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COMMENTARY

Super-Resolution Track Density Imaging: Anatomic Detail
versus Quantification

I have read with great interest the article by Hoch et al,1 in this

issue of the American Journal of Neuroradiology describing an

MR imaging protocol to discriminate the internal anatomy of the

human brain stem. Their study provides a very nice illustration of

one of the key strengths of MR imaging, in which multiple MR

imaging contrast mechanisms/parameters can complement each

other and provide an enhanced visualization of brain structures.

In this particular study, the synergy of a recently proposed echo

modulation curve (EMC) method for T2 mapping2 and the su-

per-resolution track density imaging (TDI) method3 is shown to

visualize many of the tracts and nuclear groups within the brain

stem, to a level not previously shown before with in vivo 3T MR

imaging. Most important, this combined protocol was achieved

with a total acquisition time that is feasible for clinical investiga-

tions (though it relies on postprocessing methods that may be, so

far, available only at large specialized centers, a limitation likely to

be overcome in the future, with the widespread use of these

methodologies).

The results of the study by Hoch et al,1 demonstrating the

synergy of TDI with other MR imaging parameters to achieve

enhanced anatomic delineation are consistent with the findings

from previous studies, such as the combination of super-resolu-

tion TDI and ultra-high-field T1-weighted images to delineate the

substructures of the thalamus at 7T MR imaging.4

A related issue, also briefly mentioned in the article by Hoch et

al,1 is that of quantification. While T2 is a well-studied parameter

and one that has been used quantitatively for clinical applications

in the past (eg, in epilepsy,5 Friedreich ataxia,6 and multiple scle-

rosis,7 among others), quantification of TDI has been the subject

of recent controversy, with some studies reporting successful clin-

ical applications8-10 and others emphasizing its potential limita-

tions for quantitative studies.11-14

The super-resolution TDI method was initially developed pri-

marily as a qualitative imaging method with high anatomic con-

trast.3 Despite its potential role as a quantitative parameter for

fiber-density mapping (given that TDI is a measure of the density

of streamlines from fiber tracking), recent studies have high-

lighted its limitations as a fully quantitative parameter, including

relatively low quantitative reproducibility12 and sensitivity to de-

tecting false-positives and false-negatives.14

Given these limitations, it could be argued that the power of

super-resolution TDI is not as a quantitative tool but rather in the

high anatomic contrast and detail it provides (as illustrated by the

results from Hoch et al,1 and other related studies3,4,15,16). Quan-

tification is therefore better performed on the basis of, for

example, other complementary track-based parameters, such as

track-weighted apparent diffusion coefficient (TW-ADC), track-

weighted fractional anisotropy (TW-FA), and track-weighted

fiber-orientation distribution (TW-FOD),12,17 or even on the ba-

sis of other properties of the streamlines themselves (such as their

lengths in the average pathlength map [APM] method)13 or on

measures of the voxelwise fiber-orientation distribution (such as

those related to the apparent fiber density [AFD] method).14,18

While these maps have reduced anatomic contrast relative to that

seen in TDI maps, they have more reliable quantitative proper-

ties12,13 and are therefore more suitable for quantitative analysis

in clinical applications.

In this context, one could envisage a scenario in which the

protocol proposed by Hoch et al1 is used to identify and delineate

the structures of interest (eg, specific tracts and nuclear groups

within the brain stem, as in Figs 2– 8 in that study), but then these

other complementary parameters are used for quantification

within those specific structures. Thus, some maps (eg, EMC and

super-resolution TDI) are used to define the structures of interest

(on the basis of their high anatomic contrast and detail), while

other maps (eg, TW-ADC, TW-FA, TW-FOD, APM, total AFD,

and so forth) are used to provide more reliable quantitative mea-

sures. This approach, in turn, emphasizes once again the strength

in the synergy of multiple MR imaging parameters or as Aristotle

once said, “The whole is greater than the sum of its parts.”
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