated

for contrast enhancement. Fifty-nine patients (10 males, 49 fe-

males) underwent brain MR imaging within 1 month of the onset

ON and/or LETM attack and were included in the final analysis.

The mean age of patients was 47.8 years (range, 6 –78 years). There

were 35 African-American, 18 white, and 6 Hispanic (individuals

from Mexico) individuals. Forty-eight patients were AQP4-IgG se-

ropositive, 9 were seronegative, and the AQP4-IgG status was not

checked in 2 of them. The ARR was not available for 1 patient.

Table 1 depicts the proportions of patients with CE in those

with or without AQP4-IgG seropositivity during acute attacks.

The Fisher exact test did not demonstrate significantly different

proportions of CE in patients with or without AQP4-IgG seropos-

itivity during acute attacks (P � .7). No significantly different

proportions were noted when stratified by specific enhancement

patterns (P � .7, data not shown).

Tables 2 and 3 depict the association between the detection

of CE during an acute phase and either disease duration or

ARR. When imaged during the acute phase, patients demon-

strating periependymal CE had significantly higher ARRs com-

pared with those without periependymal CE (P � .03). More-

over, patients demonstrating any type of CE during the acute phase

had significantly higher ARRs (P � .03) than those without.

On the basis of the regression analyses, the unadjusted differ-

ence in ARRs between those with periependymal CE and those

without it was 0.56 (95% CI, 0.07–1.05; P � .03). After we ad-

justed for age, sex, race, and AQP4 status, the difference was 0.60

(95% CI, 0.08 –1.13; P � .03). The unadjusted difference in ARRs

between those with any CE and without was 0.42 (95% CI, 0.04 –

0.80; P � .03). After we adjusted for age, sex, race, and AQP4

status, the difference was 0.41 (95% CI, 0.02– 0.81; P � .04).

Table 4 shows the distribution of brain CE patterns among

59 patients who were scanned within 1 month of an ON and/or

LETM attack. Brain CE was categorized and evaluated in 6

specific patterns of enhancement in the beginning of the study:

periependymal, cloudlike, leptomeningeal, isolated, ring, or

other (Figs 1 and 2). After excluding MRIs that were not ob-

tained within 1 month of ON and/or LETM attack from the

final analysis, we regrouped MRIs into 2 groups: a group with

periependymal CE and a group with any type of CE. MRIs of 14

patients showed periependymal CE, and 21 patients showed

any type of CE within 1 month of ON and/or LETM attacks.

DISCUSSION
The current literature on NMO is limited in its description of neuro-

imaging features that may predict the outcome of disease.24 Most

asymptomatic NMO brain lesions have not been shown to demon-

strate enhancement, and the frequency of acute lesion-associated en-

hancement remains to be determined.23 This study demonstrates

that approximately 63% of patients during an acute attack of ON

and/or LETM may also show CE within the brain parenchyma. CE

within the brain, when identified during an acute phase, is associated

with a significantly increased ARR. The relapse rate during the first 2

years of the disease strongly determines the risk of an unfavorable

outcome as defined by severe disability or death.25 Brain enhance-

ment in patients during an acute ON and/or LETM may reflect a

more severe underlying disease process compared with those without

brain CE.

We found no significant difference in the propensity for CE in

patients who were AQP4-IgG seropositive (64.6%) and seroneg-

ative (55.6%) (P � .7, Table 1). CE patterns of brain lesions in the

Table 1: Association between the proportion of patients with CE
and the presence of AQP4-IgG seropositivitya

AQP4-IgG CE Present CE Absent No. of Patients (Total)
Positive 31 (64.6%) 17 (35.4%) 48
Negative 4 (55.6%) 5 (44.4%) 9
Total 36 (63.2%)b 21 (36.8%)b 57 (2 not tested)

a Fisher exact test, P � .7.
b One patient was not tested.

Table 2: Comparison of disease duration and ARR between
patients with and without CE during an acute attack

CE Present CE Absent
P

Value
Disease duration

(mean) (yr)
4.76 � 4.81 (n � 21) 7.26 � 5.75 (n � 38) .05

ARR (mean) 1.15 � 0.73 (n � 21) 0.73 � 0.52 (n � 38) .03a

a P � .05, based on Mann-Whitney test.

Table 3: Comparison of disease duration and ARR between
patients with and without PCE during an acute attack

PCE Present PCE Absent P Value
Disease duration

(mean) (yr)
4.76 � 4.81 (n � 21) 7.26 � 5.75 (n � 38) .05

ARR (mean) 1.30 � 0.83 (n � 14) 0.74 � 0.49 (n � 45) .03a

Note:—PCE indicates periependymal contrast enhancement.
a P � .05, based on the Mann-Whitney test.

Table 4: Distribution of brain CE patterns among 59 patients with
ON and/or LETM

Type of CE No. of Patients
Periependymal 14
Cloudlike 7
Leptomeningeal 2
Isolated 4
Ring 2
Other 2
Absent 28
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current literature were described mostly in patients seropositive

for AQP4-IgG and have been reported to range from 3% to 56%,

excluding small case reports.3,7,9,10,13,16,17,26 Our study revealed a

much higher proportion of CE, approximating 64.6% and 55.6%

in patients seropositive and seronegative, respectively. A study

investigating contrast-enhancing LETM lesions reported CE in

94% and 71% of seropositive and seronegative patients, respec-

tively, though the authors did not specify the location of CE as

within either the brain or spinal cord.27 To our knowledge, the

current study is the largest cohort to report the frequency of con-

trast-enhancing brain lesions in both seropositive and seronega-

tive patients during active ON and/or LETM relapse of NMO. The

small sample of patients seronegative for AQP4-IgG in the current

study may be contributing to lack of detection for a significant

difference in the proportion of CE seen in seropositive and sero-

negative patients; however, that might be the case in prior studies

failing to show a difference as well. Nevertheless, the number of

patients seronegative for AQP4-IgG is always low compared with

those who are seropositive; therefore, multi-institutional studies

are needed to increase the sample size.

That AQP4 is highly expressed on astrocytic foot processes at the

BBB and contributes to the maintenance of BBB integrity is well-

described.3,28,29 Binding of AQP4-IgG to AQP4 in vitro has been

shown to alter BBB permeability and astrocyte killing.30 Disruption

of the BBB manifests as CE on brain MR imaging.31 Periependymal

white matter is one of the most AQP4-rich regions of the brain;

hence, the high prevalence of periependymal contrast enhancement

in our cohort. Furthermore, AQP4-IgG is thought to be pathogenic

only in proximity to CNS parenchyma, as evidenced by NMO-like

histopathology in animal models in those that received direct admin-

istration of AQP4-IgG into the CNS. In contrast, peripheral admin-

istration had no effect.32 The presence and levels of AQP4-IgG in CSF

are associated and correlated with those in serum during acute

relapses.33,34 For example, AQP4-IgG is detectable in the CSF of

most seropositive patients with serum titers of �1:250 during an

acute relapse.35 Moreover, the amount of CSF AQP4-IgG is cor-

related with astrocyte damage and BBB breakdown.34 Therefore,

it is possible that those with lower serum titers or those not in

acute relapse in the current study may not have detectable or

significant CSF levels of AQP4-IgG to lead to the BBB disruption

and consequent CE. Most interesting, there have been reports of

patients with NMOSD who are AQP4-IgG positive in the serum

for many years before the onset of symptomatic disease.36 The

poor correlation between the presence and level of serum and CSF

titers of AQP4-IgG may be contributing to the lack of signifi-

cantly different proportions of CE in seropositive and serone-

gative patients in our study. It may also be contributing to the

high interstudy variability in the reports of the percentage of

CE observed in patients with NMOSD.3,7,9,10,13,16,17,26,27

Most important, the association between CE during the acute

phase and ARR may be confounded because those who under-

went brain MRIs during an acute phase may have warranted more

immediate imaging because they may have been inherently sicker.

Findings may be further confounded by other clinical character-

istics. For example, longer intervals between the first and second

attack,37 older age at onset,23 patients of African origin,38 female

sex,20-22 and AQP4-IgG seropositivity19 are associated with worse

outcomes and/or higher relapse rates. However, other studies

failed to find AQP4-IgG status as a predictor of outcome. Jarius

et al39 found that AQP4-IgG status did not differ significantly

with regard to time to relapse or ARR. Jiao et al40 found that the

effect of seropositive status on the relapse rate and disability out-

come did not differ. Responses to plasmapheresis based on AQP4-

IgG were also not significantly different.41 Regardless of the

discrepant prognostic findings of AQP4-IgG in the existing liter-

ature, in our study, a periependymal pattern of CE and the pres-

ence of any pattern of CE in the acute phase remained significant

predictors of higher ARRs after adjusting for AQP4 status, as well

as age, sex, and race, on multivariable analysis.

Enhancement patterns of brain lesions in NMO have some

unique features and sometimes, in the presence of characteris-

tic T2 lesions, might aid in making a specific diagnosis. Patchy

CE with blurred margins, so-called “cloudlike enhancement,”

is the most commonly reported enhancement pattern in the

literature.10 More recently, linear periependymal CE, so called

“pencil-thin enhancement,” and leptomeningeal CE were pro-

posed as more specific patterns than cloudlike enhance-

ment.9,11 Isolated CE and ring and open-ring CE are consid-

ered specific to MS, and they are rarely seen in patients with

NMOSD. However, although rare, these intense, well-defined

CE patterns have been described before, especially in seroneg-

ative patients with NMOSD.18

The main limitation of our study is the retrospective design,

and factors that have been described in the literature associated

with outcomes such as seropositivity status, sex, race, and age at

onset may be potential confounders and were not accounted for.

There is a possible selection bias based on a group of patients with

NMOSD who required brain MR imaging, which may reflect a dif-

ferent subpopulation than that not requiring brain MRIs. The

threshold of 1 month as the criterion for an acute attack may be

arbitrary, given the lack of information in records available to more

accurately assess the patients’ clinical statuses and may thus misrep-

resent these statuses in the current study. Furthermore, the current

study was originally conducted before the introduction of the more

inclusive revised diagnostic criteria for NMOSD of 2015.5 Rather,

included patients were based on the 2006 diagnostic criteria; there-

fore, the current study does not account for patients who may now

qualify as diagnostic for NMOSD under the 2015 criteria.

CONCLUSIONS
Detection of CE in postgadolinium T1-weighted brain imaging

within 1 month of onset of an acute ON and/or LETM is asso-

ciated with higher ARRs. CE is an important marker reflecting

the underlying pathogenic process of NMOSD. Although no

significant association was found between CE and AQP4-IgG

serostatus, the strong interplay among the BBB disruption,

AQP4-IgG deposition, and CE warrants further investigation

with a larger multicenter cohort to determine the prognostic

role that CE may play as a predictor of outcome and its corre-

lation with clinical severity.
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