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ORIGINAL RESEARCH
ADULT BRAIN

Detection of Volume-Changing Metastatic Brain Tumors on
Longitudinal MRI Using a Semiautomated Algorithm Based on

the Jacobian Operator Field
X O. Shearkhani, X A. Khademi, X A. Eilaghi, X S.-P. Hojjat, X S.P. Symons, X C. Heyn, X M. Machnowska, X A. Chan, X A. Sahgal, and

X P.J. Maralani

ABSTRACT

BACKGROUND AND PURPOSE: Accurate follow-up of metastatic brain tumors has important implications for patient prognosis and
management. The aim of this study was to develop and evaluate the accuracy of a semiautomated algorithm in detecting growing or
shrinking metastatic brain tumors on longitudinal brain MRIs.

MATERIALS AND METHODS: We used 50 pairs of successive MR imaging datasets, 30 on 1.5T and 20 on 3T, containing contrast-enhanced
3D T1-weighted sequences. These yielded 150 growing or shrinking metastatic brain tumors. To detect them, we completed 2 major steps:
1) spatial normalization and calculation of the Jacobian operator field to quantify changes between scans, and 2) metastatic brain tumor
candidate segmentation and detection of volume-changing metastatic brain tumors with the Jacobian operator field. Receiver operating
characteristic analysis was used to assess the detection accuracy of the algorithm, and it was verified with jackknife resampling. The
reference standard was based on detections by a neuroradiologist.

RESULTS: The areas under the receiver operating characteristic curves were 0.925 for 1.5T and 0.965 for 3T. Furthermore, at its optimal
performance, the algorithm achieved a sensitivity of 85.1% and 92.1% and specificity of 86.7% and 91.3% for 1.5T and 3T, respectively. Vessels
were responsible for most false-positives. Newly developed or resolved metastatic brain tumors were a major source of false-negatives.

CONCLUSIONS: The proposed algorithm could detect volume-changing metastatic brain tumors on longitudinal brain MRIs with statis-
tically high accuracy, demonstrating its potential as a computer-aided change-detection tool for complementing the performance of
radiologists, decreasing inter- and intraobserver variability, and improving efficacy.

ABBREVIATIONS: AUC � area under the curve; 3D-T1-Gad � contrast-enhanced 3D T1-weighted; �MBT � volume-changing MBT; �MBTos � newly developed or
resolved MBT; �MBTts � changing MBT present on both baseline and follow-up scans; FPR � false-positive rate; JOF � Jacobian operator field; MBT � metastatic brain
tumor; ROC � receiver operating characteristic; VCR � volume change ratio

Metastatic brain tumors (MBTs) occur in 24%– 45% of pa-

tients diagnosed with primary cancers outside the brain.1

Accurate assessment of MBTs on follow-up imaging is critical for

better prognosis and selecting the most appropriate treatment

such as chemotherapy, surgery, and radiation therapy or a com-

bination of the aforementioned.2-4 This is becoming more impor-

tant with increasing use of stereotactic radiosurgery.5

Contrast-enhanced 3D T1-weighted (3D-T1-Gad) MR imag-

ing is commonly used for detection and follow-up of MBTs and is

the sequence of choice for stereotactic radiosurgery planning

of MBTs.5,6 During follow-up of MBTs, longitudinal volumet-

ric imaging is performed every 2–3 months.5 This results in a

large amount of data to process and a demanding workload for

radiologists.7 Moreover, the inherent limitations of viewing

scans section by section, changes in head position from one

scan to another, and user subjectivity result in the potential for

increased inter- and intraobserver variability in both detection

and volume assessment, especially with small MBTs or subtle

volume changes.8

Although several studies have investigated the efficiency of

computer-aided detection techniques in MBTs on a single MR

scan,9-14 the literature is limited in studies evaluating the efficacy

of computer algorithms in the follow-up of MBTs15 and detection

of volume-changing MBTs (�MBTs) as an indicator of treatment

response. Tracking volumetric changes is of high clinical value,
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and implementing computer-aided techniques in the follow-up

of MBTs can improve diagnostic accuracy and efficiency16-19 and

complement current single-scan detection algorithms.

While computer-aided detection tools are limited for MBTs,

automated change-detection techniques in MS are an active area

of research and development.20 Like MBTs, in MS, quantitative

analyses are important for assessing disease progression,21 activ-

ity,22 and treatment evaluation.23 The literature on automatic

change detection of MS lesions broadly divides existing ap-

proaches into deformation-based (analysis of deformation fields

resulting from nonrigid registration of scans) and intensity-based

(voxel-to-voxel comparison between scans) methods and sug-

gests a potentially strong role for deformation field-based and

combined techniques.20,23 Furthermore, techniques based on the

deformation field have been proposed as promising in detecting

structural changes on longitudinal brain MR imaging24-27 and

encompass techniques based on vector displacement fields such as

those centered around divergence28 and Jacobian operator fields

(JOFs).29

To detect �MBTs on longitudinal brain MRIs, a semiauto-

mated algorithm based on the JOF is proposed here. The JOF

has certain advantages compared with other methods because

it can be used independently to detect local volume changes28

compared with divergence techniques30 and is computation-

ally less expensive than other deformation field morphometry

approaches.20

In conjunction with other image-processing methods, the JOF

is used in this study to identify MBT candidates that have changed

in size, independent of changes in intensity or contrast compared

with surrounding structures. We hypothesized that our algorithm

can detect �MBTs with statistically high accuracy compared with

a reference standard, defined here as detection by a board-certi-

fied neuroradiologist with 5 years of experience.

MATERIALS AND METHODS
Dataset Extraction
This retrospective study was approved by the Research Ethics

Board of our institution (Sunnybrook Health Sciences Centre,

Toronto, Ontario, Canada) with a waiver of informed consent.

Patient datasets from June 2014 to June 2015 were extracted from

the PACS of our institution. All patients included in this study

were adults (older than 18 years of age) with MBTs, who had

undergone 2 consecutive 3D-T1-Gad scans at our institution. Pa-

tients with other brain pathologies—such as primary brain neo-

plasms, MS lesions, or stroke— or those who had undergone a

brain operation for any reason were excluded. Datasets were di-

vided into 2 groups based on magnetic field strength (1.5T versus

3T) to assess the performance of the algorithm in 2 different sce-

narios. The 1.5T group had MR images obtained on 2 identical

1.5T TwinSpeed Excite scanners (GE Healthcare, Milwaukee,

Wisconsin) with a standard 8-channel head coil. The parameters

for 3D-T1-Gad included the following: TR/TE/flip angle, 8.6 ms/

4.2 ms/20°; FOV, 220 � 220 mm; and voxel size, 0.58 � 0.58 � 1.5

mm. The 3T group had MR images obtained on a 3T Achieva TX

scanner (Philips Healthcare, Best, the Netherlands) with a stan-

dard 8-channel head coil. The parameters for 3D-T1-Gad in-

cluded the following: TR/TE/flip angle, 9.5 ms/2.3 ms/8°; FOV,

312 � 206 mm; and voxel size, 0.67 � 0.67 � 1.5 mm. The pa-

rameters are part of the routine contrast-enhanced brain MR im-

aging protocol at our institution.

Image Analysis

Overview and Definitions. In this section, the image-processing

pipeline used to detect �MBTs is described (Fig 1).

�MBTs were classified by the authors as either �MBTts, which

represent �MBTs present on both baseline and follow-up scans,

or �MBTos, which only appear on 1 scan (ie, newly developed or

resolved MBTs). The volume change ratio (VCR) of an object

across 2 scans was defined as the ratio of its volume change across

time over its initial volume. This metric was defined because it is

accepted that the values of JOFs are directly associated with the

VCR of the brain, and higher JOF values suggest higher VCR and

vice-versa.20

Concerning volume changes, “growing” MBTs refer to all

MBTs that have grown in volume from baseline to follow-up

scans, including newly developed MBTs. “Shrinking” MBTs refer

to MBTs that shrank in size from baseline to follow-up, including

resolved MBTs. Note that to detect growing MBTs in the forward

direction (ie, from baseline to follow-up), our algorithm detected

shrinking MBTs in the reverse direction (ie, from follow-up to

baseline) because the JOF provides richer information in the

shrinking field.30 In addition, this approach allowed detection of

newly developed MBTs that do not have a corresponding MBT on

baseline, though the processes going in the forward and reverse

directions are identical. While our algorithm identified growing

MBTs by detecting shrinking MBTs in the reverse direction, for

clarity, here we will describe the process going in the forward direc-

tion only. SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/

spm12) and Matlab (MathWorks, Natick, Massachusetts) software

packages were used for data processing. All average values are pre-

sented as mean � SD.

Spatial Normalization. To ensure that longitudinal baseline

and follow-up scans were comparable and could be registered

to one another for analyzing changes, we spatially normalized

both scans to the Montreal Neurological Institute template31

with the methods described by Ashburner et al32 (Fig 1A) on

SPM12 software (Fig 2).33

Deformation Field. Next, a nonrigid registration technique,

based on joint diffeomorphic and rigid-body registration and

proposed for intrasubject registration,34 was used to align the

images using SPM12.33 This generated a 3D displacement field,

which determined structural changes between the 2 scans

(Fig 1A).

Calculation of the JOF. To determine whether a tumor shrank

between time points, the JOF—which quantifies local volume

changes—was computed from the displacement field (Fig 2C,

-D), using SPM12.33

Segmentation of MBT Candidates. To segment MBT candidates,

we used a modified version of the approach proposed by Seghier

et al35 for lesion segmentation. First, a probabilistic segmentation

of GM and WM was computed with the methods described by

Ashburner and Friston.32 These 2 tissue maps were then added

2060 Shearkhani Nov 2017 www.ajnr.org



together to create a brain mask, which was then converted to

binary in which voxels of nonzero value were retained. Because

MBTs generally appear on MR images as bright objects fully or

partially confined within the brain matter, they are not de-

tected during this step and are therefore excluded from the

binary mask, leaving “holes” within the brain mask. To detect

MBT candidates, we created a binary mask of the holes, and

this mask was multiplied to the original intensity image to

identify MBT candidates in the intensity domain. Automatic

postprocessing, with no user interaction, was completed to

remove irrelevant objects that had an intensity lower than the

average intensity of GM and WM.

False-Positive Reduction and Detection of �MBTs. To limit

MBT candidates to islands that shrank, we converted the MBT

candidates to binary, multiplied to the JOF, and discarded 2D

islands in the axial dimension with a positive median value, per-

mitting false-positive reduction. To detect �MBTs, we then

thresholded these MBT candidates using various JOF values. For

each threshold value, 3D islands present on at least 1 section in the

axial dimension with a median value of the threshold value or less

were retained (Figs 1B and 2E, -F).

Statistical Analysis
The presence and location of �MBTs were confirmed and ex-

tracted by a board-certified neuroradiologist with 5 years of expe-

rience, blinded to the technical details of
our detection algorithm using Medical
Image Processing, Analysis & Visualiza-
tion (MIPAV; National Institutes of
Health, Bethesda, Maryland); this de-
fined our reference standard. To validate
the algorithm, we considered its accu-
racy in detecting �MBTs in the 1.5T and
3T groups separately. For statistical
analysis of the accuracy of our algorithm
and to find the optimal threshold value
of the JOF, we used receiver-operating
characteristic (ROC) analysis.36 At each
threshold value, a detection was marked
as a true-positive if it overlapped an
�MBT identified by the neuroradiolo-
gist; the rest were marked as false-posi-
tives. The area under the curve (AUC) of
the ROC curve was used to evaluate ac-
curacy, for which an AUC � 0.9 corre-
sponds to a technique with statistically
high accuracy.37 For verification of our
results, in addition to assessing the al-
gorithm using 2 independent datasets,
we used the jackknife approach,38 with
evaluation of the AUC, sensitivity,
specificity, and false-positive rate (FPR) at
the optimal threshold value of each itera-
tion. To assess the potential role of our al-
gorithm in complementing the perfor-
mance of radiologists and reducing
interobserver variability, we compared the
true-positives detected by our algorithm

against those detected by a different board-certified neuroradiologist
with 3 years of experience, blinded to the technical details of our
algorithm. The Mann-Whitney U test was used to compare the fol-
lowing: 1) the accuracy, sensitivity, specificity, and FPR of our algo-
rithm at 1.5T and 3T; 2) the VCR of missed-versus-detected �MBTs;
and 3) the VCR of �MBTos versus the VCR of �MBTts. A P � .05
defined statistical significance.

RESULTS
Patient MR Imaging Datasets
The 1.5T group, comprising 30 patients, had 74 MBTs. The 3T

group, comprising 20 patients, had 76 MBTs. Table 1 summarizes

information about patient demographics, scan timeline, and

MBT details.

Algorithm Performance

Detecting �MBTs. For the 1.5T group, an ROC curve with 233

points (0 to �0.232, separated by �0.001) and, for the 3T group,

an ROC curve with 656 points (0 to �0.655, separated by �0.001)

were constructed by thresholding MBT candidates using various

values of the JOF (Fig 3 and Table 2). Both ROC curves showed

statistically high accuracy with an AUC of 0.925 and 0.965 for the

1.5T and 3T groups, respectively. There was no significant differ-

ence in the VCR between the detected and missed �MBTs for

either group (P � .05).

FIG 1. Steps summarizing the preprocessing of patient datasets (dotted box) and calculation of
the Jacobian operator field in the forward direction (A) and for segmentation of metastatic brain
tumor candidates (dotted box) and detection of shrinking MBTs in the forward direction (B).
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False-Positives
False-positives detected by the algorithm were divided into 5 cat-

egories (Table 3): 1) arteries: branches of anterior and middle

cerebral arteries and vertebrobasilar system; 2) veins: superficial

cortical veins, deep veins including internal cerebral veins, and

basal veins of Rosenthal; 3) dural venous sinuses; 4) dura, tento-

rium, and falx cerebelli; and 5) choroid plexus. Vessels, including

arteries, veins, and dural venous sinuses, were responsible for

79.0% � 24.0% and 77.8% � 18.5% of false-positives in the 1.5T

and 3T groups, respectively. Visual inspection of the datasets sug-

gested that at times, subtle structural differences such as pulsation

of vessels between scans resulted in high JOF values and, conse-

quently, detection as false-positives. However, these can easily be

dismissed on visual inspection by a radiologist.

False-Negatives
At its optimal threshold value, the algorithm did not detect 11

�MBTs in the 1.5T group and 6 �MBTs in the 3T group. �MBTts

false-negatives could subsequently be divided into the following

(Table 4): 1) those that had a size of �2 voxels on one of the scans,

or 2) those segmented poorly during the candidate segmentation

portion of the algorithm, which consequently negatively affected

the evaluation of their JOF values.

In the 1.5T group, the sensitivity of the algorithm in detecting

�MBTos showed inferior values compared with its sensitivity in

detecting �MBTts (75% versus 87.9%, respectively). This is even

though �MBTts had a significantly lower VCR than �MBTos (P �

.0001). These results suggested that �MBTos may be a major

source of false-negatives for our algorithm. To assess this, we eval-

uated the performance of the algorithm with �MBTos omitted.

This analysis was only performed in the 1.5T group because all in-

stances of �MBTos were detected in the 3T group. Like �MBT de-

tection, an ROC curve with 302 points (0 to �0.301, separated by

�0.001) was generated with an AUC of 0.929. At its optimal perfor-

mance (achieved at a threshold value of �0.035), the algorithm had a

sensitivity of 87.9%, specificity of 86.6%, and FPR of 0.210 per sec-

tion, equivalent to 25.4 per scan. Note that detected the �MBTos was

included in the calculation of specificity and FPR.

Verification
In addition to performing all analyses on 2 independent patient

datasets, as demonstrated above, we conducted jackknifing for

further verification of findings. Results from jackknifing were like

the findings before the procedure, verifying initial results (Table

5). Furthermore, statistical analysis of the mean AUC of the algo-

rithm and the sensitivity of the algorithm when applied to jack-

knifed 1.5T �MBTts-only data versus jackknifed 1.5T �MBT data

FIG 2. Axial sections of a patient’s baseline (A) and follow-up (B)
scans. The Jacobian operator field, calculated from the deformation
field in the forward (C) and reverse (D) directions. The final output of
our algorithm produced for baseline (E) and follow-up (F) scans, high-
lighting volume-changing metastatic brain tumors on each scan. Note
that darker voxels on C and D correspond to negative JOF values and
brighter voxels correspond to positive JOF values. The location of a
metastatic brain tumor that has shrunk in size across the scans has
been circled on A–D. The green on E indicates shrinkage, and the red
on F indicates growth. Note that while this image is demonstrated in
2D, various operations as described here were performed in 3D.

Table 1: Summary of information on patients, scans, and MBTs
Variable 1.5T 3T

Sex
Male (total %) 15 (50%) 11 (55%)
Female (total %) 15 (50%) 9 (45%)

Age (yr)
Averagea 60.3 � 13.1 58.7 � 15.7
Range 23.4–91.0 27.3–84.5

Time between baseline and
follow-up (days)

Averagea (per patient) 147 � 155 132 � 129
Range 26–676 17–532

Number of �MBTs
Total 74 76
�MBTts 58 67
�MBTos 16 9
Averagea (per patient) 4.4 � 3.1 3.8 � 3.9

�MBT volume (mL)
Averagea 2.4 � 4.0 2.2 � 3.8
Range 4.0 � 10�3–1.9 � 101 2.0 � 10�2–3.0 � 101

�MBT volume change (mL)
Averagea 1.5 � 2.2 2.2 � 3.5
Range 3.4 � 10�3–3.5 � 101 9.1 � 10�2–2.0 � 101

�MBT VCR (%)
Averagea 7.0 � 101 � 29.5 7.6 � 101 � 1.7 � 101

Range 7.8 � 10�1–1.0 � 102 4.2–1.0 � 102

a Average � SD.
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showed significant improvement (P � .0001 for both AUC and

sensitivity).

Effect on Performance
Of the 150 �MBTs in our datasets, a second neuroradiologist

could detect 144 �MBTs, equivalent to 96% sensitivity. Of the 6

�MBTs missed by the neuroradiologist, 2 �MBTs, consisting of 1

�MBTos and 1 �MBTts, were missed by both the algorithm and

neuroradiologist. However, 1 �MBTos and 3 instances of �MBTts

were missed by the neuroradiologist but detected by the algo-

rithm. Inspection of those 4 �MBTs revealed subtle volume

changes, ranging from 9.1 � 10�2 to 2.5 � 10�1 mL. The addition

of these detections would improve the neuroradiologist’s sensi-

tivity to 98.7%.

DISCUSSION
In this article, we have presented our semiautomated algorithm

for detecting �MBTs in longitudinal brain MRIs with statistically

FIG 3. A, Illustration of the receiver operating characteristic curve of our algorithm for detecting volume-changing metastatic brain tumors at
1.5T, constructed from 233 different thresholding values of the Jacobian operator field (from 0 to �0.232, separated by �0.001). The arrow
shows the optimal point of balance. B, Illustration of the ROC curve of our algorithm for detecting �MBTs at 3T, constructed from 656 different
thresholding values of the Jacobian operator field (from 0 to �0.655, separated by �0.001). The arrow shows the optimal point of balance
between sensitivity and specificity, which happens at the Jacobian value of �0.182.

Table 2: Summary of ROC analysis, for detecting all 1.5T and 3T
�MBTs and 1.5T �MBTts only, and the VCR of detected and
missed �MBTs

Variable 1.5T 3T
ROC curve

AUC 0.925 0.965
Optimal Jacobian threshold �0.035 �0.182
Sensitivitya (%) 85.1 92.1
Specificitya (%) 86.7 91.3
FPRa (per section) 0.208 0.227
FPRa (per scan) 25.1 27.5

Detecteda �MBT VCR (%)
Averageb 7.1 � 101 � 2.8 � 101 7.7 � 101 � 1.7 � 101

Median 7.9 � 101 7.5 � 101

Range 7.8 � 10�1–1.0 � 102 4.2–1.0 � 102

Misseda �MBT VCR (%)
Averageb 6.2 � 101 � 3.8 � 101 7.3 � 101 � 1.9 � 101

Median 7.5 � 101 8.2 � 102

Range 3.9–1.0 � 102 4.3 � 101–8.6 � 101

a At the optimal Jacobian threshold.
b Average � SD.

Table 3: Categories and distribution of false-positives at the
optimal Jacobian threshold

False-Positive Categories 1.5T 3T
Arteriesa (%) 49.8 � 25.3 44.9 � 22.9
Veinsa (%) 16.0 � 8.7 17.3 � 12.8
Dural venous sinusesa (%) 13.2 � 15.9 15.5 � 14.4
Duraa (%) 16.6 � 23.5 12.0 � 12.3
Choroid plexusa (%) 4.4 � 5.4 10.2 � 12.5

a Average � SD.

Table 4: Categories and distribution of false-negatives at the
optimal Jacobian threshold

False-Negative Categories 1.5T 3T
�MBTos (percentage of total) 4 (36.3%) 0 (0%)
�MBTts (percentage of total) 7 (63.7%) 6 (100%)

�2 voxels 3 (27.3%) 1 (16.7%)
Poorly segmented 4 (36.4%) 5 (83.3%)

Table 5: Summary of ROC analysis after jackknifing datasets, for
detecting all 1.5T and 3T �MBTs and 1.5T �MBTts only

Variable 1.5T
1.5T: �MBTts

Only 3T
AUC of ROC curve

Averagea 0.925 � 0.003 0.929 � 0.003 0.965 � 0.002
Median 0.924 0.928 0.965

Sensitivityb (%)
Averagea 85.1 � 0.8 87.9 � 0.8 92.2 � 0.5
Median 84.9 87.7 92.0

Specificityb (%)
Averagea 86.7 � 0.3 86.6 � 0.3 91.3 � 0.6
Median 86.7 86.6 91.1

FPR (per section)
Averagea 0.208 � 0.005 0.210 � 0.005 0.227 � 0.02
Median 0.209 0.211 0.232

a Average � SD.
b At the optimal Jacobian threshold.
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high accuracy at 1.5T and 3T (AUC � 0.9). Our approach uses the

JOF—a vector displacement field operator—which quantifies

longitudinal structural changes of the brain on the basis of the

deformation field. At its optimal performance, our algorithm had

a sensitivity of 85.1% and 92.1% and a specificity of 86.7% and

91.3% for the 1.5T and 3T groups, respectively. Although perfor-

mances at the optimal thresholds were similar, the difference in

optimal JOF threshold values for the 2 groups indicated the effect

of scan parameters on optimal threshold values and the need to

identify a unique optimal threshold value for each set of scan

parameters. Moreover, missed and detected �MBTs had a statis-

tically similar VCR, suggesting that the detection ability of our

algorithm is not dependent on VCR values. Compared with man-

ual reading, this can be considered an advantage of our algorithm

because manual reading of longitudinal brain MR images is bi-

ased against subtle changes.16 Thus, the findings in this study

supported the potential of our algorithm to aid performance by

identifying lesions with subtle volume change that could other-

wise be missed by the user. Although it is accepted that the values

of the Jacobian operator field are directly associated with the VCR

of the brain,20 we speculate that this association may not be the

case for VCR values of individual brain regions because the

missed and detected �MBTs of our algorithm had statistically

similar VCRs despite differences in JOF values. Although this dif-

ference may limit the information provided by the JOF about the

amount of volume change, our results demonstrate the adequacy

of the JOF in detecting �MBTs, even for relatively small VCR

values, and support its potential to serve as a diagnostic aid.

At present, the literature is limited in studies concerning

the follow-up and volume-change detection of MBTs. Chit-

phakdithai et al15 proposed a method for tracking MBTs, rely-

ing on a 4-level label map to denote the intensity-correspon-

dence relation between baseline and follow-up images.

Although authors reported a sensitivity of 92% in detecting

�MBTs, this was verified on only a limited dataset comprising

3 patients. In addition, the authors did not report specificity or

FPR; this omission prevented accurate comparison with our

algorithm.

With our algorithm, nonlinear registration of baseline and

follow-up scans was used to detect structural changes. One of its

main limitations is the infinite number of displacement fields for

a given pair of scans, depending on the registration technique

used.16 More important, these techniques rely on the assumption

that a lesion or tissue region exists on both scans with similar

intensity.16 This assumption limits the detection of �MBTts of

negligible size on one of the scans and �MBTos. Reviewing the

detections of the algorithm showed that most false-negatives were

of the aforementioned 2 categories. Moreover, although our algo-

rithm could detect 75% of �MBTos at 1.5T, this was inferior to the

general sensitivity of our algorithm; however, this problem was

not isolated to our algorithm.

A similar problem exists in MS, in which computer-aided de-

tection tools are more developed and prevalent in the clinical

environment. Although MS computer-aided detection tools fo-

cus more on the amount of volume change as opposed to mere

detection of change, both techniques use automated quantitative

analysis techniques that can be compared. A recent study by

Cabezas et al39 combined subtraction and deformation field anal-

yses to detect new MS lesions on T2-weighted images. Using this

approach on 36 patient datasets, Cabezas et al reported a 70.8%

sensitivity.39 Comparatively, our 1.5T datasets consisted of 30 pa-

tients with 16 instances of �MBTos. When these were omitted, the

AUC and sensitivity of our algorithm improved; this change sug-

gests that �MBTos has a negative effect on its performance. How-

ever, because detecting �MBTos is equivalent to detecting MBTs

on a single scan, this limitation can be addressed by combining

our algorithm with previously described MBT computer-aided

detection tools.9-14

Further enhancement of the clinical utility of our algorithm

rests on improving its FPR. Like other studies concerned with

automatic MBT detection on 3D-T1-Gad,9-13 bright vessels were

a major source of false-positives. Differentiating vessels and

MBTs could be achieved by incorporating 3D template match-

ing– based algorithms for MBT segmentation9-13 in place of our

current method. This may also improve the sensitivity of our al-

gorithm because some of the false-negatives of our technique

were a direct result of poor MBT segmentation. Further false-

positive reduction may be achieved with vessel filters40,41 or cere-

brovascular atlases.42 The use of black-blood MR imaging can

also address this problem14 because this technique has been

shown to be superior in capturing smaller MBTs compared with

other MR images.43,44 More recently, Pérez-Ramírez et al13 pro-

posed the use of a degree of anisotropy to distinguish blood vessels

and MBTs.

CONCLUSIONS
The proposed semiautomated algorithm presented in this article

could detect volume-changing MBTs on longitudinal brain MR

imaging with high accuracy. With the growing quantity and qual-

ity of automated techniques for MBT detection, implementation

of some of these elements may further improve the sensitivity,

specificity, and FPR of our algorithm. The clinical role of our

technique lies in its potential to improve the high workload7 and

ambiguity16 associated with manual reading, which is crucial for

appropriate treatment.5 Through demonstrating the potential of

deformation-based techniques and our algorithm, this study

serves as an initial step in developing a computer-aided change-

detection tool to complement the performance of radiologists.
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R. Visualization in Biomedical Computing: 4th International Confer-
ence, VBC ‘96, Hamburg, Germany, September 22–25, 1996: Proceed-
ings. Berlin: Springer-Verlag; 1996:355– 60

30. Rey D, Subsol G, Delingette H, et al. Automatic detection and seg-
mentation of evolving processes in 3D medical images: application
to multiple sclerosis. Med Image Anal 2002;6:163–79 CrossRef
Medline

31. Evans AC, Collins DL, Mills S, et al. 3D statistical neuroanatomical
models from 305 MRI volumes. In: Institute of Electrical and Elec-
tronics Engineers. IEEE Nuclear and Plasma Sciences Society. Nuclear
Science Symposium and Medical Imaging Conference, 1993; 1993 IEEE
Conference Record. Piscataway: Institute of Electrical and Electronics
Engineers; 1993:1813–17

32. Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:
839 –51 CrossRef Medline

33. Ashburner J, Barnes G, Chen C, et al. SPM12 Manual. London: Well-
come Trust Centre for Neuroimaging; 2016

34. Ashburner J, Ridgway GR. Symmetric diffeomorphic modeling of
longitudinal structural MRI. Front Neurosci 2012;6:197 CrossRef
Medline

35. Seghier ML, Ramlackhansingh A, Crinion J, et al. Lesion identifica-
tion using unified segmentation-normalisation models and fuzzy
clustering. Neuroimage 2008;41:1253– 66 CrossRef Medline

36. Greiner M, Pfeiffer D, Smith R. Principles and practical application
of the receiver-operating characteristic analysis for diagnostic tests.
Prev Vet Med 2000;45:23– 41 CrossRef Medline

37. Hanley JA, McNeil BJ. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology 1982;143:
29 –36 CrossRef Medline

38. Miller RG. The jackknife–a review. Biometrika 1974;61:1–15
39. Cabezas M, Corral J, Oliver A, et al. Improved automatic detec-

tion of new T2 lesions in multiple sclerosis using deformation

AJNR Am J Neuroradiol 38:2059 – 66 Nov 2017 www.ajnr.org 2065

http://dx.doi.org/10.3171/jns.2004.101.supplement 3.0406
http://www.ncbi.nlm.nih.gov/pubmed/15537197
http://dx.doi.org/10.1056/NEJM199002223220802
http://www.ncbi.nlm.nih.gov/pubmed/2405271
http://dx.doi.org/10.3171/foc.2007.22.6.7
http://www.ncbi.nlm.nih.gov/pubmed/17608358
http://dx.doi.org/10.1097/COC.0b013e31824be246
http://www.ncbi.nlm.nih.gov/pubmed/22609733
http://dx.doi.org/10.1007/s00330-007-0599-9
http://www.ncbi.nlm.nih.gov/pubmed/17318603
http://dx.doi.org/10.1016/S1076-6332(03)00506-3
http://www.ncbi.nlm.nih.gov/pubmed/14697002
http://dx.doi.org/10.1111/j.1754-9485.2012.02429.x
http://www.ncbi.nlm.nih.gov/pubmed/23043576
http://dx.doi.org/10.1002/jmri.22009
http://www.ncbi.nlm.nih.gov/pubmed/20027576
http://dx.doi.org/10.1016/j.mri.2012.02.024
http://www.ncbi.nlm.nih.gov/pubmed/22521993
http://dx.doi.org/10.1002/jmri.25207
http://www.ncbi.nlm.nih.gov/pubmed/26934581
http://dx.doi.org/10.1097/RLI.0b013e318277f078
http://www.ncbi.nlm.nih.gov/pubmed/23211553
http://dx.doi.org/10.1007/s10278-004-1010-x
http://www.ncbi.nlm.nih.gov/pubmed/15534751
http://dx.doi.org/10.1016/j.compmedimag.2007.02.002
http://www.ncbi.nlm.nih.gov/pubmed/17349778
http://dx.doi.org/10.1088/0031-9155/51/13/R02
http://www.ncbi.nlm.nih.gov/pubmed/16790920
http://dx.doi.org/10.1016/j.ijmedinf.2017.02.004
http://www.ncbi.nlm.nih.gov/pubmed/28347448
http://dx.doi.org/10.1007/s00234-011-0992-6
http://www.ncbi.nlm.nih.gov/pubmed/22179659
http://dx.doi.org/10.1007/s00234-009-0593-9
http://www.ncbi.nlm.nih.gov/pubmed/19774369
http://dx.doi.org/10.1007/s00234-011-0885-8
http://www.ncbi.nlm.nih.gov/pubmed/21567135
http://dx.doi.org/10.1016/j.ins.2010.07.004
http://dx.doi.org/10.1371/journal.pone.0041873
http://www.ncbi.nlm.nih.gov/pubmed/22848644
http://dx.doi.org/10.3174/ajnr.A3107
http://www.ncbi.nlm.nih.gov/pubmed/22790248
http://dx.doi.org/10.1007/s11548-014-1128-3
http://www.ncbi.nlm.nih.gov/pubmed/25408306
http://dx.doi.org/10.1016/j.compmedimag.2012.03.006
http://www.ncbi.nlm.nih.gov/pubmed/22658230
http://dx.doi.org/10.1109/42.774170
http://www.ncbi.nlm.nih.gov/pubmed/10416804
http://dx.doi.org/10.1016/S1361-8415(02)00056-7
http://www.ncbi.nlm.nih.gov/pubmed/12045002
http://dx.doi.org/10.1016/j.neuroimage.2005.02.018
http://www.ncbi.nlm.nih.gov/pubmed/15955494
http://dx.doi.org/10.3389/fnins.2012.00197
http://www.ncbi.nlm.nih.gov/pubmed/23386806
http://dx.doi.org/10.1016/j.neuroimage.2008.03.028
http://www.ncbi.nlm.nih.gov/pubmed/18482850
http://dx.doi.org/10.1016/S0167-5877(00)00115-X
http://www.ncbi.nlm.nih.gov/pubmed/10802332
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/pubmed/7063747


fields. AJNR Am J Neuroradiol 2016 Jun 9. [Epub ahead of print]
CrossRef Medline

40. Frangi AF, Niessen WJ, Vincken KL, et al. Multiscale vessel enhance-
ment filtering. In: Wells WM, Colchester AC, Delp S. Medical Image
Computing and Computer-Assisted Interventation: MICCAI’9. Berlin:
Springer-Verlag; 1998:130 –37

41. Li Q, Sone S, Doi K. Selective enhancement filters for nodules, ves-
sels, and airway walls in two- and three-dimensional CT scans. Med
Phys 2003;30:2040 –51 CrossRef Medline

42. Forkert N, Fiehler J, Suniaga S, et al. A statistical cerebroarterial atlas
derived from 700 MRA datasets. Methods Inf Med 2013;52:467–74
CrossRef Medline

43. Park J, Kim EY. Contrast-enhanced, three-dimensional, whole-
brain, black-blood imaging: application to small brain metastases.
Magn Reson Med 2010;63:553– 61 CrossRef Medline

44. Park J, Kim J, Yoo E, et al. Detection of small metastatic brain tumors:
comparison of 3D contrast-enhanced whole-brain black-blood imaging
and MP-RAGE imaging. Invest Radiol 2012;47:136–41 CrossRef Medline

2066 Shearkhani Nov 2017 www.ajnr.org

http://dx.doi.org/10.3174/ajnr.A4829
http://www.ncbi.nlm.nih.gov/pubmed/27282863
http://dx.doi.org/10.1118/1.1581411
http://www.ncbi.nlm.nih.gov/pubmed/12945970
http://dx.doi.org/10.3414/ME13-02-0001
http://www.ncbi.nlm.nih.gov/pubmed/24190179
http://dx.doi.org/10.1002/mrm.22261
http://www.ncbi.nlm.nih.gov/pubmed/20187162
http://dx.doi.org/10.1097/RLI.0b013e3182319704
http://www.ncbi.nlm.nih.gov/pubmed/22104961

	Detection of Volume-Changing Metastatic Brain Tumors on Longitudinal MRI Using a Semiautomated Algorithm Based on the Jacobian Operator Field
	MATERIALS AND METHODS
	Dataset Extraction
	Image Analysis
	Statistical Analysis

	RESULTS
	Patient MR Imaging Datasets
	Algorithm Performance
	False-Positives
	False-Negatives
	Verification
	Effect on Performance

	DISCUSSION
	CONCLUSIONS
	REFERENCES


