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ORIGINAL RESEARCH
INTERVENTIONAL

Contrast-Enhanced and Time-of-Flight MRA at 3T Compared
with DSA for the Follow-Up of Intracranial Aneurysms Treated

with the WEB Device
X C. Timsit, X S. Soize, X A. Benaissa, X C. Portefaix, X J.-Y. Gauvrit, and X L. Pierot

ABSTRACT

BACKGROUND AND PURPOSE: Imaging follow-up at 3T of intracranial aneurysms treated with the WEB Device has not been evaluated
yet. Our aim was to assess the diagnostic accuracy of 3D–time-of-flight MRA and contrast-enhanced MRA at 3T against DSA, as the
criterion standard, for the follow-up of aneurysms treated with the Woven EndoBridge (WEB) system.

MATERIALS AND METHODS: From June 2011 to December 2014, patients treated with the WEB in our institution, then followed for �6
months after treatment by MRA at 3T (3D-TOF-MRA and contrast-enhanced MRA) and DSA within 48 hours were included. Aneurysm
occlusion was assessed with a simplified 2-grade scale (adequate occlusion [total occlusion � neck remnant] versus aneurysm remnant).
Interobserver and intermodality agreement was evaluated by calculating the linear weighted �. MRA test characteristics and predictive
values were calculated from a 2 � 2 contingency table, by using DSA data as the standard of reference.

RESULTS: Twenty-six patients with 26 WEB-treated aneurysms were included. The interobserver reproducibility was good with DSA (� �

0.71) and contrast-enhanced-MRA (� � 0.65) compared with moderate with 3D-TOF-MRA (� � 0.47). Intermodality agreement with DSA
was fair with both contrast-enhanced MRA (� � 0.36) and 3D-TOF-MRA (� � 0.36) for the evaluation of total occlusion. For aneurysm
remnant detection, the prevalence was low (15%), on the basis of DSA, and both MRA techniques showed low sensitivity (25%), high
specificity (100%), very good positive predictive value (100%), and very good negative predictive value (88%).

CONCLUSIONS: Despite acceptable interobserver reproducibility and predictive values, the low sensitivity of contrast-enhanced MRA
and 3D-TOF-MRA for aneurysm remnant detection suggests that MRA is a useful screening procedure for WEB-treated aneurysms, but
similar to stents and flow diverters, DSA remains the criterion standard for follow-up.

ABBREVIATIONS: CE � contrast-enhanced; DL � Dual-Layer; EV � Enhanced-Visualization; SL � Single-Layer; SLS � Single-Layer Sphere; WEB � Woven
EndoBridge

Endovascular treatment is now the first-line treatment for the

management of ruptured and unruptured intracranial aneu-

rysms.1-4 However, the limitations of standard coiling for com-

plex aneurysms (large, wide-neck, or developed in a bifurcation)

have contributed to the development of new endovascular ap-

proaches, including balloon-assisted coiling, stent-assisted coil-

ing, flow diversion, and flow disruption.5

The Woven EndoBridge (WEB) aneurysm embolization sys-

tem (Sequent Medical, Aliso Viejo, California) is an intrasaccular

device designed to disrupt the intra-aneurysmal flow at the level

of the neck.6,7 Initial experience with the WEB–Dual-Layer (DL)

showed the clinical utility of this device in wide-neck bifurcation

aneurysms with high technical success and low acute morbidity

and mortality.6-16 Several WEB devices are now available, includ-

ing Single-Layer (WEB-SL), Single-Layer Sphere (WEB-SLS), and

WEB-DL subtypes.12,13 Recently, Enhanced-Visualization (EV)

versions were developed to improve fluoroscopic visualization of

the devices during treatment.

Because of the potential risk of aneurysm recanalization after

endovascular treatment, regular imaging follow-up is recom-

mended. Digital subtraction angiography is the criterion standard

for the follow-up of intracranial aneurysms after endovascular

treatment but has some disadvantages, including potential neu-

rologic complications, iodinated contrast injection, and radiation

exposure. With the goal of avoiding DSA drawbacks, several MR

angiography techniques have been tested to follow intracranial

Received November 6, 2015; accepted after revision February 28, 2016.

From the Department of Neuroradiology (C.T., S.S., A.B., L.P.), Hôpital Maison
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aneurysms. 3D-TOF-MRA and contrast-enhanced MRA (CE-

MRA) at 3T are appropriate techniques for the follow-up of coiled

aneurysms but have some limitations for the aneurysms treated

with stents or flow diverters.17-23 Because the WEB is a relatively

new device, the value of 3D-TOF-MRA and CE-MRA for the fol-

low-up of WEB-treated intracranial aneurysms has been evalu-

ated in a small number of patients at 1.5T.24

The aim of this single-center prospective study was to assess

the diagnostic accuracy of 3D-TOF-MRA and CE-MRA at 3T

against DSA, as the criterion standard, for the evaluation of aneu-

rysm occlusion after WEB treatment.

MATERIALS AND METHODS
Study Population
Institutional review board approval was obtained, and informed

consent was waived according to the design of the study. The

present study complies with the Standards for Reporting of Diag-

nostic Accuracy.25 Between June 2011 and December 2014, con-

secutive patients treated at the Universitary Hospital of Reims

with the WEB were prospectively included in a data base. Patients

treated with the WEB and followed for �6 months after treatment

with both MRA and DSA were included retrospectively. Addi-

tional inclusion criteria were the following: patients older than 18

years of age treated with the WEB; followed with both MRA tech-

niques (3D-TOF-MRA and CE-MRA) at 3T and DSA, with MRA

and DSA being performed within �48 hours.

To avoid redundant data, in case of multiple MRA or DSA

examinations, we used only the last examination.

Imaging Technique for Intra-Arterial DSA
DSA was performed with a biplane angiographic system (Axiom

Artis dBA; Siemens, Erlangen, Germany). Using transfemoral

catheterization, we performed selective injections of the internal

carotid artery or vertebral artery according to the aneurysm

location.

Anteroposterior and lateral working view standard projec-

tions were obtained with an additional 3D rotational angiography

sequence. For the ICA, 8 mL of nonionic contrast agent (iodix-

anol, Visipaque; GE Healthcare, Piscataway, New Jersey) was in-

jected with a velocity of 4 mL/s. For the vertebral artery, 8 –10 mL

was injected with a velocity of 4 –5 mL/s.

Imaging Technique for MRA
MRA examinations were performed at 3T (Achieva; Philips

Healthcare, Best, the Netherlands). Examinations were per-

formed with the following parameters: For 3D-TOF-MRA: TE,

3.45 ms; TR, 18 ms; flip angle, 20°; total acquisition time, 4:59

minutes; number of sections, 140; section thickness, 0.55 mm;

FOV, 210 mm; rectangular FOV, 90%; acquisition matrix, 464;

reconstruction matrix, 512; reconstructed voxel size, 0.41 �

0.41 � 0.55 mm. For the CE-MRA, the parameters were TE, 1.96

ms; TR, 5.4 ms; flip angle, 30°; total acquisition time, 52 seconds;

number of sections, 110; section thickness, 0.5 mm; FOV, 210

mm; rectangular FOV, 85%; acquisition matrix, 480; reconstruc-

tion matrix, 512; reconstructed voxel size, 0.41 � 0.41 � 0.50

mm. CE-MRA randomly sampled the central k-space during ve-

nous injection of a gadolinium-based contrast agent (gadoterate

meglumine, Dotarem; Guerbet, Aulnay-sous-Bois, France). A bo-

lus of 20 mL was used, followed by 30 mL of saline with a scopic-

based detection of the bolus (phase-contrast survey).

Data Collection
Clinical and anatomic data regarding the patient (sex, age) and

aneurysm (number, localization, size, aneurysm status) were

collected. The interval time between aneurysm treatment and

anatomic evaluation was also collected. Aneurysm location was

classified into 4 groups: anterior cerebral artery/anterior commu-

nicating artery, ICA, middle cerebral artery, and posterior circu-

lation/vertebrobasilar artery. We recorded WEB-DL, SL, SLS,

and/or EV.

Data Analysis
All examinations (DSA and MRA) were anonymized by different-

number random assignment by series. All images were indepen-

dently evaluated in random order by 2 interventional neuroradi-

ologists (both with �20 years’ experience). Then, in case of

disagreement, consensus was found between the 2 radiologists.

DSA, 3D-TOF-MRA, and CE-MRA were evaluated separately

without knowledge of the MRA or DSA examination results. The

pretreatment DSA was withheld, but the location of the aneu-

rysms to be evaluated was provided to the readers. For both 3D-

TOF-MRA and CE-MRA, source images and maximum-inten-

sity-projection reconstructions were analyzed. Aneurysm

occlusion was evaluated by using a 3-grade scale (total occlusion,

neck remnant, and aneurysm remnant).26 A simplified 2-grade

scale was used for statistical analysis: adequate occlusion (total

occlusion and neck remnant) and aneurysm remnant.

Statistical Analysis
Quantitative variables are reported as extremes, mean � SD, and

median (interquartile range), while qualitative variables are re-

ported as number and percentage. The � statistic was used to

evaluate interobserver and intermodality agreement for each

technique. The interpretation of � was done according to Landis

and Koch.27 Using the consensus evaluation of intra-arterial DSA

as a reference test to evaluate the degree of aneurysm occlusion,

we calculated the sensitivity, specificity, negative predictive value,

and positive predictive value for 3D-TOF-MRA and CE-MRA. All

analyses were performed by using MedCalc for Windows, Version

14.12.0 (MedCalc Software, Mariakerke, Belgium).

RESULTS
Study Population
Twenty-six of the 36 patients treated with the WEB were included

(age extremes, 34 –78 years; mean age, 55 � 10 years; median age,

57 years; interquartile range, 48 – 61 years) including 22 women

(85%) and 4 men (15%). Ten patients were not included for the

following reasons: Six did not have DSA follow-up at the time of

data collection, 1 died after treatment, and 3 refused MRA follow-

up. The set of imaging data (3D-TOF-MRA, CE-MRA, and DSA)

was acquired between 6 and 15 months after the endovascular

treatment (mean, 9.2 � 3.9 months; median, 9 months; interquartile

range, 6 –13 months). Each patient had 1 aneurysm treated with
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the WEB. Detailed characteristics of the aneurysms are shown in

Table 1.

Among the aneurysms treated with the WEB, 20 (77%) were

treated with the WEB alone; 5 (19%), with coils and the WEB; and

1 (4%), with the WEB and a stent. We used WEBs in the following

manner: 14 DLs, 8 SLs (including 5 EVs), and 4 SLSs (including 1

EV).

Interobserver Agreement
When evaluating aneurysm occlusion by using the 3-grade

scale, the 2 observers were in agreement in 21 of 26 DSAs

(81%), 21 of 26 3D-TOF-MRAs (81%), and 25 of 26 CE-MRAs

(96%), resulting in good interobserver agreement for DSA (� �

0.69; 95% CI, 0.46 – 0.93), excellent agreement for CE-MRA (� �

0.92; 95% CI, 0.76 –1.00), and moderate agreement for 3D-TOF-

MRA (� � 0.59; 95% CI, 0.30 – 0.88). When evaluating aneurysm

occlusion by using the simplified 2-grade scale (adequate occlu-

sion versus aneurysm remnant), the 2 observers were in agree-

ment in 24 of 26 DSAs (92%), 24 of 26 3D-TOF-MRAs (92%),

and 25 of 26 CE-MRAs (96%), resulting in good interobserver

agreement for DSA (� � 0.71; 95% CI, 0.32–1.00) and CE-MRA

(� � 0.65; 95% CI, 0.02–1.00) and moderate interobserver agree-

ment for 3D-TOF-MRA (� � 0.47; 95% CI, 0.13–1.00). Despite

good raw agreement for all modalities, lower � values were ob-

tained by 3D-TOF by using the 3-grade occlusion scale and by

3D-TOF and CE-MRA by using the simplified 2-grade scale. This

was due to a lower number of aneurysm remnants detected by

3D-TOF-MRA and CE-MRA. Consequently, 1 disagreement for

MRA created more imbalance between well-occluded aneurysms

versus aneurysm remnants than with DSA, and the corresponding

� dropped more.

Intermodality Agreement
The results of aneurysm occlusion with the Raymond Scale and

the simplified 2-grade scale for DSA, 3D-TOF-MRA, and CE-

MRA are shown in Table 2. After a consensus reading, by using the

simplified 2-grade scale, 3D-TOF-MRA and CE-MRA showed

identical results. Both MRAs agreed with DSA in 23 of 26 aneu-

rysms (89%). Disagreement occurred in 3 aneurysm remnants on

DSA that were not detected with both MRAs (3 false-negative

cases): 2 aneurysm remnants classified as neck remnants from

both MRA sequences and 1 aneurysm with complete circulation

within the WEB-SL device undetected by both MRAs (Fig 1).

3D-TOF-MRA and CE-MRA showed fair agreement with DSA

regarding aneurysm remnant depiction (� � 0.36; 95% CI,

�0.16;0.88, for both techniques).

Diagnostic Accuracies for Aneurysm Remnant Depiction
With the simplified 2-grade scale for aneurysm-remnant detec-

tion, prevalence was low (15%) on the basis of DSA, and both

MRA techniques showed low sensitivity (25%), high specificity

(100%), very good positive predictive value (100%), and very

good negative predictive value (88%).

Analysis by the Type of WEB
Among the 14 patients treated with the WEB-DL, with a simpli-

fied 2-grade scale, consensus readings agreed for 13 aneurysms

(including 12 adequate occlusions and 1 aneurysm remnant) and

disagreed for 1 aneurysm remnant on DSA, classified as adequate

FIG 1. A 78-year-old man with an anterior communicating artery aneurysm treated by the WEB-SL with enhanced visualization. Follow-up
images were acquired 7 months after endovascular treatment. 3D-TOF-MRA and CE-MRA were performed 24 hours after DSA. DSA frontal
projection (A) and 3D reconstruction in an embolization incidence (B) show aneurysm remnants with complete circulation within the device,
while 3D-TOF-MRA and CE-MRA MIP reconstructions (C and D) show total occlusion.

Table 1: Patient and aneurysm characteristics (n � 26)a

Patients
Female 22 (84.5%)
Age (yr) 57 (48–61)
Aneurysms

Aneurysm localization
Internal carotid artery 6 (23%)
Anterior cerebral artery/anterior

communicating artery
9 (35%)

Middle cerebral artery 7 (27%)
Vertebrobasilar artery 4 (15%)

Aneurysm size
�5 mm 1 (4%)
5–10 mm 22 (84%)
�10 mm 3 (12%)

Aneurysm status
Unruptured 24 (92%)

a Continuous variables are described as median and interquartile range, and categoric
variables, as number and percentage.

Table 2: Aneurysm occlusion evaluation (n � 26)
DSA

(No.) (%)
3D-TOF-MRA

(No.) (%)
CE-MRA
(No.) (%)

Montreal scale
Total occlusion 12 (46) 17 (65) 18 (69)
Neck remnant 10 (38.5) 8 (31) 7 (27)
Aneurysm remnant 4 (15.5) 1 (4) 1 (4)

Simplified 2-grade scale
Adequate occlusion 22 (85) 25 (96) 25 (96)
Aneurysm remnant 4 (15) 1 (4) 1 (4)
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occlusion with both MRA techniques. Among the 12 patients

treated with the WEB-SL or SLS (including 6 EVs), with the sim-

plified 2-grade scale, consensus readings agreed for 10 aneurysms

(4 EVs and 6 non-EVs) and disagreed for 2 aneurysm remnants (2

EVs) on DSA classified as adequate occlusion with both MRA

techniques.

DISCUSSION
In our series of patients with aneurysms treated with the WEB,

DSA was superior to CE-MRA and 3D-TOF-MRA for the evalu-

ation of aneurysm remnants, and both MRA techniques had

equivalent accuracy (� � 0.36); however, the interobserver repro-

ducibility was higher with CE-MRA (� � 0.65) than with 3D-

TOF-MRA (� � 0.47).

WEB treatment of wide-neck bifurcation aneurysms induces

intra-aneurysmal thrombosis. Long-term anatomic results after

WEB treatment are available,28,29 and several follow-up imaging

modalities may be used, such as DSA, MRA, or CTA. If it is now

accepted that the artifacts produced by coils do not hamper MRA

interpretation,17-21 it is important to understand the accuracy and

reliability of MRA techniques for WEB-treated aneurysms.

The WEB has a different material composition (nickel-titani-

um-platinum composite wires with radio-opaque platinum

markers) compared with coils but is similar to intracranial stents

and flow diverters. Despite recent progress in neurovascular de-

vice manufacturing, MR imaging of a stent or flow-diverter lu-

men remains difficult due to a combination of magnetic suscep-

tibility artifacts and the Faraday cage effect. Given the material

similarities to neurovascular stents and flow diverters, the above

MR imaging effects may be expected with the WEB.

In terms of magnetic susceptibility, the WEB is similar to most

commercially available neurovascular stents and flow diverters

that are made from nonferromagnetic alloys such as nitinol with

either platinum alloy markers or platinum alloy wires for radio-

opacity. Of note, a minority of components of these alloys or

impurities in the alloy itself are thought to disturb the homoge-

neity of the magnetic field and cause an alteration of the resonance

condition of the protons in the vicinity of the implant, thus lead-

ing to intravoxel dephasing with an attendant loss of signal.30

These susceptibility artifacts that prevent visualization of the de-

vice lumen may be variable, depending on the materials.31 This

phenomenon may explain, in part, the loss of signal that prevents

the physician from seeing the interior of the WEB on MRA se-

quences. WEBs are now available with composite nitinol/plati-

num wires that improve radio-opacity but likely have the same

magnetic susceptibility profile as intracranial stents and flow di-

verters with the same or similar materials.

Given that neurovascular stents and flow diverters are con-

structed of electrically conductive materials, they likely provide a

Faraday cage or Faraday shield effect with MR imaging. The

braids prevent the proton spins of water molecules in the stent

lumen from being flipped or excited. This phenomenon depends

on the wave length of the radiation, the size of the mesh in the

cage, the conductivity of the materials, thickness, and other vari-

ables.32,33 Unlike stainless steel or cobalt alloy stents, nitinol stents

are relatively more sensitive to radiofrequency artifacts than to

susceptibility artifacts.34 If one drew a parallel between the WEB

and stents/flow diverters of equivalent composition, it seems rea-

sonable that there is also a Faraday shield effect with the WEB and

that it contributes to loss of signal from the interior.

The same MRA parameters for stent evaluation were used

without optimization for the WEB evaluation. However, it has

been shown that optimized sequences can minimize stent-in-

duced artifacts. Using a T1-weighted spin-echo pulse sequence

may produce artifacts smaller than those of fast-spoiled gradient-

recalled echo pulse sequences, shorter TEs can also decrease stent

artifacts, and contrast-enhanced MRA may help to better delin-

eate the stent lumen.30 Also, for nitinol stents, the visualization of

the stented segment can be at least partially overcome by using a

higher flip angle.35-37 Recently, a “silent scan” technique combin-

ing ultrashort TEs (to minimize the phase dispersion of the la-

beled blood flow signal in the voxel) and arterial spin-labeling

showed promising improvement of flow visualization in an intra-

cranial stent.38 This technique may theoretically improve visual-

ization within the WEB device and will deserve further dedicated

studies.

There are few data in the literature about noninvasive methods

for WEB follow-up. MRA was evaluated in a small number of

patients at 1.5T, while CTA has not been reported.24 Mine et al24

compared DSA and CE-MRA for the follow-up of intracranial

aneurysms treated with the WEB-DL and found a better inter-

technique agreement (mean � � 0.67) than in the present study

(� � 0.36). Despite these results, 2/5 (40%) aneurysm remnants

were not detected with CE-MRA in their study, while 3/4 (75%)

were not detected in ours; these findings underlie the sensitivity

limitations of MRA compared with DSA for aneurysm remnant.

There are differences between the 2 studies. Mine et al24 eval-

uated 16 aneurysms treated with the WEB-DL, by using a 1.5T

device, while we used a 3T magnet, which has been reported to be

better for the follow-up of coiled intracranial aneurysms20 but

may have potentially enhanced artifacts. In addition, the time

between CE-MRA and DSA was longer in their study (2 months);

this difference could have introduced modifications between the 2

examinations. They chose to evaluate only CE-MRA, while our

study also provided data on the value of 3D-TOF-MRA. Finally,

they classified the occlusion according to the Raymond classifica-

tion scale,26 while we decided to use a simplified 2-grade scale

closer to our clinical practice. At first sight, one can infer that there

will be more disagreement by using a 3-grade scale; nevertheless,

the 2-grade scale by gathering completely occluded aneurysms

and those with neck remnants can influence strongly the intermo-

dality agreement when several disagreements between neck

remnant and aneurysm remnant occur. This difference may

sometimes be subjective and related to small differences in mea-

surements. Specific occlusion grading scales have been proposed

for aneurysms treated with the WEB such as the WEB occlusion

scale. The WEB occlusion scale was approved and validated as the

grading scale for the 150 patients in the US WEB-IT Clinical Study

and was correlated to histology in an 80-subject preclinical

study.39,40

Our study has several limitations. First, a small number of

patients were included. Second, the heterogeneity of endovascular

implants (different types of WEB and adjunction, in some cases,

of stents or coils) might have affected MRA image quality. Despite
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disagreement occurring in only 1 of the patients with an adjunc-

tive device (WEB � 2 coils) and the 2 readers not noticing dra-

matic modifications between different devices, the adjunctive de-

vice may have been the source of supplemental artifacts and

remains to be evaluated in a larger series of patients. Third, we

used standardized MRA stent parameters, and optimization of

these parameters for the WEB may reduce artifacts. Future studies

of CTA and optimized MRA for WEB follow-up are necessary.

Also, the difference between DSA standard views and strict axial

and coronal MIP views for MRA images possibly affected the

readers’ ratings between the neck and aneurysm remnants, under-

lying the importance of careful reading of axial source images.23

CONCLUSIONS
In our series, despite acceptable interobserver reproducibility and

predictive values, the low sensitivity of CE-MRA and 3D-TOF-

MRA for aneurysm remnant detection suggests that MRA is a

useful screening procedure for WEB-treated aneurysms, but sim-

ilar to stents and flow diverters, DSA remains the criterion stan-

dard for follow-up. Regarding improving noninvasive follow-up

of WEB-treated aneurysms, further studies will have to focus on

the analysis of optimized MRA techniques in larger cohorts of

patients treated with homogeneous WEB devices.
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Medical; UNRELATED: Consultancy: Blockade Medical, Medtronic, MicroVention,
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